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Abstract— This paper describes a vision-based, large-area,
simultaneous localization and mapping (SLAM ) algorithm that
respectsthe low-overlap imagery constraints typical of underwa-
ter vehicleswhile exploiting the inertial sensorinformation that is
routinely available on suchplatforms. Wepresenta novel strategy
for ef�ciently accessingand maintaining consistent covariance
bounds within a SLAM information �lter , thereby greatly in-
creasingthe reliability of data association.The techniqueis based
upon solving a sparse system of linear equations coupled with
the application of constant-time Kalman updates. The method
is shown to produce consistent covariance estimates suitable
for robot planning and data association.Real-world results are
presentedfor a vision-based6-DOF SLAM implementation using
data fr om a recentROV survey of the wreck of the RMS Titanic.

I . INTRODUCTION

This paperaddressesthe problem of precisionnavigation
and mapping using low-overlap, high resolution image se-
quencesobtained by autonomousunderseavehicles. From
a “robotics science” perspective, our primary contribution
consistsof an ef�cient algorithm for extracting consistent
covariancebounds from SLAM information �lters. From a
“robotics systems” perspective, we demonstrateautomatic
visually-augmentednavigation processingof a sequenceof
866 imagesof the RMS Titanic (Fig. 1), for a missionwith a
vehiclepath lengthover 3 km long.

A numberof oceanographicapplicationssharethe require-
mentfor high resolutionimagingof sitesextendingover hun-
dredsof meters.Theseinclude hydrothermalvent sites,cold
seep sites, shipwrecksof archaeologicalsigni�cance, coral
reefs,and �sheries habitats.Oneof the signi�cant challenges
associatedwith suchtasksis the requirementfor preciseand
accuratenavigation to ensurecompleterepeatablecoverage
over the site of interest.

Traditionally, the oceanographiccommunity has utilized
threedifferent methodologies(by themselves or in combina-
tion) to addressnavigation underwater [1]: (1) transponder
networks placedon the sea�oor, (2) ship to vehicle bearing
(ultra-shortbaseline)tracking systems,and (3) ranging and
inertial sensorson the underwater vehicle. Each of these
methodologiestrade off different aspectsof accuracy, cost,
and complexity. For example, transpondernetworks provide
accuratenavigation on the sea�oor, but come at the cost of
the overheadrequiredfor the deployment and calibrationof
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Fig. 1. Mapping resultsfrom a ROV survey (boustrophedonpattern)of the
RMS Titanic conductedin the summerof 2004.(top) An XY plot comparing
the raw dead-reckoned(DR) navigation data (brown), ship-boardultra-short
baselinetracking (gray), and reconstructedsurvey trajectory from a vision-
based6-DOF SLAM information �lter (red). Note that the discontinuity in
the DR trajectory is the result of navigation sensordropouts.(bottom) A
photomosaicof theRMS Titanicconstructedfrom over700digital still images.
Note that this photomosaicis presentedfor visualizationpurposesonly as a
representationof the data that serves as input to our algorithm. It is the
result of semi-automaticprocessingwith manualselectionof a numberof
controlpointsto guidethephotomosaickingprocess.This couldbeconsidered
as a form of benchmarkagainst which fully autonomousprocessingcan be
compared.

the individual transponderson the sea�oor. Thesesystemsare
also limited to providing updatesevery few secondsbased
uponthe travel time betweenthe vehicleand transponders.

In this paper we explore a methodologythat utilizes a
vision-basedSLAM approachto provide high precision,ac-
curate,navigation measurementswhen usedin concertwith
inertial measurementsmadeonboardby the vehicle.The goal
is an algorithm that respectsthe constraintsof low-overlap
imaging for large-areaextendedsurveys that are typical of
underwater vehicles. Our approachconsidersthis problem
from the “information formulation” of SLAM.



Within the SLAM community, algorithms exploiting the
sparseinformation representationfor SLAM were �rst pro-
posedby Thrun et al. [2], Frese[3], [4], Paskin [5], Eustice
[6], and Dellaert [7]. Thesemethodsexploit the empirical
observation that this representationis either sparseor “close
to sparse”.The sparseinformation representationallows for
linear storage requirementsand ef�cient fusion of sensor
measurements.However, therecoveryof covariancesis acubic
operationif a naive approachis followed.

