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Abstract—This paper describes a vision-based, large-area,
simultaneous localization and mapping (SLAM) algorithm that
respectshe low-overlap imagery constraints typical of underwa-
ter vehicleswhile exploiting the inertial sensorinformation that is
routinely available on suchplatforms. We presenta novel strategy
for efciently accessingand maintaining consistent covariance
bounds within a SLAM information Iter , thereby greatly in-
creasingthe reliability of data association.The techniqueis based
upon solving a sparse system of linear equations coupled with
the application of constant-time Kalman updates. The method
is showvn to produce consistent covariance estimates suitable
for robot planning and data association.Real-world results are
presentedfor a vision-based6-DOF SLAM implementation using
data from a recentROV survey of the wreck of the RMS Titanic.

I. INTRODUCTION

This paperaddresseshe problem of precision navigation
and mapping using low-overlap, high resolutionimage se-
guencesobtained by autonomousunderseavehicles. From
a “robotics science” perspectie, our primary contritution
consistsof an efcient algorithm for extracting consistent
covariance boundsfrom SLAM information Iters. From a
“robotics systems” perspectie, we demonstrateautomatic
visually-augmentechavigation processingof a sequenceof
866 imagesof the RMS Titanic (Fig. 1), for a missionwith a
vehicle pathlength over 3 km long.

A numberof oceanographiapplicationssharethe require-
mentfor high resolutionimagingof sitesextendingover hun-
dredsof meters.Theseinclude hydrothermalvent sites, cold
seep sites, shipwrecksof archaeologicalsigni cance, coral
reefs,and sheries habitats.One of the signi cant challenges
associatedvith suchtasksis the requirementfor preciseand
accuratenavigation to ensurecompleterepeatablecoverage
over the site of interest.

Traditionally, the oceanographiccommunity has utilized
three different methodologiegby themseles or in combina-
tion) to addressnavigation undervater [1]: (1) transponder
networks placedon the sea oor, (2) ship to vehicle bearing
(ultra-shortbaseline)tracking systems,and (3) ranging and
inertial sensorson the undervater vehicle. Each of these
methodologiestrade off different aspectsof accurag, cost,
and compl«ity. For example, transpondemetworks provide
accuratenavigation on the sea oor, but come at the cost of
the overheadrequiredfor the deployment and calibration of
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Fig. 1. Mappingresultsfrom a ROV suney (boustrophedompattern)of the
RMS Titanic conductedn the summerof 2004. (top) An XY plot comparing
the raw dead-reckned (DR) navigation data (brown), ship-boardultra-short
baselinetracking (gray), and reconstructedsurwey trajectory from a vision-

based6-DOF SLAM information Iter (red). Note that the discontinuity in

the DR trajectory is the result of navigation sensordropouts. (bottom) A

photomosaiof the RMS Titanic constructedrom over 700digital still images.
Note that this photomosaids presentedor visualizationpurposesonly asa

representatiorof the data that senes as input to our algorithm. It is the

result of semi-automatigrocessingwith manual selectionof a number of

control pointsto guidethe photomosaickingrocessThis could be considered
asa form of benchmarkagainst which fully autonomousprocessingcan be

compared.

the individual transpondersn the sea oor. Thesesystemsare
also limited to providing updatesevery few secondsbased
uponthe travel time betweenthe vehicle and transponders.

In this paperwe explore a methodologythat utilizes a
vision-basedSLAM approachto provide high precision,ac-
curate, navigation measurementsvhen usedin concertwith
inertial measurementsiadeonboardby the vehicle. The goal
is an algorithm that respectsthe constraintsof low-overlap
imaging for large-areaextendedsurneys that are typical of
undervater vehicles. Our approachconsidersthis problem
from the “information formulation” of SLAM.



