
Probably Approximately Correct MDP Learning
and Control With Temporal Logic Constraints

Jie Fu and Ufuk Topcu
Department of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, Pennsylvania 19104

Email: jief, utopcu@seas.upenn.edu

Abstract—We consider synthesis of controllers that maximize
the probability of satisfying given temporal logic specifications
in unknown, stochastic environments. We model the interaction
between the system and its environment as a Markov decision
process (MDP) with initially unknown transition probabilities.
The solution we develop builds on the so-called model-based
probably approximately correct Markov decision process (PAC-
MDP) method. The algorithm attains an ε-approximately optimal
policy with probability 1−δ using samples (i.e. observations), time
and space that grow polynomially with the size of the MDP, the
size of the automaton expressing the temporal logic specification,
1
ε

, 1
δ

and a finite time horizon. In this approach, the system
maintains a model of the initially unknown MDP, and constructs
a product MDP based on its learned model and the specification
automaton that expresses the temporal logic constraints. During
execution, the policy is iteratively updated using observation of
the transitions taken by the system. The iteration terminates in
finitely many execution steps. With high probability, the resulting
policy is such that, for any state, the difference between the
probability of satisfying the specification under this policy and
the optimal one is within a predefined bound.

I. INTRODUCTION

Integrating model-based learning into control allows an
agent to complete its assigned mission by exploring its un-
known environment, using the gained knowledge to gradually
approach an (approximately) optimal policy. In this approach,
learning and control complement each other. For the controller
to be effective, there is a need for correct and sufficient
knowledge of the system. Meanwhile, by exercising a control
policy, the agent obtains new percepts, which are then used in
learning to improve its model of the system. In this paper,
we propose a method that extends model-based probably
approximately correct Markov decision process (PAC-MDP)
reinforcement learning to temporal logic-constrained control
for unknown, stochastic systems.

A stochastic system can be modeled as an MDP. Control
design methods for stochastic systems with temporal logic
constraints have been developed [1, 2] and applied successfully
to robot motion planning problems [3]. With incomplete
knowledge of the system dynamics, a stochastic system can
be modeled as an MDP in which the transition probabilities
are unknown or only partially known. Take a robotic motion
planning problem as an example. Different terrains where
the robot operates affect its dynamics in a way that, for the
same action of the robot, the probability distributions over the

arrived positions differ depending on the level and coarseness
of different grounds. The robot dynamics in an unknown
terrain can be modeled as an MDP in which the transition
probabilities are unknown. Acquiring such knowledge through
observations of robot’s movement requires possibly infinite
number of samples. Yet, in practice, such a requirement
may not be affordable or realizable. Alternatively, with finite
amount of samples, we may be able to approximate the actual
MDP and reason about the optimality and correctness (with
respect to the underlying temporal logic specifications) of
policies synthesized using this approximation.

We develop an algorithm that computational efficiently
updates the controller subject to temporal logic constraints
for an unknown MDP. To this end, we extend the PAC-MDP
method [4, 5] to maximize the probability of satisfying a given
temporal logic specification in an MDP with unknown transi-
tion probabilities. In the proposed method, the agent maintains
a model of the MDP learned from observations (transitions
between different states enabled by actions) and when the
learning phase terminates, the learned MDP approximates
the true MDP to a specified degree, with a pre-defined high
probability. The algorithm balances the ratio of exploration and
exploitation: Before the learning phase terminates, either the
current policy is approximately optimal, or new information
can be invoked by exercising this policy. Finally, at conver-
gence, the policy is ensured to be approximately optimal,
and the time, space, and sample complexity of achieving this
policy is polynomial in the size of the MDP, in the size
of the automaton expressing the temporal logic specification
and other quantities that measure the accuracy of, and the
confidence in, the learned MDP with respect to the true one.

Existing results in temporal logic-constrained verification
and control synthesis with unknown systems are mainly in
two categories: The first uses statistical model checking and
hypothesis testing for Markov chains [6] and MDPs [7]. The
second applies inference algorithms to identify the unknown
factors and adapt the controller with the inferred model (a
probabilistic automaton, or a two-player deterministic game)
of the system and its environment [8, 9]. Statistical model
checking for MDPs [7] relies on sampling of the trajectories of
Markov chains induced from the underlying MDP and policies
to verify whether the probability of satisfying a bounded linear
temporal logic constraint is greater than some quantity for all

admissible policies. It is restricted to bounded linear temporal
logic properties in order to make the sampling and checking
for paths computationally feasible. For linear temporal logic
specifications in general, computationally efficient algorithm
has not been developed. Reference [10] employs inference
algorithms for deterministic probabilistic finite-state automata
to identify a subclass of MDPs, namely, deterministic MDPs.
Yet, this method requires the data (the state-action sequences
in the MDPs) to be independent and identically distributed.
Such an assumption cannot hold in the paradigm where
learning (exploration) and policy update (exploitation) are
carried out in parallel and at run time, simply because that
following a particular control policy introduces sampling bias
for observations of the system. Reference [8] applies stochastic
automata learning combined with probabilistic model checking
for stochastic systems. However, it requires an infinite amount
of experiences for the model to be identified and the policy to
be optimal, and may not be affordable in practice.

The extension of the PAC-MDP method to control synthesis
with temporal logic constraints shares many attractive features
with the original method: First, though it applies to linear
temporal logic constraints, it still guarantees efficient conver-
gence to an approximately optimal policy within a finite time
horizon and the number of policy updates is determined by the
size of underlying MDP, independent from the specification.
Second, it balances the ratio of exploration (for improving the
knowledge of the model) and exploitation (for maximizing
the probability of satisfying the specification) phases. Third,
it does not require independent and identically distributed
samples.

II. PRELIMINARIES

Definition 1 (Labeled MDP). A labeled MDP is a tuple
M = 〈Q,Σ, q0, P,AP, L〉 where Q and Σ are finite state
and action sets. q0 ∈ Q is the initial state. The transition
probability function P : Q × Σ × Q → [0, 1] is defined such
that

∑
q′∈Q P (q, σ, q′) ∈ {0, 1} for any state q ∈ Q and any

action σ ∈ Σ. AP is a finite set of atomic propositions and
L : Q → 2AP is a labeling function which assigns to each
state q ∈ Q a set of atomic propositions L(q) ⊆ AP that are
valid at the state q. L can be extended to state sequences in
the usual way, i.e., L(ρ1ρ2) = L(ρ1)L(ρ2) for ρ1, ρ2 ∈ Q∗.