Thekey issueonwhichwefocusin thispaperis theef�cient
recovery of consistentcovariancesfrom the information�lter .
It is hardto de�ne a singlede�nition of consistency employed
uniformly in the prior literatureon SLAM. Intuitively, consis-
tency re�ects the goal that the error estimatescomputedby
the �lter should“match” the actualerrors.

In relation to SLAM, consistency of the error estimatesis
important for dataassociation— determiningthe correspon-
dencesfor measurements[8]. This is important both in the
context of “local” SLAM (detectingandtrackingfeatures),and
in a “global” sense(for closing loops). If the SLAM error
estimatesare too small (overcon�dent), then both of these
taskscanbecomedif�cult aswill be shown in xIV.

Before describingour approachfor ef�cient recovery of
consistentcovariancesbounds,we �rst review the basicchar-
acteristicsof SLAM information �lters.

I I . SLAM INFORMATION FILTERS

A number of recent SLAM algorithms have explored re-
formulating the estimationproblemwithin the context of an
extendedinformation �lter (EIF) [2], [6], [7], which is the
dualof theextendedKalman�lter (EKF) [9]. The information
form is often called the canonicalor natural representation
of the Gaussiandistribution becauseit stemsfrom expanding
the quadratic in the exponential. The result is that rather
than parameterizingthe normal distribution in terms of its
meanandcovariance,N

�
� t ; � t ; � t

�
, it is insteadparametrized

in terms of its information vector and information matrix,
N � 1

�
� t ; � t ; � t

�
, where[9]

� t = � � 1
t � t = � t � t : (1)

A. Constant-Time MeasurementUpdates

A well known and very attractive propertyof formulating
SLAM in an EIF is that measurementupdatesareadditive and
ef�cient. This is in contrastto the quadraticcomplexity per
updatein theEKF. For example,assumethefollowing general
measurementfunction and its �rst-order linearizedform:

zt = h(� t ) + v t

� h( �� t ) + H(� t � �� t ) + v t

where� t � N
�

�� t ; �� t
�

� N � 1
�
�� t ; �� t

�
is the predictedstate

vector, v t � N
�
0; R

�
is the white measurementnoise,andH

is the Jacobianevaluatedat �� t . The EKF covarianceupdate
requirescomputingthe Kalmangain andupdating �� t and �� t

via [9]:

K = �� t H> �
H �� t H> + R

� � 1

� t = �� t + K
�
zt � h( �� t )

�

� t =
�
I � KH

� �� t
�
I � KH

� >
+ KRK > :

(2)

This calculation non-trivially modi�es all elementsin the
covariancematrix resulting in quadraticcomputationalcom-
plexity per update.In contrastthe correspondingEIF update
is given by [2]:

� t = �� t + H> R� 1H

� t = �� t + H> R� 1�
zt � h( �� t ) + H �� t

�
:

(3)

Theabove equationshows that the informationmatrix is addi-
tively updatedby theouterproducttermH> R� 1H. In general,
this outer product modi�es all elementsof the predicted
informationmatrix, �� t , however a key observation is that the
SLAM Jacobian,H, is alwayssparse[2]. For example,in our
applicationwe usea view-basedSLAM implementationbuilt
aroundusing a camerato extract relative-posemeasurements
from pairwiseregistrationof overlappingimagesof the envi-
ronment.Given a pair of imagesI i andI j , imageregistration
provides a relative-posemeasurementbetweenstatesx i and
x j resultingin a sparseJacobianof the form:

H =
h
0� � � @h

@x i
� � � 0 � � � @h

@x j
� � � 0

i
:

As a result only the four-block elementscorrespondingto x i

and x j of the information matrix needto be modi�ed (i.e.,
�� x i x i , �� x j x j , and �� x i x j = �� >

x j x i
). Sincemeasurementsonly

ever involve a �x ed portion of the SLAM statevector, updates
canbe performedin constant-time.

B. SparseRepresentation

Thrun et al. [2] originally showed that the �ltered feature-
basedSLAM informationmatrix empiricallyobeys a “close-to-
sparse”structurewhenproperlynormalized.This observation
spawnedthedevelopmentof a numberof computationallyef�-
cient feature-basedSLAM algorithmssuchassparseextended
information�lters (SEIFs) [2], thin junction-tree�lters (TJTFs)
[5], and Tree-Map�lters [4]. Thesealgorithmsapproximate
the SLAM posterior by (effectively) eliminating “small” el-
ementsin the correspondinginformation matrix. The elimi-
nation of weak constraintsresultsin a sparserepresentation
allowing the developmentof ef�cient �lter algorithms that
exploit the resultingsparsearchitecture.This empiricalobser-
vation of weak inter-landmarkconstraintshas recently been
given a solid theoreticalfoundationby Frese[10] where he
mathematicallyshows that inter-landmarkinformationdecays
spatially at an exponentialrate. This addssomejusti�cation
for thesparsenessapproximationsutilized in thefeature-based
SLAM informationalgorithmsmentionedabove.