Within the SLAM community algorithms exploiting the
sparseinformation representatiorfor SLAM were rst pro-
posedby Thrun et al. [2], Frese[3], [4], Paskin[5], Eustice
[6], and Dellaert [7]. These methodsexploit the empirical
obsenation that this representatioris either sparseor “close
to sparse”.The sparseinformation representatiorallows for
linear storagerequirementsand efcient fusion of sensor
measurementsiowever, therecovery of covariancess a cubic
operationif a naive approachis followed.

Thekey issueon whichwe focusin this paperis theef cient
recovery of consistentovariancedrom the information lter .
It is hardto de ne asinglede nition of consisteng employed
uniformly in the prior literatureon SLAM. Intuitively, consis-
teng/ re ects the goal that the error estimatescomputedby
the lter should“match” the actualerrors.

In relationto SLAM, consisteng of the error estimatess
importantfor dataassociation— determiningthe correspon-
dencesfor measurement§8]. This is importantboth in the
context of “local” SLAM (detectingandtrackingfeatures)and
in a “global” sense(for closing loops). If the SLAM error
estimatesare too small (overcon dent), then both of these
taskscanbecomedif cult aswill be shavn in xIV.

Before describing our approachfor efcient recovery of
consistentovariancesdounds,we rst review the basicchar
acteristicsof SLAM information lters.

Il. SLAM INFORMATION FILTERS

A numberof recentSLAM algorithms have explored re-
formulating the estimationproblemwithin the context of an
extendedinformation lIter (EIF) [2], [6], [7], which is the
dual of the extendedKalman lter (EKF) [9]. Theinformation
form is often called the canonicalor natural representation
of the Gaussiardistribution becausét stemsfrom expanding
the quadraticin the exponential. The result is that rather
than parameterizingthe normal distribution in terms of its
meanandcovarianceN ; ;  ,itisinsteadparametrized
in terms of its information vector and information matrix,
N 1 ¢ , where[9]
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A. Constant-ime MeasuementUpdates

A well known and very attractive property of formulating
SLAM in an EIF is that measurementpdatesare additve and
efcient. This is in contrastto the quadraticcompleity per
updatein the EKF. For example,assumehe following general
measuremenfunction andits rst-order linearizedform:

Z[:h( t)+vt

h( )+ H( )+ Vi
where ; N ; ¢ N «; t Is the predictedstate
vector vi N O;R is thewhite measurememoise,andH

is the Jacobianevaluatedat ;. The EKF covarianceupdate
requirescomputingthe Kalmangain andupdating ; and

via [9]:
K= H H H +R '
t= «+Kze h(y) @
t= 1 KH (I KH  +KRK”:

This calculation non-trivially modi es all elementsin the
covariancematrix resultingin quadraticcomputationalcom-
plexity per update.In contrastthe corresponding=IF update
is given by [2]:

t= (+H R 'H
(= (+HR 11z

3
nCorH
The abore equationshavs thatthe informationmatrix is addi-
tively updatedoy the outerproducttermH> R 1H. In general,
this outer product modi es all elementsof the predicted
informationmatrix, ¢, however a key obsenration is thatthe
SLAM JacobianH, is always spars€2]. For example,in our
applicationwe usea view-basedSLAM implementationbuilt
aroundusing a camerato extract relatve-posemeasurements
from pairwiseregistrationof overlappingimagesof the ervi-
ronment.Given a pair of imagesl; andl;, imageregistration
provides a relative-posemeasuremenbetweenstatesx; and
X;j resultingin a sparseJacobiarof the form:

h i
H=0 & 0o & 0:
As a resultonly the four-block elementscorrespondingo X
and x; of the information matrix needto be modied (i.e.,
xixio xpx s and xx = ;J «; ). Sincemeasurementsnly
everinvolve a x ed portion of the SLAM statevector updates
canbe performedin constant-time.

