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Abstract—In this paper, we consider the problem in which
a mobile pursuer attempts to maintain visual contact with an
evader as it moves through an environment containing obstacles.
This surveillance problem is a variation of traditional pursuit-
evasion games, with the additional condition that the pursuer
immediately loses the game if at any time it loses sight of the
evader. We present schemes to approximate the set of initial
positions of the pursuer from which it might be able to track the
evader.

We first consider the case of an environment containing only
polygonal obstacles. We prove that in this case the set of initial
pursuer configurations from which it does not lose the game is
bounded. Moreover, we provide polynomial time approximation
schemes to bound this set. We then extend our results to the case
of arbitrary obstacles with smooth boundaries.

I. INTRODUCTION

Target tracking is an interesting class of motion planning
problems. It considers motion strategies for a mobile robot
to track a moving target among obstacles. In case of an
antagonistic target, the problem lies in the framework of
pursuit-evasion which belongs to a special class of problems
in game theory. The two players in the game are the pursuer
and the evader. The goal of the pursuer is to maintain a line
of sight to the evader that is not occluded by any obstacle.
The goal of the evader is to escape the visibility region of the
pursuer (and break this line of sight) at any instant of time.

This problem has some interesting applications. In security
and surveillance systems, tracking strategies enable mobile
sensors to monitor moving targets in cluttered environments. In
home care settings, a tracking robot can follow elderly people
and alert caregivers of emergencies. Target-tracking techniques
in the presence of obstacles have been proposed for the graphic
animation of digital actors, in order to select the successive
viewpoints under which an actor is to be displayed as it moves
in its environment [16]. In surgery, controllable cameras could
keep a patient’s organ or tissue under continuous observation,
despite unpredictable motions of potentially obstructing people
and instruments.

In this work, we address the problem of a single pursuer
trying to maintain visibility of a single evader in a planar
environment containing obstacles. The pursuer and the evader
have bounded speeds. We address the following question:
Given the initial position of the evader, what are the initial
positions of the pursuer from which it can track successfully ?

We use the term decidable region to refer to the set of initial
positions of the pursuer at which the result of the game is
known. Similarly, we use the term undecidable region to refer
to the set of initial positions of the pursuer at which the result
of the game is unknown.

The main contributions of this work are as follows. First;
we prove that in an environment containing obstacles, the
initial positions of the pursuer from which it can track the
evader is bounded. Though this result is trivially true for
a bounded workspace, for an unbounded workspace it is
intriguing. Second; In this work, we provide polynomial-time
approximation schemes to bound the set of initial positions of
the pursuer from which it might be able to track successfully.
If the initial position of the pursuer lies outside this region,
the evader escapes. The size of the region depends on the
geometry of the environment and the ratio of the maximum
evader speed to the maximum pursuer speed. Third; we
address the problem of target tracking in an environment
containing non-polygonal obstacles. In the past, researchers
[15] have addressed the problem of searching an evader in
non-polygonal environments. However, we do not know of
any prior work that addresses the problem of tracking an
evader in non-polygonal environments. Fourth; although, we
do not provide a complete solution to the decidability [5] of the
tracking problem in general environments, we present partial
solutions by providing polynomial time algorithms to bound
the undecidable region.

The rest of the paper is organized as follows. Section II
provides the related work. Section III presents the problem for-
mulation. Section IV presents polynomial time approximation
schemes to compute the decidable region. Section V extends
the approximation schemes to environments containing non-
polygonal obstacles. Section VI presents the conclusions and
future research directions.

II. RELATED WORK

Some previous work has addressed the motion planning
problem for maintaining visibility of a mobile evader. In [4],
an algorithm is presented that operates by maximizing the
probability of future visibility of the evader. In [14], algorithms
are proposed for discrete-time representations of the system in
deterministic and stochastic settings. The algorithms become
computationally expensive as the number of stages of the



game is increased. In [8], the authors take into account the
positioning uncertainty of the robot pursuer. Game theory is
proposed as a framework to formulate the tracking problem,
and an approach is proposed that periodically commands
the pursuer to move into a region that has no localization
uncertainty in order to re-localize and better track the evader
afterward.