In addition to feature-basedtechniques,a recent paper
by Eustice et al. [6] shows that for a view-basedSLAM
representationtheinformationmatrix is exactlysparsewithout
any approximation.The implication is that view-basedSLAM
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Fig. 2. This �gure highlights the exact sparsityof the view-basedSLAM
informationmatrix usingdatafrom a recentROV survey of the wreck of the
RMS Titanic. In all thereare867 robot stateswhereeachstateis a 12-vector
consistingof 6 poseand6 kinematiccomponents.The resultinginformation
matrix is a 10; 404 � 10; 404 matrix with only 0:52% nonzeroelements.

systemscantake advantageof thesparseinformationparame-
terization without incurring any sparse-approximationerror.
Based upon this insight, we've implementeda view-based
SLAM systemfor our underseaapplicationbuilt aroundfusing
6-DOF relative-posecamerameasurements(using monocular
overlappingsea�oor imagery)with traditionalunderwaterve-
hicle DR navigation sensors.As an example,Fig. 2 illustrates
the resulting information matrix associatedwith registering
866 images and fusing them with navigation data from a
grid-basedROV survey of the wreck of the RMS Titanic.
The off-diagonalelementscorrespondto spatialrelative-pose
measurementsmadeby thecamerawhile theblock-tridiagonal
elementsarisefrom theMarkov processmodel.Thewreckwas
surveyed from midshipto sternandthenfrom midshipto bow
resultingin a large loop-closingevent, which is evident from
the far off-diagonalelementspointedout in Fig. 2.

C. StateRecovery

While the insight of “sparseness”has lead to the devel-
opment of computationallyef�cient SLAM algorithms such
as the ones previously mentioned,an issue countering the
information�lter is thequestionof how to gainef�cient access
to the state estimateand its uncertainty. Referring back to
(1) we seethat the information parameterizationembedsthe
statemeanand covariancewithin the information vector and
information matrix respectively. State recovery implies that
wheneverwewantto actuallyrecoverourstateestimatefor the
purposesof motion planning,dataassociation,maprecovery,
linearizing our processor observation models,etc., we must
invert the relationshipshown in (1).

1) Recovering the mean: Nä�ve recovery of our statees-
timate through matrix inversion results in cubic complexity
anddestroys any ef�ciency gainedover the EKF. Fortunately,
closer inspectionshows that recovery of the statemean,� t ,
canbe posedmoreef�ciently assolving the following sparse,
symmetric,positive-de�nite, linear systemof equations:

� t � t = � t : (4)

Suchsystemscanbe iteratively solved via the classicmethod
of conjugate gradients(CG) [11]. In general,CG can solve
this system in n iterations (with O(n) cost per iteration)

where n is the size of the state vector, and typically in
many fewer iterations if the initialization is good [12]. In
addition,sincethe statemean,� t , typically doesnot change
signi�cantly with each measurementupdate(excluding key
events like loop-closure)this relaxationcan take place over
multiple time stepsusing a �x ed number of iterations per
update[2], [13]. Also, recentlyproposedmultilevel relaxation
SLAM algorithms,suchas[12], [14], appearcapableof solving
thissystemwith linearasymptoticcomplexity. This is achieved
by sub-samplingposesand performing the relaxation over
multiple spatialresolutions,which hastheeffect of improving
convergencerates.

2) Recovering covariance: The covariancematrix corre-
spondsto the inverse of the information matrix, however,
actuallyrecoveringthecovariancevia (1) is not practicalsince
matrix inversionis a cubic operation.Additionally, while the
informationmatrix canbe a sparserepresentationfor storage,
in general, its inverse results in a fully densecovariance
matrix despiteany sparsityin the information form [3]. This
meansthatcalculatingthecovariancematrix requiresquadratic
memory storage,which may becomeprohibitively large for
very large maps (e.g., maps� O(105) state elements).To
illustrate this point, for the 10; 404� 10; 404 information
matrix shown in Fig. 2, storing it in memory only requires
4:5 MB of doubleprecisionstoragefor the nonzeroelements
while its inverserequiresover 865MB.