B. Spase Repesentation

Thrun et al. [2] originally shaved that the Itered feature-
basedsLAM informationmatrix empirically obeys a “close-to-
sparse”structurewhen properly normalized.This obsenation
spavnedthe developmentof a numberof computationallyef -
cientfeature-base@LAM algorithmssuchas sparseextended
information lters (SEIFs)[2], thin junction-treelters (TJTFS)
[5], and Tree-Map lters [4]. Thesealgorithmsapproximate
the SLAM posteriorby (effectively) eliminating “small” el-
ementsin the correspondingnformation matrix. The elimi-
nation of weak constraintsresultsin a sparserepresentation
allowing the developmentof efcient Iter algorithms that
exploit the resultingsparsearchitectureThis empiricalobser
vation of weak inter-landmark constraintshas recently been
given a solid theoreticalfoundationby Frese[10] where he
mathematicallyshaws that inter-landmarkinformationdecays
spatially at an exponentialrate. This addssomejusti cation
for the sparsenesapproximationaitilized in thefeature-based
SLAM informationalgorithmsmentionedabove.

In addition to feature-basedechniques,a recent paper
by Eustice et al. [6] showvs that for a view-based SLAM
representatiothe informationmatrix is exactly sparsewithout
ary approximation.The implication is that view-basedSLAM
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Fig. 2. This gure highlights the exact sparsityof the view-basedSLAM
information matrix using datafrom a recentROV suney of the wreck of the
RMS Titanic. In all thereare 867 robot stateswhereeachstateis a 12-vector
consistingof 6 poseand 6 kinematiccomponentsThe resultinginformation
matrix is a 10; 404  10; 404 matrix with only 0:52% nonzeroelements.

systemscantake adwantageof the sparsanformationparame-
terization without incurring ary sparse-approximatioerror.

Based upon this insight, we've implementeda view-based
SLAM systemfor our underseapplicationbuilt aroundfusing

6-DOF relatve-posecamerameasurementéusing monocular
overlappingsea oor imagery)with traditionalundervaterve-

hicle DR navigation sensorsAs an example,Fig. 2 illustrates
the resulting information matrix associatedwith registering
866 images and fusing them with navigation data from a
grid-basedROV surwy of the wreck of the RMS Titanic.

The off-diagonalelementscorrespondo spatialrelative-pose
measurementsadeby the camerawhile the block-tridiagonal
elementsarisefrom the Markov processnodel. Thewreckwas
suneyed from midshipto sternandthenfrom midshipto bow

resultingin a large loop-closingevent, which is evident from

the far off-diagonalelementspointedout in Fig. 2.

C. StateRecwery

While the insight of “sparseness’has lead to the devel-
opmentof computationallyefcient SLAM algorithms such
as the ones previously mentioned,an issue countering the
information lIter is the questionof how to gain ef cient access
to the state estimateand its uncertainty Referring back to
(1) we seethat the information parameterizatiorembedsthe
statemeanand covariancewithin the information vector and
information matrix respectiely. State recosery implies that
wheneer we wantto actuallyrecover our stateestimatefor the
purposesof motion planning,dataassociationmap recovery,
linearizing our processor obseration models,etc., we must
invert the relationshipshovn in (1).

1) Recwering the mean: Nave recovery of our statees-
timate through matrix inversion resultsin cubic compleity
anddestrgys ary ef ciency gainedover the EKF. Fortunately
closerinspectionshavs that recovery of the statemean, .,
canbe posedmoreef ciently assolvingthe following sparse,
symmetric,positive-de nite, linear systemof equations:

t ot ot 4)

Suchsystemscanbe iteratively solved via the classicmethod
of conjucate gradients(CG) [11]. In general,CG can solve
this systemin n iterations (with O(n) cost per iteration)

where n is the size of the state vector and typically in

mary fewer iterationsif the initialization is good [12]. In

addition, sincethe statemean, ., typically doesnot change
signi cantly with each measurementupdate (excluding key

events like loop-closure)this relaxationcan take place over
multiple time stepsusing a x ed number of iterations per
update[2], [13]. Also, recentlyproposedmultilevel relaxation
SLAM algorithms,suchas[12], [14], appearcapableof solving
this systemwith linearasymptoticcomplexity. Thisis achieved
by sub-samplingposesand performing the relaxation over
multiple spatialresolutionswhich hasthe effect of improving

corvergencerates.