The structure of the labeled MDP M is the underlying graph
〈Q,Σ, E〉 where E ⊆ Q×Σ×Q is the set of labeled edges.
(q, σ, q′) ∈ E if and only if P (q, σ, q′) 6= 0. We say action σ is
enabled at q if and only if there exists q′ ∈ Q, (q, σ, q′) ∈ E.

A. A specification language

We use linear temporal logic formula (LTL) to specify
a set of desired system properties such as safety, liveness,
persistence and stability. A formula in LTL is built from a finite
set of atomic propositions AP , true, false and the Boolean
and temporal connectives ∧,∨,¬,⇒,⇔ and � (always), U
(until), ♦ (eventually), © (next). Given an LTL formula ϕ as
the system specification, one can always represent it by a deter-
ministic Rabin automaton (DRA) Aϕ = 〈S, 2AP , Ts, Is,Acc〉

where S is a finite state set, 2AP is the alphabet, Is ∈ S
is the initial state, and Ts : S × 2AP → S the transition
function. The acceptance condition Acc is a set of tuples
{(Ji,Ki) ∈ 2S×2S | i = 0, 1, . . . ,m}. The run for an infinite
word w = w[0]w[1] . . . ∈ (2AP)ω is the infinite sequence of
states s0s1 . . . ∈ Sω where s0 = Is and si+1 = Ts(si, w[i]).
A run ρ = s0s1 . . . is accepted in Aϕ if there exists at
least one pair (Ji,Ki) ∈ Acc such that Inf(ρ) ∩ Ji = ∅ and
Inf(ρ) ∩Ki 6= ∅ where Inf(ρ) is the set of states that appear
infinitely often in ρ.

B. Policy synthesis in a known MDP

Given an MDP and an LTL specification ϕ, we aim to
maximize the probability of satisfying ϕ from a given state.
We now present a standard quantitative synthesis method in a
known MDP with LTL specifications, following [11, 12].

Definition 2 (Product MDP). Given an MDP
M = 〈Q,Σ, P, q0,AP, L〉 and the DRA Aϕ =
〈S, 2AP , Ts, Is, {(Ji,Ki) | i = 1, . . . ,m}〉, the product
MDP is M = M n Aϕ = 〈V,Σ,∆, v0,Acc〉, with
components defined as follows: V = Q × S is the
set of states. Σ is the set of actions. The initial
state is v0 = (q0, s0) where s0 = Ts(Is, L(q0)).
∆ : V ×Σ× V → [0, 1] is the transition probability function.
Given v = (q, s), σ, v′ = (q′, s′) and s′ = Ts(s, L(q′)),
let ∆(v, σ, v′) = P (q, σ, q′). The acceptance condition is
Acc = {(Ĵi, K̂i) | Ĵi = Q× Ji, K̂i = Q×Ki, i = 1, . . . ,m}.

A memoryless, deterministic policy for a product MDP
M = 〈V,Σ,∆, v0,Acc〉 is a function f : V → Σ. A memory-
less policy f in M is in fact a finite-memory policy f ′ in the
underlying MDP M . Given a state (q, s) ∈ V , we can consider
s to be a memory state, and define f ′(ρ) = f((q, s)) where
the run ρ = q0q1 . . . qn satisfies qn = q and Ts(Is, L(ρ)) = s.
For the type of MDPs in Def. 1 and LTL specifications,
memoryless, deterministic policies in the product MDP are
sufficient [13] for maximizing the probability of satisfying the
specifications.

Definition 3 (Markov chain induced by a policy). Given an
MDP M = 〈V,Σ,∆, v0,Acc〉 and a policy f : V → Σ,
the Markov chain induced by policy f is a tuple Mf =
〈V,Σ,∆f , v0,Acc〉 where ∆f (v, v′) = ∆(v, f(v), v′).

A path in a Markov chain is a (finite or infinite) sequence of
states x ∈ V ∗ (or V ω). Given a Markov chain Mf , starting
from the initial state v0, the state visited at the step t is a
random variable Xt. The probability of reaching state v′ from
state v in one step, denoted Pr(Xt+1 = v′ | Xt = v), equals
∆f (v, v′). This is extended to a unique measure Pr over a set
of (infinite) paths of Mf , Pr(v0v1 . . . vn) = Pr(Xn = vn |
Xn−1 = vn−1) · Pr(v0v1 . . . vn−1).

The following notations are used in the rest of the paper: For
a Markov chain Mf , induced by policy f from MDP M, let
h≤i(v,X) (resp. hi(v,X)) be the probability of a path starts
from state v and hits the set X for the first time within i
steps (resp. at the exact i-th step). By definition, h≤i(v,X) =

∑i
k=0 h

i(q,X). In addition, let h(v,X) =
∑∞
k=0 h

k(v,X),
which is the probability of a path that starts from state v and
enters the set X eventually. When multiple Markov chains are
involved, we write hMf and PrMf to distinguish the hitting
probability h and the probability measure Pr in Mf .

Definition 4 (Accepting end components). The end component
for the product MDPM denotes a pair (W, f) where W ⊆ V
is non-empty and f : W → Σ is defined such that for any
v ∈ W ,

∑
v′∈W ∆(v, f(v), v′) = 1; and the induced directed

graph (W,→f) is strongly connected. Here, v →f v′ is an
edge in the directed graph if ∆(v, f(v), v′) > 0. An accepting
end component (AEC) is an end component such that W∩Ĵi =
∅ and W ∩ K̂i 6= ∅ for some i ∈ {1, . . . ,m}.