In [5], the problem of tracking an evader around a sin-
gle corner is addressed. The free workspace is partitioned
according to the strategies used by the players to win the
game. The authors have shown that the problem is completely
decidable around a single corner. However, in reality, we
seldom encounter environments having single corner. Hence
the results about a single corner have limited application in
real scenarios. In [18], the authors show that the problem
of deciding whether or not the pursuer is able to maintain
visibility of the evader in a general environment is at least
NP-complete. This motivates the necessity to use randomized
or approximation techniques to address the problem since any
deterministic algorithm would be computationally inefficient.

Some variants of the tracking problem have also been
addressed. [7] presents an off-line algorithm that maximizes
the evader’s minimum time to escape for an evader moving
along a known path. In [9][3], a target tracking problem is
analyzed for an unpredictable target and an observer lacking
prior model of the environment. It computes a risk factor based
on the current target position and generates a feedback control
law to minimize it. [2] deals with the problem of stealth target
tracking where a robot equipped with visual sensors tries to
track a moving target among obstacles and, at the same time,
remain hidden from the target. Obstacles impede both the
tracker’s motion and visibility, and also provide hiding places
for the tracker. A tracking algorithm is proposed that applies
a local greedy strategy and uses only local information from
the tracker’s visual sensors and assumes no prior knowledge
of target tracking motion or a global map of the environment.
In [19], the problem of target tracking has been analyzed at a
fixed distance between the pursuer and evader. Optimal motion
strategies are proposed for a pursuer and evader based on
critical events.

Research has been done to track one or more evaders using
multiple pursuers. [12] presents a method of tracking several
evaders with multiple pursuers in an uncluttered environment.
In [11] the problem of tracking multiple targets is addressed
using a network of communicating robots and stationary
sensors. A region-based approach is introduced which controls
robot deployment at two levels, namely, a coarse deployment
controller and a target-following controller.

III. PROBLEM FORMULATION

In this paper we consider a mobile pursuer and evader
on a plane. They are point robots and move with bounded
speeds, v, (t) and v (t). Therefore, v,(t) : [0,00) — [0,T,)
and v (t) : [0,00) — [0,T,]. We use r to denote the ratio of
the maximum speed of the evader to that of the pursuerr = g—;
The workspace contains obstacles that restrict pursuer and
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Fig. 1.

Star Region associated with the vertex

evader motions and may occlude the pursuer’s line of sight to
the evader. The initial position of the pursuer and the evader
is such that they are visible to each other. To prevent the
evader from escaping, the pursuer must keep the evader in
its visibility region. The visibility region of the pursuer is the
set of points from which a line segment from the pursuer to
that point does not intersect the obstacle region. The evader
escapes if at any instant of time it can break the line of sight to
the pursuer. Visibility extends uniformly in all directions and
is only terminated by workspace obstacles (omnidirectional,
unbounded visibility).

Now we present a sufficient condition of escape for an
evader in general environments. We use it to prove some
important results in the next section. The sufficient condition
is based on the the concept of a star region. The star region
associated with a vertex is defined as the region in the free
workspace bounded by the lines supporting the vertex of the
obstacle. The shaded region in Figure 1 shows the star region
associated with the vertex v. The concept of star region is
only applicable for a convex vertex(a vertex of angle less than
7). Using the idea of the star region, a sufficient condition
for escape for the evader can be stated as follows.

Sufficient Condition: If the time required by the pursuer
to reach the star region associated with a vertex is greater
than the time required by the evader to reach the vertex, the
evader has a strategy to escape the pursuer’s visibility region.

The sufficient condition arises from the fact that if the
evader reaches the corner before the pursuer can reach the
star region associated with the corner, the evader may escape
from the side of the obstacle hidden from the pursuer. This
is illustrated in figure 2. In the figure, the evader, e, is at the
corner while the pursuer, p, is yet to reach the star region
associated with the corner. If the pursuer approaches the star
region from the left side as shown by the solid arrow, the
evader can escape the visibility region of the pursuer by
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Sufficient condition for escape

moving in the direction of the solid arrow. On the other hand,
if the pursuer approaches the star region from the right side as
shown by the dotted arrow, the evader can escape the visibility
region of the pursuer by moving in the direction of the dotted
arrow.