2) Recwering covariance: The covariance matrix corre-
spondsto the inverse of the information matrix, however,
actuallyrecoveringthe covariancevia (1) is not practicalsince
matrix inversionis a cubic operation.Additionally, while the
information matrix canbe a sparserepresentatioffor storage,
in general,its inverse results in a fully dense covariance
matrix despiteary sparsityin the informationform [3]. This
meanghatcalculatingthe covariancematrix requiresquadratic
memory storage,which may becomeprohibitively large for
very large maps (e.g., maps O(10°) state elements).To
illustrate this point, for the 10;404 10;404 information
matrix shawvn in Fig. 2, storing it in memory only requires
4:5 MB of doubleprecisionstoragefor the nonzeroelements
while its inverserequiresover 865MB.

Fortunately recovering the entire covariancematrix usually
is not necessaryfor SLAM as mary of the data association
and robotic planning decisionsoften do not require the full
covariance matrix, but only the covarianceover subsetsof
state variables [15]. Unfortunately accessingonly subsets
of state variablesin the information form is not an easy
task. The covarianceand information representationsf the
Gaussiandistribution lead to very different computational
characteristicawvith respectto the fundamentalprobabilistic
operationsof marginalizationand conditioning(Tablel). For
example,maginalizationis easyin the covarianceform since
it corresponddo extracting the appropriatesub-block from
the covariancematrix while in the informationform it is hard
becausét involvescalculatingthe Schurcomplemenbver the
variableswe wish to keep(notethatthe oppositerelationholds
true for conditioning,which is easyin the information form
andhardin the covarianceform). Therefore even thoughwe
may only needaccesdo covariancesover subsetf the state
elementg15] (andthusonly have to inverta smallinformation
matrix relatedto the subsetof variableswe areinterestedn),
accessinghemin theinformationform requiresmaginalizing
out mostof the statevectorresultingin cubic compleity due
to matrix inversionin the Schurcomplement.

To get aroundthis dilemma, Thrun et al. proposeda data
associatiorstratgly baseduponusing conditional covariances
[2], [16]. Since conditional information matrices are easy
to obtain in the information form (simply extract the sub-
block over desiredvariables),their stratgy is to choosean
appropriatesub-blockfrom the information matrix suchthat
its inverseapproximateshe actualcovariancefor the subsebf
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variablesthey areinterestedn. In particular given two state
variablesof interest,x; and x;, their approximationselects
the joint-Markov blanket M [ M (i.e., M represents
statevariablesdirectly connectedio xi in a graphtheoretic
sensewithin the information matrix) and additionally if the
intersectionis null (i.e., M\ M/ =), variablesalong a
path connectingx; andx; topologically Their methodthen
inverts this sub-block to obtain an covariance matrix for
X; and x; conditionedon all other variablesthat have an
indirect in uence. They note that empirical testing indicates
that their approximationseemsto work well in practicefor
their application[16] despitethe fact that using conditional
covariancesshouldresultin an overcon dentapproximation.

I1l. CONSISTENT COVARIANCE RECOVERY

Our stratgy for approximatecovariancerecovery from the
information form is formulatedupon gaining ef cient access
to meaningfulvaluesof covariancethat are consistentwith
respectto the actualcovarianceobtainedby matrix inversion.
The motivation for a consistentapproximationis that we
guard against underrepresentingthe uncertainty associated
with our stateestimateswhich otherwisecould lead to data
associationand robot planning errors. It is the accessto
meaningful values of joint-covariancefor robot interaction,
dataassociationanddecisionmakingin the informationform
that motivatesour discussionln this sectionwe describeour
stratgyy for obtainingcovarianceboundswithin the context of
our view-basedSLAM application.