Let the set of AECs in M be AEC(M) and the set of ac-
cepting end states be C = {v | ∃(W, f) ∈ AEC(M), v ∈W}.
Due to the property of AECs, once we enter some state v ∈ C,
we can find an AEC (W, f) such that v ∈W , and initiate the
policy f such that for some i ∈ {1, . . . ,m}, all states in Ĵi
will be visited only finite number of times and some state in
K̂i will be visited infinitely often. Given the structure of M,
the set AEC(M) can be computed by algorithms in [14, 15].
Therefore, given the system MDP M and its specification
automaton Aϕ, to maximize the probability of satisfying the
specification, we want to synthesize a policy f that maximizes
the probability of hitting the set of accepting end states C, and
after hitting the set, a policy in the accepting end component
will be followed. The set of accepting end components can be
computed in time polynomial in the size of the product MDP.
For a reachability specification ϕ, for any state, a policy that
maximizes the probability of satisfying ϕ indeed maximizes
the probability of hitting a set of final states in the product
MDP from that state (see [11]), our result is still applicable
and there is no need to compute the end components.

C. Problem statement

The synthesis method in Section II produces the optimal
policy only if the MDP model is known. However, in practice,
such knowledge may not be available. For an MDP with
unknown transition probabilities, model-based reinforcement
learning approach suggests the system learns a model of the
true MDP at run time, and uses the knowledge to iteratively
update its policy. Moreover, the learning and policy update
shall be efficient and eventually the policy converges to
one which meets a certain criterion of success. Tasked with
maximizing the probability of satisfying the specification, we
define, for a given policy, the state value in the product MDP
is the probability satisfying the specification from that state
onwards and the optimal policy is the one that maximizes the
state value for each state in the product MDP. The probability
of satisfying an LTL specification is indeed the probability of
entering the set of accepting end states in the product MDP
(see Section II). We introduce the following definition.

Definition 5 (T -step state values and state values). Let M
be the product MDP, AEC(M) be the set of accepting end

components, and f be a policy in M. For each state v ∈
V , given a finite horizon T ∈ N, the T -step state value is
UfM(v, T) = h≤TMf (v, C), where C is the set of accepting end
states obtained from AEC(M). The optimal T -step state value
is U∗M(v, T) = maxf{UfM(v, T)}, and the optimal T -step
policy is f∗T = arg maxf{UfM(v, T)}. Similarly, We define
the state value UfM(v) = hMf (v, C). The optimal state value
is U∗M(v) = maxf{UfM(v)} and the optimal policy is f∗ =

arg maxf{UfM(v)}.

We can now state the main problem of the paper.

Problem 1. Given an MDP M = 〈Q,Σ, q0, P,AP, L〉 with
unknown transition probability function P , and an LTL specifi-
cation automaton Aϕ = 〈S, 2AP , Ts, Is,Acc〉, two parameters
ε and δ, design an algorithm which, with probability at least
1 − δ, outputs a policy f : Q × S → Σ such that for any
state (q, s), the T -step state value of policy f is ε-close to
the optimal state value in M, and the sample, space and
time complexity required for this algorithm is less than some
polynomial in the relevant quantities (|Q| , |S| , |Σ| , 1ε , T,

1
δ).

III. MAIN RESULT

A. Overview

First we provide an overview of our solution to Problem 1.
Assume that the system has full observations over the state
and action spaces, in the underlying MDP M , the set of
states are partitioned into known and unknown states (see
Definition 8). Informally, a state becomes known if it has been
visited sufficiently many times, which is determined by some
confidence level 1− δ and a parameter ε, the number of states
and the number of actions in M , and a finite-time horizon T .

Since the true MDP is unknown, we maintain and update a
learned MDP M , as well as the product MDP M. Based on
the partition of known and unknown states, and the estimates
of transition probabilities for the set of known states H ⊆
Q, we consider the set of states Ĥ = H × S in M to be
known and construct a sub-MDPMĤ ofM that only includes
the set Ĥ of known states, with an additional sink state that
groups together the set of unknown states V \ Ĥ . A policy
is computed in order to maximize the probability of hitting
some target set in MĤ within a finite-time horizon T . We
show that by following this policy, in T steps, either there is a
high probability of hitting a state in the accepting end states of
M, or some unknown state will be explored. Then, we show
that at some finite point all states will become known and the
learning phase terminates.

Once all states become known, the structure of M must
have been identified and the set of accepting end components
in the learned product MDP M is exactly these in the true
product MDP M. As a result, with probability at least 1− δ,
the policy obtained inM is near optimal. Informally, a policy
f is near optimal, if, from any initial state, the probability of
satisfying the specification with f in T steps is no less than
the probability of eventually satisfying the specification with
the optimal policy, minus a small quantity.

q4 q0

start

q1

q5 q2 q3

q6 q7

α, 0.25

α
, 0
.7

5

β, 0.67

α, 1

β, 0.33

α, 0.5

α, 0.39
α, 0.11

α, 1

β, 0.33

β, 0.67

α, 1 α, 1

α, 0.4

α, 0.6

α, 0.5
α, 0.5

Fig. 1. Example of an MDP with states Q = {qi, i = 0, . . . , 7}, actions
Σ = {α, β}, and transition probability function P as indicated.

Example: Consider the MDP taken from [11, page 855],
as a running example. The objective is to always eventually
visiting the state q3, i.e., ϕ = �♦q3. In [11], the MDP is
known and the algorithm for computing the optimal policy is
given. As the MDP has already encoded the information of the
specification, the atomic propositions are omitted and we can
use the MDP M as the product MDP M with acceptance
condition {(∅, {q3})} and the accepting end component is
({q3}, f(q3) = α). For this known MDP, with respect to ϕ,
the optimal policy f∗ and the probability of satisfying the
specification under f∗ is obtained in Table I.