The relation between the time taken by the pursuer and
evader can be expressed in terms of the distances traveled
by the pursuer and the evader and their speeds. Referring to
Figure 1, if d. is the length of the shortest path of the evader
from the corner, d,, is the length of the shortest path of the
pursuer from the star region associated with the corner and r
is the ratio of the maximum speed of the evader to that of
the pursuer, the sufficient condition can also be expressed in
the following way

SC: If d. < rd,, the evader wins the game.

For the sake of convenience, we refer to the sufficient
condition as SC in the rest of the paper.

IV. APPROXIMATION SCHEMES FOR POLYGONAL
ENVIRONMENT

In this section, we show that in any environment containing
polygonal obstacles, the set of initial positions from which
a pursuer can track the evader is bounded. First, we prove
the statement for an environment containing a single convex
polygonal obstacle. Then we extend the results to prove
in case of a general polygonal environment. This leads to
our first approximation scheme. Then we present two more
approximation schemes to bound the set of initial positions of
the pursuer from which it might be able to track the evader.
The results presented in this section hold for unbounded as
well as bounded environments.

Consider an evader, e, in an environment with a single
convex polygonal obstacle having n sides. The edges of the
polygonal obstacle are ej,es---e,. Every edge e; is a line
segment that lies on a line ., in the plane. Let r. = (2., ye)
and 7, = (zp, yp) denote the initial position of the evader and
the pursuer respectively. Let {h;}? denote a family of lines,
each given by the equation h;(z,y,7e,r) = 0. The presence
of the terms 7. and r in the equation imply that the equation
of the line depends on the initial position of the evader and
the speed ratio respectively. Each line h; divides the plane into
two half-spaces, namely, b = {(z,y) | hi(z,y,7e,7) > 0}
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Fig. 3. Proof of Lemma 1

and h; = {(z,y) | hi(z,y,7e,7) < 0}. Now we use the
SC to prove an important property related to the edges of the
obstacle.

Lemma 1: For every edge e;, there exists a line h; parallel
to e; and a corresponding half-space h:r such that the pursuer
loses the game if r,, € h.
Proof: Consider an edge e; of a convex obstacle as shown
in Figure 3. Since the obstacle is convex, it lies in one of
the half-spaces generated by the line /.,. Without the loss of
generality, let the obstacle lie in the half-space below the line
le;. Let d, and d, be the length of the shortest path of the
evader from vertices a and b of the edge e; respectively. Since
the obstacle lies in the lower half-space of [,, the star region
associated with vertices a and b are in the upper half-space of
le, as shown by the green shaded region. Let [, and [, be the
lines at a distance of d7“ and % respectively, from the line [,.
If the pursuer lies at a distance d greater than min(dT‘l, %)
below the line /., then the time taker; by the pursuer to reach
the line [, is t, > % > %ﬁa%) The minimum time
required by the evader to reach corner a or b, whichever is
nearer, is given by t. = M. From the expressions of
t, and ¢, we can see that tpe> t.. Hence the pursuer will
reach the nearer of the two corners before the evader reaches
line [.,. Hence from SC, we conclude that if the pursuer lies
below the line h; parallel to e; at a distance of min(%, %),
then the evader wins the game by following the shortest path
to the nearer of the two corners. In Figure 3, since d, > d,
the line h; coincides with line [,,. |

Given an edge e; and the initial position of the evader,
proof of Lemma 1 provides an algorithm to find the line h;
and the corresponding half-plane hj as long as the length of
the shortest path of the evader to the corners of an edge is
computable. For example, in the presence of other obstacles,
the length of the shortest path of the evader to the corners can
be obtained by Dijkstra’s algorithm.

Now we present some geometrical constructions required to
prove the next theorem. Refer to Figure 4. Consider a convex
obstacle. Consider a point c¢ strictly inside the obstacle. For
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each 7, extend the line segment v;c to infinity in the direction
vic to form the ray cv). Define the region bounded by rays cuv;
and cv; , , as sector vjcv;_ ;. The sectors possess the following
properties

1) Any two sectors are mutually disjoint.