A. Efciently Accessinglhe Robots Covariance

We begin by noting thatrecovery of our stateestimate, .,
from the informationform alreadyrequiresthat we solve the
sparse,symmetric, positive-de nite systemof equations(4),
and morewer that this systemcan be solved in linear time
using the iterative techniquesoutlined in xlI-C.1 (i.e., [12],
[14]). Our covariancerecovery stratgy for the information
form is baseduponaugmentinghis linear systemof equations
so that the robot covariance-columnis accessibleas well.
Note that by de nition ; { = I, therefore,by picking the
i basisvector e;, from the identity matrix we can use it
to selectvely solve for a column of the covariancematrix as

t i = €. To obtainthe robot's covarianceat ary time step
we simply augmentour original linear system(4) to include
an appropriateset of basisvectors,E; = fe, g, suchthatthe
solutionto (5) provides accesdo our currentstateand robot
covariance-column.

(®)
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B. ConsistentCovariancesfor Data Association

In this sectionwe outline our strateyy for recoreringapprox-
imatejoint-covariancesusefulfor dataassociation Beforewe
beagin we want it to be clearto the readerthat our technique
for obtaining and maintaining these covariancesshould not
be confusedwith the actual updatingand mechanicsof the
information Iter . Whatwe presenin thefollowing sectionis a
way of maintainingcovarianceboundsthatareconsistentvith
respecto the inverseof the information matrix. Furthermore,
thesecovariancesare usedfor dataassociationonly and are
notin ary way involvedin the actualupdateand maintenance
of the information Iter representationWith that being said
we now presentour algorithm.

1) Inserting a new map element: Given that (5) provides
a mechanismfor efcient accessto the robot's covariance-
column, |, we exploit it to obtainusefulcovariancebounds
for other map elements.For example, when&er we inserta
new image,l;, into our view-basedmap we correspondingly
mustadda new elementx;, into our view-basedSLAM state
vector[6], [17]. This new stateelementX;, correspondso a
samplingof our robot stateat time t; (i.e., X;j = X, (tj)) and
representour estimateof wherethe robot was whenit took
that image. Sincethe two statesare coincidentat time t; the
covariancefor x; is rr andcanbe obtainedby solving
(5). A well-knowvn property of SLAM is that over time the
covariancefor x; will deceaseasnenv sensormeasurements
areincorporatedcandall mapelementdbecomefully correlated
[15]. Therefore,storing ~; = i asour initial approximate
covarianceestimatefor x; senesasa conservativeboundto
theactualmawginal covariancefor all time, (i.e., 7ji i ().

2) Data association: In our application, the joint-
covariancebetweenthetime-projectedobotpose X, , andary
othermapentry, X, (i.e., joint = '° ' ) is neededfor
two operationslink proposalandpose-constrainedorrespon-
dencesearchesLink proposalcorrespondgo hypothesizing
which imagesin our view-basedmap could potentially share
commonoverlap with the currentimagebeing viewed by the
robot,denoted ;, andthereforecould potentiallybe registered
to generatea relatve-posemeasurementThe secondopera-
tion, pose-constrainedorrespondencsearche$17], usesthe
relative-poseestimatebetweencandidateémagesl; andl, to
restrict the image-baseccorrespondencasearchto probable
regions basedupon a two-view point transferrelation!

To obtainthe actualjoint-covariance oy from theinfor-
mationmatrix requiresmarginalizingout all otherelementsn
our mapexceptfor x, andx; leadingto cubic compleity in

INote that the standardmaximumlik elihood dataassociatiortechniquefor
feature-basedLAM alsoonly dependon extracting joint  [15].



the numberof eliminatedvariables However, we canobtaina
boundedapproximatiorto jine atary time-stepby usingthe
solution from (5) to provide us with the currentcovariance-
column representinghe joint-covariancesbetweenthe time-
projected robot and all other map entries, , (note that
this solution is equivalentto what could be obtainedby full

matrix inversionof ;). Using this resultwe can constructa
conserative joint-covarianceapproximationto jgint as

~ . — rr ir
joint — . ~.
ir ii

(6)

where |, and ; areextractedfrom ,, and 7 is our
conserative covariance bound for x; as describedin xllI-
B.1. Notethat (6) represents valid positive-semide niteand,
therefore consistentapproximationsatisfying

~ 0 0
ot jomt = o~ 0;
j oint j oint 0 : ;
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since T i 0. Given that (6) provides a consistent
approximatiorto thetrue covariancewe canuseit to compute
conserative rst-order probabilities of relatve-posein the
usual way, X;i = X; X; [18], for link hypothesisand
correspondencesearches.