Fortunately, recovering the entirecovariancematrix usually
is not necessaryfor SLAM as many of the data association
and robotic planning decisionsoften do not require the full
covariancematrix, but only the covarianceover subsetsof
state variables [15]. Unfortunately, accessingonly subsets
of state variables in the information form is not an easy
task. The covarianceand information representationsof the
Gaussiandistribution lead to very different computational
characteristicswith respectto the fundamentalprobabilistic
operationsof marginalizationand conditioning(Table I). For
example,marginalizationis easyin the covarianceform since
it correspondsto extracting the appropriatesub-block from
the covariancematrix while in the informationform it is hard
becauseit involvescalculatingtheSchurcomplementover the
variableswewish to keep(notethattheoppositerelationholds
true for conditioning,which is easyin the information form
andhard in the covarianceform). Therefore,even thoughwe
may only needaccessto covariancesover subsetsof the state
elements[15] (andthusonly have to invert a small information
matrix relatedto the subsetof variableswe areinterestedin),
accessingthemin theinformationform requiresmarginalizing
out mostof the statevectorresultingin cubic complexity due
to matrix inversionin the Schurcomplement.

To get aroundthis dilemma,Thrun et al. proposeda data
associationstrategy baseduponusingconditionalcovariances
[2], [16]. Since conditional information matrices are easy
to obtain in the information form (simply extract the sub-
block over desiredvariables),their strategy is to choosean
appropriatesub-blockfrom the information matrix such that
its inverseapproximatestheactualcovariancefor thesubsetof



TABLE I

SUMMARY OF MARGINALIZATION AND CONDITIONING OPERATIONS ON

A GAUSSIAN DISTRIBUTION EXPRESSED IN COVARIANCE AND

INFORMATION FORM

p
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� �� � ��
� � � � � �

i �
= N � 1

� h
� �
� �

i
;
h

� �� � ��
� � � � � �

i �

MARGINALIZATION CONDITIONING

p
�
�

�
=

R
p
�
� ; �

�
d� p

�
�

�
� �

�
= p

�
� ; �

�
=p

�
�

�

COV.
FORM

� = � � � 0 = � � + � �� � � 1
� � (� � � � )

� = � �� � 0 = � �� � � �� � � 1
� � � � �

INFO.
FORM

� = � � � � �� � � 1
� � � � � 0 = � � � � �� �

� = � �� � � �� � � 1
� � � � � � 0 = � ��

variablesthey are interestedin. In particular, given two state
variablesof interest,x i and x j , their approximationselects
the joint-Markov blanket M +

i [ M +
j (i.e., M +

k represents
statevariablesdirectly connectedto x k in a graph theoretic
sensewithin the information matrix) and additionally, if the
intersectionis null (i.e., M +

i \ M +
j = ; ), variablesalong a

path connectingx i and x j topologically. Their methodthen
inverts this sub-block to obtain an covariance matrix for
x i and x j conditionedon all other variables that have an
indirect in�uence. They note that empirical testing indicates
that their approximationseemsto work well in practicefor
their application[16] despitethe fact that using conditional
covariancesshouldresult in an overcon�dentapproximation.

I I I . CONSISTENT COVARIANCE RECOVERY

Our strategy for approximatecovariancerecovery from the
information form is formulatedupon gaining ef�cient access
to meaningfulvaluesof covariancethat are consistentwith
respectto the actualcovarianceobtainedby matrix inversion.
The motivation for a consistentapproximation is that we
guard against under-representingthe uncertainty associated
with our stateestimates,which otherwisecould lead to data
associationand robot planning errors. It is the accessto
meaningful values of joint-covariancefor robot interaction,
dataassociation,anddecisionmakingin the informationform
that motivatesour discussion.In this sectionwe describeour
strategy for obtainingcovarianceboundswithin thecontext of
our view-basedSLAM application.

A. Ef�ciently AccessingTheRobot's Covariance

We begin by noting that recovery of our stateestimate,� t ,
from the information form alreadyrequiresthat we solve the
sparse,symmetric,positive-de�nite systemof equations(4),
and moreover that this systemcan be solved in linear time
using the iterative techniquesoutlined in xII-C.1 (i.e., [12],
[14]). Our covariancerecovery strategy for the information
form is baseduponaugmentingthis linearsystemof equations
so that the robot covariance-columnis accessibleas well.
Note that by de�nition � t � t = I, therefore,by picking the
i th basisvector, ei , from the identity matrix we can use it
to selectively solve for a column of the covariancematrix as

� t � � i = ei . To obtainthe robot's covarianceat any time step
we simply augmentour original linear system(4) to include
an appropriateset of basisvectors,Er = f er g, suchthat the
solution to (5) provides accessto our currentstateand robot
covariance-column.