TABLE I
THE OPTIMAL POLICY AND STATE VALUES IN THE MDP OF FIG. 1.

q0 q1 q2 q3 q4 q5 q6 q7
f∗(·) β α α α α β α α
U∗M(·) 0.22445 0.22 0 1 0.335 0.335 0.335 0.5

B. Maximum likelihood estimation of transition probabilities

For the MDP M , we assume that for each state-action
pair, the probability distribution Dist(q, a) : Q → [0, 1],
defined by Dist(q, a)(q′) = P (q, a, q′), is an independent
Dirichlet distribution (as in [16, 17, 18]). For each transition
(q, a, q′) ∈ Q×Σ×Q and each discrete time t for t ≥ 0, we
associate an integer θt(q, a, q′) with (q, a, q′) to represent the
number of observations of such a transition. Let θt(q, a) =∑
q′∈Q θ

t(q, a, q′). At time t, with θt(q, a, q′) large enough,
the maximum likelihood estimator [19] of the transition prob-
ability P (q, σ, q′) is a random variable of normal distribution
with mean and variance, respectively, P (q, σ, q′) = θt(q,a,q′)

θt(q,a) ,

and Var = θt(q,σ,q′)(θt(q,a)−θt(q,σ,q′))
θt(q,a)2(θt(q,a)+1) .

C. Approximating the underlying MDP

We extend the definition of α-approximation in MDPs [4],
to labeled MDPs.

Definition 6 (α-approximation in labeled MDPs). Let M and
M be two labeled MDPs over the same state and action spaces
and let 0 < α < 1. M is an α-approximation of M if M and
M share the same labeling function and the same structure,
and for any state q1 and q2, and any action a ∈ Σ, it holds
that

∣∣P (q1, a, q2)− P (q1, a, q2)
∣∣ ≤ α.

By construction of the product MDP, it is easy to prove
that if M α-approximates M , then M = M n Aϕ is an α-
approximation of M = M nAϕ. In the following, we denote

the true MDP (and its product MDP) by M (and M), the
learned MDP (and the learned product MDP) by M (andM).

Since the true MDP is unknown in Problem 1, at each time
instance, we can only compute a policy f using our hypothesis
for the true model. Thus, we need a method for evaluating the
performance of the synthesized policy. For this purpose, based
on the simulation lemma in [5, 4], the following lemma is
derived. It provides a way of estimating the T -step state values
under the synthesized policy in the unknown MDP M, using
the MDP learned from observations and the approximation
error between the true MDP and our hypothesis.

Lemma 1. Given two MDPs M = 〈Q,Σ, P,AP, L〉 and
M = 〈Q,Σ, P ,AP, L〉, consider M is an ε

NT -approximation
of M where N is the number of states in M (and M), T is a
finite time horizon, and 0 < ε < 1. Then for any specification
automaton Aϕ = 〈S, 2AP , Ts, Is,Acc〉, for any state v in the
product MDP M = M n Aϕ = 〈V,Σ,∆, v0,Acc〉, for any
policy f : V → Σ, we have that

∣∣∣UfM(v, T)− UfM(v, T)
∣∣∣ ≤ ε.

The proof of Lemma is given in Appendix. It is worth
mentioning that though the confidence level 1− δ is achieved
for the estimation of each transition probability, the confidence
level on the bound between UfM(v, T) and UfM(v, T) for T
steps is not (1− δ)T . See the proof for more details.

Lemma 1 is important in two aspects. First, for any policy,
it allows us to estimate the ranges of T -step state values
in the true MDP using its approximation. We will show in
Section III-D that the learned MDP approximates the true
MDP for some 0 < α < 1. Second, it shows that for a given
finite time horizon T , the size of the specification automaton
will not affect the accuracy requirement on the learned MDP
for achieving an ε-close T -step state value for any policy and
any initial state. Thus, even if the size of the specification
automaton is exponential in the size of the temporal logic
specification, this exponential blow-up will not lead to any
exponential increase of the required number of samples for
achieving a desired approximation through learning. Yet, the
specification influences the choice of T potentially. In the
following we will discuss how to choose such a finite time
horizon T and the potential influence.

Lemma 2. Let M be an ε
NT -approximation of M . For any

specification automaton Aϕ, suppose f : V → Σ and g :
V → Σ be the T -step optimal policy in M = M n Aϕ and
M = M nAϕ respectively. For any state v ∈ V , it holds that∣∣∣UfM(v, T)− UgM(v, T)

∣∣∣ ≤ 2ε.

Proof: The result directly follows from
UgM(v, T) ≤ UfM(v, T),

∣∣∣UfM(v, T)− UfM(v, T)
∣∣∣ ≤ ε

and
∣∣∣UgM(v, T)− UgM(v, T)

∣∣∣ ≤ ε, which can be derived from
Lemma 1.

The finite time horizon T is chosen in a way that for the
optimal policy f , the state-value UfM(v, T) has to be suffi-
ciently close to the probability of satisfying the specification
eventually (an infinite horizon), that is, UfM(v).

Definition 7 (ε-state value mixing time). Given the
product MDP M and a policy f , let df (t) =

maxv∈V

∣∣∣UfM(v, t)− UfM(v)
∣∣∣, and the ε-state value mixing

time is defined by tfmix(ε) := min{t : df (t) ≤ ε}.

Given some 0 < ε < 1, we can use an (estimated) upper
bound of the ε-state value mixing time tfmix(ε) for the optimal
policy f as the finit time horizon T . The estimated upper
bound may vary for different temporal logic specifications.

D. Exploration and exploitation
In this section, we use an exploration-exploitation strategy

similar to that of the R-max [5]. The basic idea is that the
system always exercises a T -step optimal policy in some MDP
constructed from its current knowledge (exploitation). Here T
is chosen to be the ε-state value mixing time of the optimal
policy. It is guaranteed that if there exists a state for which the
system does not know enough due to insufficient observations,
the probability of hitting this unknown state is non-zero within
T steps, which encourages the agent to explore the unknown
state. Once all states are known, based on Lemma 1 and 2,
the T -step optimal policy synthesized with our hypothesis
performs nearly as optimal as the true optimal policy.

We now formally introduce the notions of known states and
known MDP following [4].