3) Updatingour covariancebounds: Since 7 senesasa
conservativeapproximationto the actualcovariance, j , for
map elementx;, we would like to be able to place tighter
boundson it as we gather more measuremeninformation.
In fact, the careful readerwill recognizethat our SLAM
information lter is implicitly already doing this for us,
however theissueis thatextractingtheactual lter bound, j,
from the information matrix representatiois not particularly
corvenient.Notethatwhile we couldaccess i by solvingfor
the covariance-column ; usingan appropriatelychosenset
of basisvectors thereasorfor not doingthis is thatiteratively
solving systemdike (5) is ef cient only whenwe have a good
startingpoint[12], [13]. In otherwords,whenwe solve (5) for
the lateststateandrobot covariance-columnour estimates
and , from thelasttime-stepsene asgoodseedpointsand,
therefore typically only requirea small numberof iterations
pertime-stepto update(excluding loop-closingevents).In the
caseof solving for an arbitrarycolumn, ;, we do not have
agooda priori startingpoint and,therefore corvergencewill
be slower.

Our approachfor tightening the bound, ~j, is to use
our joint-covarianceapproximation(6) and performa simple
constant-timeKalman lIter updateon a per re-obseration
basis.In otherwords, we only updatethe covariancebound,
~ii ,» when the robot re-obseres x; and successfullygener
atesa relatve-posemeasurementz;;, by registeringimages
;i andI,. We then use that relative-pose measuremento
perform a Kalman update(2) on the x ed-sizestatevector
y = x7;x7 ~ to obtainthe new conserative bound, = .

Mathematically the distribution over y correspondsto
mauginalizing out all elementsin our statevector except for

X, andx; as
Z Z
py)= N 1 5 ¢dxj= N o cdx;; (8)
Xj8fx;;xig Xj6fxr;xig
which resultsin the distribution
ply)=N " o 9)

i ir i
Noting that (6) alreadyprovides us with a consistentapprox-
imation to this distribution we have
>
— ro. rr ir
P(y) = N i T
wherethe only differencebetweenthe actualdistribution (9)
andthe approximation(10) is the conserative mamginal, ~j; .
Using the measurementg;;, we now perform a constant-
time Kalman update (2) on (10) yielding the conditional
distribution p(yjz,i) from which we retain only the updated
mauginal bound ~; for elementx;. This updateis computed
in constant-timeor eachre-obsered feature.

Note that by abstractly performing the maiginalization
step of (8) before computing the Kalman update,we have
avoidedary inconsisteng issuesassociatedvith only storing
the mamginal bounds = and not representinghe intra-map
correlations.This ensuresthat our updatestepwill resultin
a consistentmaiginal bound for data associationthat will
improve over time aswe re-obsere map elements.

(10)

Require:  [finitialize boundy
if Xi = new mapelementthen
end if
Require: ; fdataassociatiorandboundupdatey

for all x; do
~ re ri
joit ri Tii
computelink hypothesis
if candidatdink then
do constrainedcorrespondencsearchon |; andl,
if imageregistrationsuccesghen
do Kalmanupdateon ~jqine USingmeasuremert;
store ~ji ~
end if
end if
end for

Algorithm 1: Calculationof the mamginal covariancebounds
usedfor dataassociation.

IV. RESULTS

This section presentsexperimental results validating our
covariancerecovery stratgy from theinformationmatrix using
data gatheredduring a recentsuney of the RMS Titanic.
The wreck was suneyed during the summer of 2004 by
the deep-seaROV Hercules operatedby the Institute for
Explorationof the Mystic Aquarium.The ROV was equipped



TABLE 1l
POSE SENSOR CHARACTERISTICS.