2) The union of all the sectors is the entire plane.

We can extend the above idea to any n sided convex polygon.
We use the construction to prove the following theorem.

Theorem 1: In an environment containing a single convex
polygonal obstacle, given the initial position of the evader, the
initial positions of the pursuer from which it can win the game
is a bounded subset of the free workspace.

Proof: Refer to Figure 5. Consider an edge e; of the convex
obstacle with end points v; and v;4+;. WLOG, the obstacle lies
below [.,. Let c be a point strictly inside the convex polygon.
Extend the line segments v;c and v; 41 ¢ to form sector vicv; ;.
By Lemma 1, using the initial position of the evader, we can
construct a line h; parallel to e; such that if the initial pursuer
position lies below h;, the evader wins the game. In case the
line h; intersects the sector vicvj, ,, as shown in Figure 5(a),
the evader wins the game if the initial pursuer position lies
in the shaded region. In case the line h; does not intersect
the sector vjcv; ,, as shown in Figure 5(b), the evader wins

the game if the initial pursuer position lies anywhere in the
sector. Hence for every sector, there is a region of finite area
such that if the initial pursuer position lies in it then it might
win the game. Every edge of the polygon has a corresponding
sector associated with it. Since each sector has a region of
finite area such that if the initial pursuer position lies in it,
the pursuer might win the game, the union of all these regions
is finite. Hence the proposition follows. Figure 6 shows the
evader in an environment consisting of a hexagonal obstacle.
The polygon in the center bounded by thick lines shows the
region of possible pursuer win. [ ]

In the proof of theorem 1, we generate a bounded set for
each convex polygonal obstacle such that the evader wins the
game if the initial position of the pursuer lies outside this set.
In a similar way, we can generate a bounded set for a non-
convex obstacle. Given a non-convex obstacle, we construct
its convex-hull. We can prove that Lemma 1 holds true for
the convex-hull. Finally, we can use Theorem 1 to prove the
existence of a bounded set. Due to limitations in space, the
proof is omitted.

From the previous discussions, we conclude that any polyg-
onal obstacle, convex or non-convex, restricts the set of initial
positions from which the pursuer might win the game, to a
bounded set. Moreover, given the initial position of the evader
and the ratio of the maximum speed of the evader to the
pursuer, the bounded set can be obtained from the geometry of
the obstacle by the construction used in the proof of Theorem
1. For any polygon in the environment, let us call the bounded
set generated by it, as the B set. If the initial position of the
pursuer lies outside the B set, the evader wins the game. For an
environment containing multiple polygonal obstacles, we can
compute the intersection of all B sets generated by individual
obstacles. Since each B set is bounded, the intersection is a
bounded set. Moreover, the intersection has the property that
if the initial position of the pursuer lies outside the intersection,
the evader wins the game. This leads to the following theorem.

Theorem 2: Given the initial position of the evader, the set of
initial positions from which the pursuer might win the game is
bounded for an environment consisting of polygonal obstacles.
Proof: The bounded set referred in this theorem is the
intersection of the B sets generated by the obstacles. If the
initial pursuer position does not lie in the intersection it implies
that it is not contained in all the B sets. Hence there exists at
least one polygon in the environment for which the initial
pursuer position does not lie in its B set. By Theorem 1, the
evader has a winning strategy. Hence the theorem follows. H

The intersection of the B sets generated by all the obstacles
provides an approximation of the size of the decidable regions.
For any initial position of the pursuer outside the intersection,
the evader wins the game and hence the result is known. But
we still do not know the result of the game for all initial
position of the pursuer inside the intersection. However, we
can find better approximation schemes and reduce the size of
the region in which the result of the game is unknown. In the
next subsection, we present one such approximation scheme.



Fig. 6. B set for an environment consisting of a regular hexagonal obstacle
and r = 0.5.