� t
�
� t � � r

�
=

�
� t Er

�
(5)

B. ConsistentCovariancesfor Data Association

In thissectionweoutlineourstrategy for recoveringapprox-
imatejoint-covariancesusefulfor dataassociation. Beforewe
begin we want it to be clear to the readerthat our technique
for obtaining and maintaining thesecovariancesshould not
be confusedwith the actual updatingand mechanicsof the
information�lter . Whatwepresentin thefollowing sectionis a
way of maintainingcovarianceboundsthatareconsistentwith
respectto the inverseof the informationmatrix. Furthermore,
thesecovariancesare usedfor dataassociationonly and are
not in any way involved in theactualupdateandmaintenance
of the information �lter representation.With that being said
we now presentour algorithm.

1) Inserting a new map element: Given that (5) provides
a mechanismfor ef�cient accessto the robot's covariance-
column,� � r , we exploit it to obtainusefulcovariancebounds
for other map elements.For example,whenever we insert a
new image,I i , into our view-basedmap we correspondingly
mustadda new element,x i , into our view-basedSLAM state
vector [6], [17]. This new stateelement,x i , correspondsto a
samplingof our robot stateat time t i (i.e., x i = x r (t i )) and
representsour estimateof wherethe robot was when it took
that image.Sincethe two statesare coincidentat time t i the
covariancefor x i is � ii � � r r andcanbeobtainedby solving
(5). A well-known property of SLAM is that over time the
covariancefor x i will decreaseas new sensormeasurements
areincorporatedandall mapelementsbecomefully correlated
[15]. Therefore,storing ~� ii = � ii as our initial approximate
covarianceestimatefor x i serves as a conservativeboundto
theactualmarginal covariancefor all time, (i.e., ~� ii � � ii (t)).

2) Data association: In our application, the joint-
covariancebetweenthetime-projectedrobotpose,x r , andany
other map entry, x i , (i.e., �� j oint =

� �� r r �� r i
�� r i � ii

�
) is neededfor

two operations:link proposalandpose-constrainedcorrespon-
dencesearches.Link proposalcorrespondsto hypothesizing
which imagesin our view-basedmap could potentially share
commonoverlapwith the currentimagebeingviewed by the
robot,denotedI r , andthereforecouldpotentiallyberegistered
to generatea relative-posemeasurement.The secondopera-
tion, pose-constrainedcorrespondencesearches[17], usesthe
relative-poseestimatebetweencandidateimagesI i and I r to
restrict the image-basedcorrespondencesearchto probable
regionsbasedupona two-view point transferrelation.1

To obtainthe actualjoint-covariance�� j oint from the infor-
mationmatrix requiresmarginalizingout all otherelementsin
our mapexcept for x r andx i leadingto cubic complexity in

1Note that thestandardmaximumlikelihooddataassociationtechniquefor
feature-basedSLAM alsoonly dependson extracting �� j oint [15].



thenumberof eliminatedvariables.However, we canobtaina
boundedapproximationto �� j oint atany time-stepby usingthe
solution from (5) to provide us with the currentcovariance-
column representingthe joint-covariancesbetweenthe time-
projected robot and all other map entries, �� � r (note that
this solution is equivalent to what could be obtainedby full
matrix inversionof �� t ). Using this result we can constructa
conservative joint-covarianceapproximationto �� j oint as

~�� j oint =
� �� r r �� >

ir
�� ir ~� ii

�
(6)

where �� r r and �� ir are extractedfrom �� � r , and ~� ii is our
conservative covariancebound for x i as describedin xIII-
B.1. Note that (6) representsa valid positive-semide�niteand,
therefore,consistentapproximationsatisfying

~�� j oint � �� j oint =
�
0 0
0 ~� ii � � ii

�
� 0; (7)

since ~� ii � � ii � 0. Given that (6) provides a consistent
approximationto thetruecovariance,we canuseit to compute
conservative �rst-order probabilities of relative-posein the
usual way, x r i = 	 x r � x i [18], for link hypothesis and
correspondencesearches.