Definition 8 (Known states). Let M be an MDP and Aϕ
be a specification automaton. Let q be a state of M and
σ ∈ Σ be an action enabled from q. Let T be the ε-state-
value mixing time of the optimal policy in M = M nAϕ. A
probabilistic transition (q, σ, q′) is known if with probability
at least 1−δ, we have for any q′ ∈ Q, Var ·k ≤ ε

NT , where k
is the critical value for the 1− δ confidence interval [20], Var
is the variance of the maximum likelihood estimator for the
transition probability P (q, σ, q′), N is the number of states in
M . A state q is known if and only if for any action σ enabled
from q, and for any state q′ that can be reached by action σ,
the probabilistic transition (q, σ, q′) is known.

Definition 9 (Known product MDP). Given H ⊆ Q the set
of known states in an MDP M , let Ĥ × S ⊆ V be the set
of known states in the product MDP M. The known product
MDP is MĤ = 〈Ĥ ∪ {sink},Σ,∆Ĥ , v0,AccĤ〉 where Ĥ ∪
{sink} is the set of states and sink is the sink state. ∆Ĥ is
the transition probability function and is defined as follows:
If both v, v′ ∈ Ĥ , ∆Ĥ(v, σ, v′) = ∆(v, σ, v′). Else if v ∈ Ĥ
and there exists σ ∈ Σ such that ∆(v, σ, v′) > 0 for some
v′ /∈ Ĥ , then let ∆Ĥ(v, σ, sink) =

∑
v′ /∈Ĥ ∆(v, σ, v′). For

any σ ∈ Σ, ∆Ĥ(sink, σ, sink) = 1. The acceptance condition
AccĤ in MĤ is a set of pairs ({(Ĵi ∩ Ĥ, K̂i ∩ Ĥ) | i =
0, . . . ,m} ∪ {(∅, {sink})}) \ {(∅, ∅)}.

Intuitively, by including (∅, {sink}) in AccĤ , we encourage
the exploration of unknown states aggregated in sink.

Example (cont.): Initially, all states in the product MDP
(Fig. 1) are unknown, and thus the known product MDP has
only state sink, see Fig. 2(a). Figure 2(b) shows the known
product MDP MH where H = {q2, q3, q5, q6}.

sinkstart

α, 1, β, 1

(a) M∅

q5

q6 sink

startα, 0.4

α, 0.6

q2 q3
β, 0.33

α, 1
β, 0.67

α, 1, β, 1

α, 1 α, 1

(b) MH , H = {q2, q3, q5, q6}

Fig. 2. Two known product MDPs constructed from the example MDP with
the sets of known states ∅ and {q2, q3, q5, q6} respectively.

The following lemma shows that the optimal T -step policy
in MĤ either will be near optimal in the product MDP M,
or will allow a rapid exploration of an unknown state in M .

Lemma 3. Given a product MDP M and a set of known
states Ĥ ⊂ V , for any v ∈ Ĥ , for 0 < α < 1, let f be
the optimal T -step policy in MĤ . Then, one of the following
two statements holds: 1) UfM(v, T) ≥ U∗M(v, T)− α. 2) An
unknown state which is not in the accepting end state set C
will be visited in the course of running f for T steps with a
probability at least α.

Proof: Suppose that UfM(v, T) < U∗M(v, T) − α (other-
wise, f witnesses the claim). First, we show, for any policy
g : V → Σ and any v ∈ Ĥ , it holds that

UgMĤ
(v, T) ≥ UgM(v, T). (1)

For notation simplicity, let Pr = PrMg be the probability
measure over the paths in Mg and Pr′ = PrMg

Ĥ
be the

probability measure over the paths in Mg

Ĥ
.

Let X ⊆ V ∗ be a set of paths inMg such that each x ∈ X ,
with |x| ≤ T , starts in v, ends in C and has every state in Ĥ;
Y ⊆ V ∗ be the set of paths in Mg such that each y ∈ Y ,
with |y| ≤ T , starts in v, ends in C and has at least one state
not in Ĥ; and Y ′ be the set of paths y in Mg

Ĥ
which starts

in v, ends with sink and has length |y| ≤ T . We can write

UgM(v, T) =
∑
x∈X

Pr(x) +
∑
y∈Y

Pr(y), and

UgMĤ
(v, T) =

∑
x∈X

Pr′(x) +
∑
y∈Y ′

Pr′(y).

Since the transition probabilities in M and MĤ are same
for the set of known states, and X is the set of paths
which only visit known states, we infer that

∑
x∈X Pr(x) =∑

x∈X Pr′(x). Moreover, since y ∈ Y contains an unknown
state, it leads to sink in MĤ , and thus is in Y ′. We infer
that Y ⊆ Y ′,

∑
y∈Y Pr(y) ≤

∑
y∈Y ′ Pr′(y) and thus

UgMĤ
(v, T) ≥ UgM(v, T).

Next, let f be the optimal T -step policy in MĤ and ` be
the optimal T -step policy in M. From Eq. (1), we obtain an
inequality: U `MĤ

(v, T) ≥ U `M(v, T).
By the T -step optimality of f in MĤ and ` in M, it

also holds that UfMĤ
(v, T) ≥ U `MĤ

(v, T) and U∗M(v, T) =

U `M(v, T) ≥ UfM(v, T). Hence,

UfMĤ
(v, T) ≥ U `MĤ

(v, T) ≥ U∗M(v, T) ≥ UfM(v, T)

=⇒ UfMĤ
(v, T)− UfM(v, T) ≥ U∗M(v, T)− UfM(v, T).

Given the fact that U∗M(v, T)−UfM(v, T) > α, we infer that
UfMĤ

(v, T) − UfM(v, T) =
∑
z∈Z Pr(z) > α, where Z is

the set of paths such that each z ∈ Z starts from v, and ends
in some unknown state which is not an accepting end state in
M. Therefore, we reach at the conclusion that if UfM(v, T) <
U∗M(v, T) − α, then the probability of visiting an unknown
state which is not in C must be at least α.

Note that, for any unknown state which is in C, one can
apply the policy in its corresponding accepting end component
to visit such a state infinitely often, and after a sufficient
number of visits, it will become known. Also, though we use
the product MDP M, Lemma 3 can also be applied to the
learned product MDP M.