A. U set

Now we present another approximation scheme that gives
a tighter bound of the undecidable region. From Lemma 1,
the evader wins the game if r, € h;r for any edge. We can
conclude that if 7, € Uk}, the evader wins the game.
Since (U, k)¢ = NP, (k) = NI h;, where S¢ denotes
the complement of set .S, if 7, lies outside N}_; h; , the evader
wins the game. Hence the set of initial positions from where
the pursuer might win the game is contained in N}, h; . We
call N7 h; as the U set. An important point to note is that
the intersection can be taken among any number of half-
spaces. If the intersection is among the half-spaces generated
by the edges of an obstacle, we call it the U set generated
by the obstacle. If the intersection is among the half-spaces
generated by all the edges in an environment, we call it the U
set generated by the environment.

The next theorem proves that the U set generated by a
single obstacle is a subset of the B ser and hence a better
approximation.

Theorem 3: For a given convex obstacle, the U set is a subset
of the B set and hence bounded.
Proof: Consider a point ¢ that does not lie in the B set. From
the construction of the B set, ¢ must belong to some half-plane
hy.If g € h, then ¢ ¢ h; = ¢ ¢ N h; . This implies
that the complement of the B set is a subset of the complement
of the U set. This implies that the U set is a subset of the B
set. |
Figure 7 shows the B set and U set for an environment
containing a regular hexagonal obstacle. In the appendix, we
present a polynomial-time algorithm to compute the U set for
an environment with polygonal obstacles. The overall time-
complexity of this algorithm is O(n?logn) where n is the
number of edges in the environment. Figure 8 shows the
evader in a polygonal environment. The region enclosed by
the dashed lines is the U set generated by the environment for
the initial position of the evader. The U set for any environment
having polygonal obstacles is a convex polygon with at most
n sides[6]. Figure 9 shows the U set for an environment for
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various ratio of the maximum speed of the evader to that of
the pursuer. In Figure 9, it can be seen that as the speed ratio
between the evader and the pursuer increases, the size of the
U set decreases. The size of the U set diminishes to zero at
a critical speed ratio. At speed ratios higher than the critical
ratio, the evader has a winning strategy for any initial position
of the pursuer. Hence the problem becomes decidable [5] when
the ratio of the maximum speeds is higher than a critical limit.

The next theorem provides a sufficient condition for escape
of the evader in an environment containing obstacles using the
U set.

Theorem 4 If the U set does not contain the initial position
of either the pursuer or the evader, the evader wins the game.
Proof: To prove the theorem we need the following lemma.

Lemma 2: For r» < 1, the evader lies inside the U set.

Proof: For r < 1, ¥, > Ue. If the pursuer lies at the same
position as the evader, its strategy to win is to maintain the
same velocity as that of the evader. Hence if the pursuer and
the evader have the same initial position, the pursuer can track
the evader successfully. Since all the initial positions from



Fig. 9. U set for a various speed ratios of the evader to that of the pursuer

Fig. 10. A polygon in free space. The region shaded in red is obtained by
using Lemma 1. The region shaded in green gets added by using a better
approximation scheme.

which the pursuer can win the game must be contained inside
the U set, the evader position must also be inside the U set.

|
Referring back to the proof of Theorem 4, by definition of the
U set, if the pursuer lies outside the U set, it loses.

If the evader lies outside the U set, Lemma 2 implies r > 1.
If r > 1, v > vp. If v > 7, the evader wins the game in
any environment containing obstacles. Its winning strategy is
to move on the convex hull of any obstacle. ]

B. Discussion

In the previous sections, we have provided a simple ap-
proximation scheme for computing the set of initial pursuer
positions from which the evader can escape based on the
intersection of a family of half-spaces. A slight modification
to the proposed scheme leads to a better approximation. In
the proof of Lemma 1, we presented an algorithm to find a
half-space for every edge of the polygon such that if the initial
position of the pursuer lies in the half-space, the evader wins
the game. All the points in the half-space are at a distance
greater than % from [.,. By imposing the condition that the
minimum distance of the desired set of points from [, in the

free workspace should be greater than dT‘l, we can include

e

Fig. 11. A circular obstacle in free space

more points in the decidable regions as shown in Figure 10.
The figure shows an obstacle in free space. From the proof
of Lemma 1, we get the half-space shaded in red. By adding
the new condition, the region shaded in green gets included.
When we repeat this for every edge, the set of initial positions
from which the pursuer might win the game gets reduced and
leads to a better approximation of the decidable regions. The
boundary of the shaded region consists of straight lines and
arc of circles. The boundary of the desired set is obtained
by computing the intersections among a bunch of rays and
arcs of circles generated by each edge. In this case a better
approximation comes at the cost of expensive computation. We
believe that better approximation schemes exist and one of our
ongoing efforts is in the direction of obtaining computationally
efficient approximation schemes.