3) Updatingour covariancebounds: Since ~� ii servesasa
conservativeapproximationto the actualcovariance,� ii , for
map elementx i , we would like to be able to place tighter
boundson it as we gather more measurementinformation.
In fact, the careful reader will recognize that our SLAM
information �lter is implicitly already doing this for us,
however theissueis thatextractingtheactual�lter bound,� ii ,
from the informationmatrix representationis not particularly
convenient.Notethatwhile we couldaccess� ii by solvingfor
the covariance-column� � i using an appropriatelychosenset
of basisvectors,thereasonfor not doingthis is that iteratively
solvingsystemslike (5) is ef�cient only whenwe have a good
startingpoint [12], [13]. In otherwords,whenwe solve (5) for
the lateststateandrobot covariance-column,our estimates� t
and� � r from thelast time-stepserve asgoodseedpointsand,
therefore,typically only requirea small numberof iterations
per time-stepto update(excluding loop-closingevents).In the
caseof solving for an arbitrarycolumn,� � j , we do not have
a gooda priori startingpoint and,therefore,convergencewill
be slower.

Our approachfor tightening the bound, ~� ii , is to use
our joint-covarianceapproximation(6) and perform a simple
constant-timeKalman �lter updateon a per re-observation
basis.In other words,we only updatethe covariancebound,
~� ii , when the robot re-observes x i and successfullygener-
atesa relative-posemeasurement,zr i , by registering images
I i and I r . We then use that relative-posemeasurementto
perform a Kalman update(2) on the �x ed-sizestatevector
y =

�
x>

r ; x>
i

� >
to obtain the new conservative bound, ~� +

ii .
Mathematically, the distribution over y correspondsto

marginalizing out all elementsin our statevector except for

x r andx i as

p(y ) =
Z

x j 6= f x r ;x i g
N � 1�

�� t ; �� t
�
dx j =

Z

x j 6= f x r ;x i g
N

�
�� t ; �� t

�
dx j ; (8)

which resultsin the distribution

p(y ) = N
�
�

�� r
�� i

�
;
� �� r r �� >

ir
�� ir � ii

�
�
: (9)

Noting that (6) alreadyprovidesus with a consistentapprox-
imation to this distribution we have

~p(y ) = N
�
�

�� r
�� i

�
;
� �� r r �� >

ir
�� ir ~� ii

�
�

(10)

wherethe only differencebetweenthe actualdistribution (9)
andthe approximation(10) is the conservative marginal, ~� ii .
Using the measurement,zr i , we now perform a constant-
time Kalman update (2) on (10) yielding the conditional
distribution ~p(y jzr i ) from which we retain only the updated
marginal bound ~� +

ii for elementx i . This updateis computed
in constant-timefor eachre-observed feature.

Note that by abstractly performing the marginalization
step of (8) before computing the Kalman update,we have
avoidedany inconsistency issuesassociatedwith only storing
the marginal bounds ~� ii and not representingthe intra-map
correlations.This ensuresthat our updatestep will result in
a consistentmarginal bound for data associationthat will
improve over time aswe re-observe mapelements.

Require: � � r f initialize boundg
if x i = new mapelementthen

store ~� ii  � r r

end if

Require: �� t ; �� � r f dataassociationandboundupdateg
for all x i do

~�� j oint  
� �� r r �� r i

�� r i ~� ii

�

computelink hypothesis
if candidatelink then

do constrainedcorrespondencesearchon I i andI r

if imageregistrationsuccessthen
do Kalmanupdateon ~� j oint usingmeasurementzr i

store ~� ii  ~� +
ii

end if
end if

end for
Algorithm 1: Calculationof the marginal covariancebounds
usedfor dataassociation.

IV. RESULTS

This section presentsexperimental results validating our
covariancerecoverystrategy from theinformationmatrixusing
data gatheredduring a recent survey of the RMS Titanic.
The wreck was surveyed during the summer of 2004 by
the deep-seaROV Hercules operatedby the Institute for
Explorationof the Mystic Aquarium.The ROV wasequipped



TABLE II

POSE SENSOR CHARACTERISTICS.