Measurement Sensor Precision
Roll/Pitch Tilt Sensor 0:1

Heading North-SeekingcFOG 0:1

Body FrameVelocities Acoustic Doppler 0:01 m/s
Depth Pressuresensor 0:01m
Altitude Acoustic Altimeter 01 m
Downlooking Imagery | Calibrated12-bit CCD | 1 frameevery 8 s

with a standardsuiteof oceanographidead-reckn navigation
sensorscapableof measuringheading,attitude, altitude, xyz
bottom-referenceddoppler velocities, and a pressuresensor
for depth; Table Il summarizesthe sensorcapabilities. In
addition,the vehiclewasalsoequippedwith a calibratedstereo
rig consisting of two downward-looking 12-bit digital-still
camerasthat collectedimagery at a rate of 1 frame every
8 seconds.However, note that the results being presented
herewere producedusingimageryfrom one cameraonly —
the purposeof this self-imposedrestrictionto a monocular
sequencds to demonstrateghe generalapplicability of our
visually augmentechavigation strateyy.

Fig. 5 summarizesour mapping results using an exactly
sparseview-basedSLAM information lter as proposedby
[6]. During the courseof the grid-basedsurey the vehicle
traverseda 2D pathlengthof 3:1 km anda 3D XYz pathlength
of 3:4 km maneueringto maintaina safealtitudeoff the deck
of the wreck. The corvex hull of the nal mappedregion
encompassean areaover 3100m? andin all a total of 866
imageswere usedto provide 3494 camera-generateelative-
pose constraints.These constraintswere generatedusing a
state-of-the-arfeature-basednageregistrationapproach19]
foundedon:

Extractinga combinationof both Harris [20] and SIFT
[21] interestpointsfrom eachimage.
Establishingputative correspondencebetweenoverlap-
ping candidatémagepairsusinga constraineatorrespon-
dencesearch[17].
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Fig. 3. This gure compareshe Markov Blanket covarianceapproximation
methodandthe onepresentedh this paperto theactualcovarianceobtainedoy
inverting the informationmatrix; the resultsare computedor the information
matrix shovn in Fig. 2. For eachmethodwe computethe relative-poseof
eachstateentry, X, to therobot(i.e.,x;i = X, Xj) andassociatedrst-
order covariance.We then plot as a histogramthe log of the ratio of the
determinanbf the approximatedtovarianceto the determinantof the actual
covarianceto facilitatecomparisorof conserativenesgpositive values)versus
overcon dence(negative values)(avalueof zerois idealasthiswouldindicate
a ratio of one).Note that the Markov Blanket methodis overcon dentwhile
oursis conserative.

all estimatedboundswere veri ed to be consistentwith the
actualboundsby performingCholesly decompositioron their
differenceto establishpositive de niteness.

Fig. 3 provides a quantitatve assessmentomparingthe
bounds obtained by our algorithm to the bounds obtained
by inverting only the Markov Blanket as proposedin [2],
[16]. To provide a fair assessmeniwe chooseto evaluate
the relative uncertaintybetweenthe robot, x, , and ary other
map element,x;. Our justi cation for this metric is that the
Markov Blanket methodresultsin a conditional covariance
that doesnot accuratelyre ect global map uncertainty but
ratherrelative map uncertainty Using the information matrix
of Fig. 2 for eachmapelementy;, we computedhe rst-order
relative-posecovariancematrix betweenit andthe robot. For
our metric we choseto computethe log of the determinant
of the approximationcovarianceto the determinantof the
actualobtainedby matrix inversion. Therefore ratios greater
than one (conserative) are positive and ratios lessthan one

Employing a statisticallyrobust Least-Median-of-Squares (overcon dent) are negative. We note that Fig. 3 highlights

[22] registration methodologyto nd the corresponding
Essentialmatrix.