None of the approximation schemes we have suggested
so far restrict the initial position of the pursuer to be in
the evader’s visibility region. This condition can be imposed
by taking an intersection of the output of the approximation
algorithm with the visibility polygon at the evader’s initial
position. Efficient algorithms exist for computing the visibility
polygon of a static point in an environment[10].

In the next section we extend the idea of U set to environ-
ments containing non-polygonal obstacles.

V. APPROXIMATION METHODS FOR NON-POLYGONAL
OBSTACLES

In this section we extend the approximation schemes pre-
sented in the previous section to non-polygonal obstacles.
In order to illustrate the techniques required to handle non-
polygonal obstacles, we compute an approximation for the
initial positions of the pursuer from which the evader wins
the game for the simple case of an evader in an environment
containing a circular obstacle. Then we present the algorithm
for any environment containing convex obstacles with smooth
boundaries.

Figure 11 shows an evader, e, in an environment containing
a circular obstacle of radius a in free space. The boundary of
the obstacle is denoted by C'. Let ¢ be a point on C' such that
ZOte =0 and | te |= d’. T denotes the tangent to C at ¢. Let



h: be a line at a distance of dT/ from 7" on the same side of T’
as the obstacle. By Lemma 1, the evader wins the game if the
pursuer lies in the half-space h;", shown by the shaded region.
The equation of line h; is y+x cot 6 — (a — dT/) cscf = 0. For
every point ¢t on C|, there exists a line /i, and the corresponding
half-space h;" such that if the initial position of the pursuer lies
in h;", the evader wins the game. Hence if the initial pursuer
position lies in Usech;, the evader wins the game=> if the
initial pursuer position lies outside Nicch, , the evader wins
the game. Let us call Nyech; as the U set.

Now we compute the boundary of the U set. Let I(x,y,0)
denote the family of lines h; generated by all points ¢ lying
on C. Due to symmetry of the environment about the z-
axis, the U set is symmetric about the z-axis. We present
the construction of the boundary of the U ser generated as 6
increases from 0 to 7. Let QU denote the boundary of the U
set.

Theorem 6- OU is the envelope of the family of lines
lz,y,0).
Proof: Consider any point ¢ on JU. Since ¢ belongs to the
boundary of the U set, it belongs to some line, h, in the family
I(z,y,0). Either h, is tangent to OU or else it intersects OU.
In case it intersects OU, there is a neighborhood around ¢ in
which U lies in both the half-spaces generated by h,. This
is not possible since one of the half-spaces generated by h,
has to be entirely outside the U set. Hence h, is tangent to
OdU. Since ¢ is any point on B, it implies that for all points ¢
on QU, the tangent to U at ¢ belongs to the family I(z, y, 6).
A curve satisfying this property is the envelope to the family
of lines I(x,y,#). Hence the proposition follows. [ |
Using the Envelope theorems [20], the envelope of a family
of lines I(z,y,0) can be obtained by solving the following
equations simultaneously

d/
l(z,y,0) =y+xcotd —(a— —)cschd =0 (1)
r
ol
< _p 2
00 @
d’ as a function of 6 is given by
d(6) = Va2 +d?2 —2adcosf if 6 <6,
\/d2—a2+a(9—00) if 9290
where 6y = cos™! 2.
The solution is
A. Case 1 (0 < b))
21 d2 — 2adcosf dsin? 0
x:(a—\/a + ad cos ) cos 0+ ad sin
T a2 + d? — 2ad cos 6
Va2 +d? —2adcosb, . adsin 6 cos 8
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Fig. 12. (a) shows a circular obstacle with the initial position of the evader.
The smaller circle is the evader. In (b),(c) and (d), d = 5,7and 9 units
respectively. In each of the figures (b), (c) and (d), the black boundary is for
r = 0.5, the green boundary is 7 = 1 and the red boundary is for » = 10