Measurement Sensor Precision
Roll/Pitch Tilt Sensor � 0:1�

Heading North-SeekingFOG � 0:1�

Body FrameVelocities AcousticDoppler � 0:01 m/s
Depth PressureSensor � 0:01 m
Altitude AcousticAltimeter � 0:1 m
Downlooking Imagery Calibrated12-bit CCD 1 frameevery 8 s

with a standardsuiteof oceanographicdead-reckon navigation
sensorscapableof measuringheading,attitude,altitude, XYZ

bottom-referencedDoppler velocities, and a pressuresensor
for depth; Table II summarizesthe sensorcapabilities. In
addition,thevehiclewasalsoequippedwith acalibratedstereo
rig consisting of two downward-looking 12-bit digital-still
camerasthat collected imagery at a rate of 1 frame every
8 seconds.However, note that the results being presented
herewere producedusing imageryfrom one cameraonly —
the purposeof this self-imposedrestriction to a monocular
sequenceis to demonstratethe generalapplicability of our
visually augmentednavigation strategy.

Fig. 5 summarizesour mapping results using an exactly
sparseview-basedSLAM information �lter as proposedby
[6]. During the courseof the grid-basedsurvey the vehicle
traverseda2D pathlengthof 3:1 km anda3D XYZ pathlength
of 3:4 km maneuveringto maintaina safealtitudeoff thedeck
of the wreck. The convex hull of the �nal mappedregion
encompassesan areaover 3100m2 and in all a total of 866
imageswereusedto provide 3494camera-generatedrelative-
pose constraints.Theseconstraintswere generatedusing a
state-of-the-artfeature-basedimageregistrationapproach[19]
foundedon:

� Extractinga combinationof both Harris [20] and SIFT
[21] interestpoints from eachimage.

� Establishingputative correspondencesbetweenoverlap-
pingcandidateimagepairsusingaconstrainedcorrespon-
dencesearch[17].

� Employing a statisticallyrobustLeast-Median-of-Squares
[22] registrationmethodologyto �nd the corresponding
Essentialmatrix.

� Two-view maximumlikelihoodre�nement to extract the
5-DOF relative-poseconstraint(i.e., azimuth, elevation,
Eulerroll, Eulerpitch,Euleryaw) baseduponminimizing
the reprojectionerror [19].

In Fig. 5(a) we see a time progressionof the camera
constraintsand vehicle poseestimationresult. In particular,
the third �gure from the left shows theclosingof a large loop
wherethevehiclemeanderedits way from thesternof theship
back towards the bow with it' s cameraturned off and then
successfullyre-localizedbasedupon correctly registering 4
imagepairsoutof 64hypothesizedcandidates.Fig. 5(b)shows
the �nal resulting pose-constraintnetwork and Fig. 5(c) a
“zoomedin” view of theboxedregion to facilitatecomparison
of themarginal covarianceboundsestimatedby our algorithm
to the actualboundsobtainedby matrix inversion.Note that
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Fig. 3. This �gure comparesthe Markov Blanket covarianceapproximation
methodandtheonepresentedin thispaperto theactualcovarianceobtainedby
inverting the informationmatrix; the resultsarecomputedfor the information
matrix shown in Fig. 2. For eachmethodwe computethe relative-poseof
eachstateentry, x i , to the robot (i.e., x r i = 	 x r � x i ) andassociated�rst-
order covariance.We then plot as a histogramthe log of the ratio of the
determinantof the approximatedcovarianceto the determinantof the actual
covarianceto facilitatecomparisonof conservativeness(positivevalues)versus
overcon�dence(negativevalues)(avalueof zerois idealasthiswould indicate
a ratio of one).Note that the Markov Blanket methodis overcon�dentwhile
ours is conservative.

all estimatedboundswere veri�ed to be consistentwith the
actualboundsby performingCholesky decompositionon their
differenceto establishpositive de�niteness.

Fig. 3 provides a quantitative assessmentcomparing the
bounds obtained by our algorithm to the bounds obtained
by inverting only the Markov Blanket as proposedin [2],
[16]. To provide a fair assessment,we chooseto evaluate
the relative uncertaintybetweenthe robot, x r , and any other
map element,x i . Our justi�cation for this metric is that the
Markov Blanket method results in a conditional covariance
that doesnot accuratelyre�ect global map uncertainty, but
ratherrelativemapuncertainty. Using the informationmatrix
of Fig. 2 for eachmapelement,x i , wecomputedthe�rst-order
relative-posecovariancematrix betweenit and the robot. For
our metric we choseto computethe log of the determinant
of the approximationcovariance to the determinantof the
actualobtainedby matrix inversion.Therefore,ratios greater
than one (conservative) are positive and ratios less than one
(overcon�dent) are negative. We note that Fig. 3 highlights
that our methodis conservative while the Markov Blanket is
overcon�dent.Furthermore,for this datasetthehistogramplot
shows that our methodtendsto be conservative by a smaller
margin than the Markov Blanket is overcon�dent.