IV. PAC-MDP ALGORITHM IN CONTROL WITH TEMPORAL
LOGIC CONSTRAINTS.

Theorem 1. Let M = 〈Q,Σ, P,AP, L〉 be an MDP with P
unknown, and ϕ be an LTL formula. Let 0 < δ < 1, and
ε > 0 be input parameters. Let M = M nAϕ be the product
MDP and T be the ε-state value mixing time of the optimal
policy inM. Let FM(ε, T) be the set of policies inM whose
ε-state value mixing time is T . With probability no less than
1 − δ, Algorithm 1 will return a policy f ∈ FM(ε, T) such
that

∣∣∣UfM(v, T)− U∗M(v)
∣∣∣ ≤ 3ε within a number of steps

polynomial in |Q|, |Σ|, |S|, T , 1
ε and 1

δ .

Proof: Firstly, applying the Chernoff bound [20], the
upper bound on the number of visits to a state for it to be
known is polynomial in |Σ| , T, 1ε and 1

δ . Before all states are
known, the current policy f exercised by the system is T -
step optimal in MĤ induced from the set of known states
Ĥ . Then, by Lemma 3, either for each state, policy f attains
a state value α-close to the optimal T -step state value in
M, or an unknown state will be visited with probability at
least α. However, becauseMĤ is ε

NT -approximation ofMĤ ,
Lemma 1 and Lemma 2 guarantee that policy f either attains
a state value (2ε+ α)-close to the optimal T -step state value
in M for any state, or explores efficiently. If it is always
not the first case, then after a finite number of steps, which
is polynomial in |Q| , |Σ| , T, 1ε ,

1
δ , all states will be known,

and the learned MDP M (resp.M) ε
NT -approximates the true

MDP M (resp.M). Since T is the ε-state value mixing time of
the optimal policy inM, the T -step optimal policy g : V → Σ
in M satisfies |UgM(v, T)− U∗M(v)| ≤ ε. From Lemma 2, it
holds that

∣∣∣UfM(v, T)− UgM(v, T)
∣∣∣ ≤ 2ε and thus we infer

that
∣∣∣UfM(v, T)− U∗M(v)

∣∣∣ ≤ 3ε.
Note that, the sample complexity of the algorithm is poly-

nomial in |Q| , |Σ| , T, 1ε , and 1
δ , and is independent from the

size of Aϕ. However, in the value iteration step, the space

and time complexity of policy synthesis is polynomial in
|Q| , |S| , |Σ| , T, 1ε ,

1
δ .

In problem 1, we aim to obtain a policy f which is ε-optimal
inM. This can be achieved by setting ε = ε

3 (see Theorem 1).
In Algorithm 1, the policy is updated at most |Q| times

as there is no need to update once all states become known.
Given the fact that for LTL specifications, the time complexity
of synthesis in a known MDP is O(n · m) where n is the
number of states and m is the number of transitions in the
product MDP, Algorithm 1 is a provably efficient algorithm
for learning and policy update. Moreover, the input T can be
eliminated by letting T = 1 and iteratively increase T by 1
(see [4, 5] for more details on the elimination technique).

Algorithm 1: LearnAndSynthesize
Input: The state and action sets Q ,Σ, the set of atomic

propositions AP and the labeling function
L : Q→ 2AP , the specification DRA Aϕ,
parameters ε and δ, the (upper bound of) ε-state
mixing time T for the optimal policy in M nAϕ.

Output: A policy f : Q× S → Σ.
begin

H := ∅, q := q0, s := Ts(Is, L(q)),
recompute=True;
M = 〈Q,Σ, P ,AP, L〉, /* P (q, a, q′) = 0 for

any (q, a, q′) ∈ Q× Σ×Q. */
while True do

if recompute=True then
Ĥ = H × S, M = M nAϕ,
MĤ := KnownMDP(M, Ĥ), /* Obtain

the known product MDP in
Def. 9. */

f := ValueIteration(MĤ , T),
/* Standard value iteration
to compute T-step optimal
policy. */

q′, a = Exploit((q, s), f), /* Apply
policy f to state (q, s). */

Hp = H ,
M,H := Update(M,H, q, a, q′, ε, δ, |Q| , T)

/* Update the estimates for
transition probabilities. */

if Hp 6= H then recompute=True;
else recompute=False;
if P (q′, a, q′) = 1 or (q, s) ∈ C ; /* C is the
accepting end states in M. */
then With probability 0 ≤ p ≤ 1, restart with a
random state (q, s) ∈ Q× S;
else q := q′, s := Ts(s, L(q));
/* With prob p, random sample Q× S

to explore all state space. */
if H = Q then

return f := ValueIteration(M, T).

During learning, it is possible that for state q ∈ Q and for
action a ∈ Σ, we estimate that P (q, a, q) = 1. Then either in
the true MDP, P (q, a, q) = 1, or, P (q, a, q) < 1 yet we have
not observed a transition (q, a, q′) for any q′ 6= q. In this case,
with some probability p, we restart with a random initial state
of MDP. With probability 1 − p, we keep exploring state q.
The probability p is a tuning parameter in Algorithm 1.

V. EXAMPLES

We apply Algorithm 1 to the running example MDP (Fig. 1)
and a robotic motion planning problem in an unknown terrain.
The implementations are in Python on a desktop with Intel(R)
Core(TM) processor and 16 GB of memory.

A. The running example

We consider different assignments for ε and 95% of confi-
dence level, i.e., δ = 0.05, and T = 15 as the (estimated upper
bound of) ε

3 -state value mixing time of the optimal policy, for
all assignments of ε. A step means that the system takes an
action and arrives at a new state.

For ε = 0.01, after 274968 steps and 35.12 seconds, all
states become known and the policy is optimal. Let the policy
at step t be f t. We evaluate the policy f t in the true product-
MDP and plot the state value (the probability of satisfying the
specification from that state under policy f t) Uf

t

M(qi) : i =
0, . . . , 7, for the finite horizon in Fig. 3(a). Note that, even
though the policy computed at step t = 204468 has already
converged to the optimal policy, it is only after t = 274968 that
in the system’s hypothesis, the T -step state value computed
using the known MDP under its T -step optimal policy is ε-
close to the optimal state value in the true product MDP.