Two-view maximumlikelihoodre nementto extract the
5-DOF relative-poseconstraint(i.e., azimuth, elevation,
Eulerroll, Eulerpitch, Euleryaw) baseduponminimizing
the reprojectionerror [19].

In Fig. 5(a) we see a time progressionof the camera
constraintsand vehicle pose estimationresult. In particular
thethird gure from theleft showvs the closingof a large loop
wherethe vehiclemeanderedts way from the sternof the ship
back towards the bow with it's cameraturned off and then
successfullyre-localized basedupon correctly registering 4
imagepairsout of 64 hypothesizeatandidateskig. 5(b) shavs
the nal resulting pose-constrainhetwork and Fig. 5(c) a
“zoomedin” view of the boxed region to facilitatecomparison
of the maiginal covarianceboundsestimatedby our algorithm
to the actualboundsobtainedby matrix inversion. Note that

that our methodis conserative while the Markov Blanket is
overcon dent. Furthermorefor this datasethe histogramplot
shaws that our methodtendsto be conserative by a smaller
mauigin thanthe Markov Blanket is overcon dent.

Finally, Fig. 4 demonstratethe actualvalue of this conser
vative approximationwithin the context of pose-constrained
correspondenceearchesHere we seetwo pairs of images
and their predictedepipolar geometrybasedupon our state
estimatesFor a calibratedcamera,the epipolar geometryis
de ned by the relative cameraposesandde nes a 1D search
constrainf19]. However, whenthe relative-poseestimatesre
uncertainthis 1D constraintbecomesa searchregion [17].
Fig. 4(a) shavs thatthe Markov Blanket approximatiornof the
relative-poseuncertaintyis too overcon dent for this image
pair such that the 99.9% con dence searchregion doesnot
contain the true correspondenceausingimage registration
to fail. However, the true correspondenceloes lie within



(@)

(b)

Fig. 4. This gure illustratesusing the approximatecovariancerecoery
techniquepresentedn the paperfor dataassociationwithin the context of

constrainingimage-basedorrespondenceearches(a) The top two images
have spatialoverlap and are candidategor imageregistration. The imageon

the left shavs the predictedepipolar geometry(green)for the camerapair

and is instantiatedbasedupon our state estimates.The image on the right

shaws the correspondingpipolarlinesandtheir associate®9.9%con dence-
boundsearchregions basedupon the uncertaintyin our stateestimatesThe
different searchbands correspondto the conserative covariancerecovery
method presentedin this paper (blue), the actual covariance basedupon
inverting the informationmatrix (yellow), andthe Markov Blanket covariance
recovery method (red). The bottom two images shav “zoomed” views.

Closer inspectionreveals that the red searchregion does not contain the

true correspondencearea while the yellow and blue regions do. (b) A

demonstrationof the same correspondenceest but for a different camera
pair. Herewe seethatboth covariancerecorery methodsyield nearlyidentical
resultsto the actualcovarianceobtainedby matrix inversion.This highlights
the unpredictabldevel of overcon denceassociatedvith the Markov Blanket

approximation.

the searchboundsassociatedvith the actual and consera-

tive approximationallowing image registration to succeed.

Fig. 4(b) shows that for anotherimagepair, the two methods
produceequialentresultshighlighting the unpredictabilityof
the overcon dencein the Markov Blanket approximation.

V. CONCLUSION

In conclusion,we have presenteda novel algorithm for
efciently extracting consistentcovarianceboundsuseful for
dataassociatiorin SLAM information Iters. We shaved that

our methodprovides a conserative approximationuseful for
real-world taskssucha imagelink hypothesisandconstrained
correspondencesearches.The methods compleity scales
asymptoticallylinear with map size as measuredby solving
for the robot's covariance-columrcoupledwith constant-time
Kalman updatesfor re-obsered map elements.Our results
werepresentedvithin the contet of anactualroboticmapping
suney of the RMS Titanic embodying several challenging
SLAM researchasksincludinglarge-areascalablemapping,6-
DOF vehicle motion, 3D undervaterervironments,andvisual
perception.
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