Finally, Fig. 4 demonstratesthe actualvalueof this conser-
vative approximationwithin the context of pose-constrained
correspondencesearches.Here we see two pairs of images
and their predictedepipolar geometrybasedupon our state
estimates.For a calibratedcamera,the epipolar geometryis
de�ned by the relative cameraposesandde�nes a 1D search
constraint[19]. However, whentherelative-poseestimatesare
uncertainthis 1D constraintbecomesa searchregion [17].
Fig. 4(a)shows that theMarkov Blanket approximationof the
relative-poseuncertaintyis too overcon�dent for this image
pair such that the 99.9% con�dence searchregion doesnot
contain the true correspondencecausing image registration
to fail. However, the true correspondencedoes lie within
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Fig. 4. This �gure illustratesusing the approximatecovariancerecovery
techniquepresentedin the paperfor data associationwithin the context of
constrainingimage-basedcorrespondencesearches.(a) The top two images
have spatialoverlapandarecandidatesfor imageregistration.The imageon
the left shows the predictedepipolar geometry(green)for the camerapair
and is instantiatedbasedupon our stateestimates.The image on the right
shows thecorrespondingepipolarlinesandtheir associated99.9%con�dence-
boundsearchregions basedupon the uncertaintyin our stateestimates.The
different searchbandscorrespondto the conservative covariancerecovery
method presentedin this paper (blue), the actual covariance basedupon
invertingthe informationmatrix (yellow), andtheMarkov Blanket covariance
recovery method (red). The bottom two images show “zoomed” views.
Closer inspectionreveals that the red searchregion does not contain the
true correspondencearea while the yellow and blue regions do. (b) A
demonstrationof the samecorrespondencetest but for a different camera
pair. Herewe seethatbothcovariancerecovery methodsyield nearlyidentical
resultsto the actualcovarianceobtainedby matrix inversion.This highlights
theunpredictablelevel of overcon�denceassociatedwith theMarkov Blanket
approximation.

the searchboundsassociatedwith the actual and conserva-
tive approximationallowing image registration to succeed.
Fig. 4(b) shows that for anotherimagepair, the two methods
produceequivalentresultshighlighting the unpredictabilityof
the overcon�dencein the Markov Blanket approximation.

V. CONCLUSION

In conclusion,we have presenteda novel algorithm for
ef�ciently extracting consistentcovarianceboundsuseful for
dataassociationin SLAM information�lters. We showed that

our methodprovides a conservative approximationuseful for
real-world taskssucha imagelink hypothesisandconstrained
correspondencesearches.The method's complexity scales
asymptoticallylinear with map size as measuredby solving
for the robot's covariance-columncoupledwith constant-time
Kalman updatesfor re-observed map elements.Our results
werepresentedwithin thecontext of anactualroboticmapping
survey of the RMS Titanic embodying several challenging
SLAM researchtasksincludinglarge-areascalablemapping,6-
DOF vehiclemotion,3D underwaterenvironments,andvisual
perception.
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Fig. 5. This �gure summarizesthe resultsof our visually-basednavigation of the RMS Titanic. (a) The time progressionof our pose-constraintnetwork
shown with 3-sigmabounds,from left to right: images1–200,1–400,1–600,1–800.Greenlinks representtemporallyconsecutive registeredimagepairswhile
red links representspatially registeredimagepairs.Note the large loop-closingevent that occurredin the third plot from left. (b) The �nal pose-constraint
network associatedwith using 866 imagesto provide 3494 cameraconstraints,3-sigmaboundsare shown. (c) An inset of the �nal result illustrating the
consistency of thedataassociationboundsgeneratedusingour algorithm.Note,3-sigmaboundshave beenin�ated by a factorof 30 for interpretation.Shown
are the initial covarianceboundsassociatedwith poseinsertion into the map (red), the currentestimateof marginal covarianceboundsbasedupon using
constant-timeKalman updates(gray), and the actualmarginal covarianceboundsobtainedby inverting the information matrix (green).(d) An XYZ view of
the recoveredpose-constraintnetwork. Note that the recoveredvehicleposesand imagecorrespondencescanbe usedasdirect inputs into a standardbundle
adjustmentstepfor structurerecovery.
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