For ε = 0.02, in 136403 steps with 17.73 seconds, all states
become known and the policy is optimal. For ε = 0.05, in
55321 steps with 7.18 seconds all states are known. However,
the policy f outputs α for all states except q5, at which it
outputs β. Comparing to the optimal policy which outputs β
for both q0 and q5, f is sub-optimal in the true MDPM: With
f , UfM(q0) = 0.22, comparing to 0.22445 with the optimal
policy. For the remaining states, we obtain the same state
values with policy f as the optimal one.

Finally, in three experiments, it is observed that the actual
maximal error (0.00445 with ε = 0.05) never exceeds 0.01,
because we use the loose upper bound on the error between the
T -step state value with any policy inM and its approximation
M in Lemma 1, to guarantee the correctness of the solution.

B. A motion planning example

We apply the algorithm to a robot motion planning problem
(see Fig. 3(b)). The environment consists of four different un-
known terrains: Pavement, grass, gravel and sand. In each ter-
rain and for robot’s different action (heading north (‘N’), south
(‘S’), west (‘W’) and east (‘E’)), the probability of arriving at
the correct cell is in certain ranges: [0.9, 0.95] for pavement,
[0.85, 0.9] for grass, [0.8, 0.85] for gravel and [0.75, 0.80] for
sand. With a relatively small probability, the robot will arrive
at the cell adjacent to the intended one. For example, with

action ‘N’, the intended cell is the one to the north (‘N’),
whose the adjacent ones are the northeast (‘NE’)and northwest
cells (‘NW’) (see Fig. 3(b)). The objective of the robot is
to maximize the probability of satisfying a temporal logic
specification ϕ = �♦(R1 ∧ ♦(R2 ∧ ♦R3)) ∧ �¬R4 where
R1, R2, R3 are critical surveillance cells and R4 includes a set
of unsafe cells to be avoided. For illustrating the effectiveness
of the algorithm, we mark a subset of cells labeled by 1, 2, 3, 4
and evaluate the performance of iteratively updated policies
given that a cell in the set is the initial location of the robot.

Given ε = 0.01, δ = 0.05, and T = 50, all states become
known in 155089 steps and 1593.45 seconds, and the policy
updated four times (one for each terrain type). It is worth
mentioning that most of the computation time is spent on
computing the set of bottom strongly connected components
using the algorithm in [15] in the structure of the learned
MDP, which is then used to determine the set of accepting
end components in M. In Fig. 3, we plot the state value
Uf

t

M((q0, s0)) where q0 ∈ {1, 2, 3, 4} and s0 = Ts(Is, q0) for
a finite time horizon. The policy output by Algorithm 1 is the
optimal policy in the true MDP. The video demonstration for
this example is available at http://goo.gl/rVMkrT.

VI. CONCLUSION AND FUTURE WORK

We presented a PAC-MDP method for synthesis with tem-
poral logic constraints in unknown MDPs and developed an
algorithm that integrates learning and control for obtaining
approximately optimal policies for temporal logic constraints
with polynomial time, space and sample complexity. Our
current work focuses on other examples (e.g. multi-vehicle
motion planning), comparison to alternative, possibly ad hoc
methods, and implementing a version of Algorithm 1 that
circumvents the need for the input T following [5].

There are a number of interesting future extensions. First,
although here we only considered one-player stochastic games,
it is also possible to extend to two-player stochastic games,
similar to the R-MAX algorithm [5]. Second, for safety critical
robotics application, we might need to design the strategy that
does not violate some safety constraints during exploration and
exploitation. A critical problem is that by enforcing the safety
constraints, one might limit the data acquired with exploration
and thus only converge to a sub-optimal policy. In this case, we
should strike a balance between safety and the optimality in the
learned strategy. Third, besides the objective of maximizing
the probability of satisfying a temporal logic constraint, other
objectives can be considered, for example, minimizing the
weighted average costs [21]. Fourth, the method is model-
based in the sense that a hypothesis for the underlying MDP
is maintained. The advantage in such a model-based approach
is that when the control objective is changed, the knowledge
gained in the past can be re-used in the policy synthesis for the
new objective. However, model-free PAC-MDP approach [22],
in which information on the policy is retained directly instead
of the transition probabilities, can be of interests as its space-
complexity is asymptotically less than the space requirement
for model-based approaches.

http://goo.gl/rVMkrT

0 0.5 1 1.5 2 2.5

x 10
5

0

0.2

0.4

0.6

0.8

1

Number of steps (t)

q
7

q
3

q
1

q
2

q
4
,q

5
,q

6

q
0

(a)

R1

R3

R2

1

23

4

N

E

S

W

NENW

SW SE

(b)

0 5 10 15

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of steps (t)

2
3

1

4

(c)

Fig. 3. (a) The state value Uf
t

M(qi), i = 0, . . . , 7 v.s. step t, with ε = 0.01, δ = 0.05 and T = 15. The markers represents the steps when the policy is
recomputed. Note that, for states q0 and q1, the state values when all states become known are 0.22445 and 0.22 respectively, which are indiscernible from
the figure. (b) Left: A 10 × 10 gridworld, where the disk represents the robot, the cells R1, R2, and R3 are the interested regions, the crossed cells are
the obstacles, labeled with R4, the cells on the edges are walls, and we assume that if the robot hits the wall, it will be bounced back to the previous cell.
Different grey scales represents different terrains: From the darkest to the lightest, these are “grass,” “ pavement,” “sand” and “gravel.” Right: The transitions
of the robot, in which the center cell is the current location of the robot. (c) The state value Uf

t

M((q0, s0)) v.s. step t, where q0 ∈ {1, 2, 3, 4} is the initial
cell and s0 = Ts(Is, L(q0)), under ε = 0.01, δ = 0.05 and T = 50. The markers represents the steps when the policy is recomputed.

Acknowledgements: The authors would like to thank
Laura R. Humphrey of the AFRL for helpful comments on
improving the paper. This work is supported by ONR award
number 14-13-1-0778.