B. Case 2 (m > 60> 0,)

7 _ 42 _ '
2= (- Vd? —a?+ a0 90))cos€+ sin @
r r
Vd? —a?+a(0—0), . cosd
y=(a— " )sinf —

Since OU is symmetrical about the x—axis, the other half
of OU is obtained by reflecting the above curves about the
r—axis. Figure 12(a) shows an evader in an environment
consisting of a disc-like obstacle. Figures 12(b),(c) and (d)
show the boundary of the U set for varying distance between
the evader and the obstacle. In each of these figures, the
boundary of the U set is shown for three different values of
r. We can see that for » < 1, the evader lies inside the U set
as given by Lemma 2.

The above procedure can be used to construct the U set for
any convex obstacle with smooth boundary. Given the initial
position of the evader, we present the procedure to construct
the boundary of the U set for a obstacle with smooth boundary.

Consider an obstacle with smooth boundary given by the
equation f(x,y) = 0. The procedure to generate the boundary
of the U set is as follows

1) Given any point ¢ on the boundary, compute the min-
imum distance of the point from the evader. Let it be
dt.

2) Find the equation of the line h; at a distance of % from
the tangent to the obstacle at ¢.

3) Find the family I(z,y,0) of lines generated by h; as
t varies along the boundary of the obstacle. 8 is a
parameter that defines ¢.



4) Compute the envelope of the family I(x,y,6). This is
the boundary of the U set. This is true since the proof of
Theorem 5 does not depend on the shape of the obstacle.

VI. CONCLUSION AND FUTURE RESEARCH

In this work we address the problem of target-tracking in
general environments. We prove that in a general environment
containing obstacles, given the initial position of the evader,
the set of initial positions from which the pursuer might be
able to track the evader is bounded. Moreover we provide
an approximation algorithm to construct a convex polygonal
region to bound that region. We provide a sufficient condition
for escape of the evader in a general polygonal environment
that depends on the geometry of the obstacles, the initial
position of the evader and the ratio of the maximum speed of
the evader to that of the pursuer. We extend the approximation
schemes to obstacles with smooth boundaries.

Given the complete map of the environment, our results
depend only on the initial position and the maximum speeds
of the pursuer and evader. Hence our results hold for various
settings of the problem such as an unpredictable or predictable
evader [14] or localization uncertainties in the future positions
of the players [8] or delay in pursuer’s sensing abilities [17].

In the future, we would like to provide an algorithm to
approximate the initial positions of the pursuer from which
it can track the evader and also the strategies used by the
pursuer to track successfully. We are using game-theory as a
framework to provide feedback strategies for the pursuer to
track successfully. We are also investigating the problem of
target-tracking with multiple pursuers.

An interesting direction of future research would be to
extend our results to the target-tracking in R3. Researchers
have addressed the problem of target-tracking in R3 [1].
We believe that some of our results can be used in 3-d by
considering polyhedrons as bounding sets instead of polygons.
Another direction of future research would be to incorporate
dynamics in the player’s motion model.
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VII. APPENDIX
A. Algorithm for generating the U-set

Algorithm CONSTRUCTUSET(S,r,(x,, y.))
Input: A set S of disjoint polygonal obstacles, the evader
position r. = (x,,y.), ratio of maximum evader speed to
maximum pursuer speed r
Output: The coordinates of the vertices of the U set

1) For every edge e; in the environment with end-points

Qj, b’L
2) [y =DIUKSTRA(VG(S),7, a;)
3) lo =DIJKSTRA(VG(S),7e, bi)
4) d, = min(l1,l2)
5) Find the equation of h; using Lemma 1.

6) INTERSECTHALFPLANES(h; , ....h;)

The subroutine VG(S), computes the visibility graph of the
environment S. The subroutine DIJKSTRA(G,LF) computes
the least distance between nodes I and F in graph G. The
subroutine INTERSECTHALFPLANES(%h7, ..., h,, ) computes
the intersection of the half planes hi,...,h, [6]. The time
complexity of the above algorithm is O(n?logn), where n is
the number of edges in the environment.