APPENDIX

Proof of Lemma 1: By Definition 6, M and M share the
same structure. Thus, for any DRA Aϕ, the product MDPs
M = M nAϕ and M = M nAϕ share the same structure
and the same set of accepting end states C ⊆ V .

For any policy f , let Mi be the Markov chains obtained
from the induced Markov chainsMf andMf

in the following
way: Start at v and for the first i transitions, the transition
probabilities are the same as in Mf

, and for the rest of steps,
the transition probabilities are the same as in Mf . Clearly,
Mf = M0 and Mf

= MT . For notational simplicity, we
denote hMi(·) = hi(·), PrMi(·) = Pri(·). Then, we have that∣∣∣UfM(v, T)− UfM(v, T)

∣∣∣ =
∣∣∣h≤T0 (v, C)− h≤TT (v, C)

∣∣∣
=
∣∣∣h≤T0 (v, C)− h≤T1 (v, C) + h≤T1 (v, C)− h≤T2 (v, C) + . . .+

h≤TT−1(v, C)− h≤TT (v, C)
∣∣∣ =

T−1∑
i=0

∣∣∣h≤Ti (v, C)− h≤Ti+1(v, C)
∣∣∣

≤T · max
i∈{0,...T−1}

∣∣∣h≤Ti (v, C)− h≤Ti+1(v, C)
∣∣∣ . (2)

For any i = 0, . . . , T − 1, we have that

Diff1 =
∣∣∣h≤Ti (v, C)− h≤Ti+1(v, C)

∣∣∣ =
∣∣∣h≤ii (v, C)

+

T∑
k=i+1

hki (v, C)− h≤ii+1(v, C)−
T∑

k=i+1

hki+1(v, C)

∣∣∣∣∣ .
Since for the first i steps, the transition probabilities in Mi

and Mi+1 are the same, then the probabilities of hitting the
set C in Mi and Mi+1 equal to the probability of hitting C in
Mf = M0, i.e., h≤ii (v, C) = h≤ii+1(v, C) = h≤i0 (v, C). Remind

that Pri(x), for some x ∈ V ∗, is the probability of path x
occurring in Mi, as a consequence,

Diff1 =

∣∣∣∣∣
T∑

k=i+1

hki (v, C)−
T∑

k=i+1

hki+1(v, C)

∣∣∣∣∣
=

∣∣∣∣∣∑
v′ /∈C

Pri(xv
′)
∑
v′′ /∈C

(
Pri(v

′v′′) · h≤T−i−1
i (v′′, C)

)
−

∑
v′ /∈C

Pri+1(xv
′)
∑
v′′ /∈C

(
Pri+1(v

′v′′) · h≤T−i−1
i+1 (v′′, C)

)∣∣∣∣∣ ,
where x ∈ V ∗ is a path of length i − 1 that starts in v and
does not contain any state in C. Note that for the first i (resp.
the last T −i−1) transitions, the transition probabilities in Mi

and Mi+1 are the same as these in Mf = M0 (resp. Mf
=

MT), thus we have Pri(xv
′) = Pri+1(xv′) = Pr0(xv′) and

h≤T−i−1i (v′′, C) = h≤T−i−1i+1 (v′′, C) = h≤T−i−1T (v′′, C) .
Let v′ = (q′, s′), v′′ = (q′′, s′′) and a = f(v′).

It is also noted that Pri(v
′v′′) = Pri((q

′, s′)(q′′, s′′)) =
P (q′, a, q′′) with s′′ = Ts(s

′, L(q′′)) and Pri+1(v′v′′) =
Pri+1((q′, s′)(q′′, s′′)) = P (q′, a, q′′). Thus, as M approxi-
mate M , we have

Diff1 =
∑
v′ /∈C

Pr0(xv
′)
∑
v′′ /∈C

(∣∣P (q′, a, q′′)− P (q′, a, q′′)
∣∣

· h≤T−i−1
T (v′′, C)

)
≤
∑
v′ /∈C

Pr0(xv
′) · ε

NT
·
∑
v′′ /∈C

h≤T−i−1
T (v′′, C) = Diff2,

The first term
∑
v′ /∈C Pr0(xv′) ≤ 1 and the last term is the

sum of the probabilities of visiting C from different states
in V \ C within T − i − 1 steps, each of which is bounded
by 1. Moreover, since v′′ = (q′′, s′′) where s′′ is determined
by the previous state s′ in Aϕ and the current state q′′, i.e.,
s′′ = Ts(s

′, L(q′′)), the sum is bounded by the number N
of states (choices for q′′) in the underlying MDP M . Thus,
Diff1 ≤ Diff2 ≤ ε

NT · N = ε
T . Finally, from (2), we have∣∣∣UfM(v, T)− UfM(v, T)

∣∣∣ ≤ ε
T · T = ε.

REFERENCES

[1] M. Lahijanian, S. B. Andersson, and C. Belta, “A proba-
bilistic approach for control of a stochastic system from
LTL specifications,” in Proceedings of the Conference on
Decision and Control and Chinese Control Conference,
pp. 2236–2241, 2009.

[2] A. Medina Ayala, S. B. Andersson, and C. Belta, “Proba-
bilistic control from time-bounded temporal logic specifi-
cations in dynamic environments,” in Proceedings of the
International Conference on Robotics and Automation,
pp. 4705–4710, 2012.

[3] B. Johnson and H. Kress-Gazit, “Analyzing and revising
high-level robot behaviors under actuator error,” in Pro-
ceedings of the Intelligent Robots and Systems, pp. 741–
748, 2013.

[4] M. Kearns and S. Singh, “Near-optimal reinforcement
learning in polynomial time,” Machine Learning, vol. 49,
no. 2-3, pp. 209–232, 2002.

[5] R. Brafman and M. Tennenholtz, “R-MAX-a general
polynomial time algorithm for near-optimal reinforce-
ment learning,” The Journal of Machine Learning, vol. 3,
pp. 213–231, 2003.

[6] A. Legay, B. Delahaye, and S. Bensalem, “Statistical
model checking: An overview,” in Runtime Verification,
pp. 122–135, Springer, 2010.

[7] D. Henriques, J. G. Martins, P. Zuliani, A. Platzer, and
E. M. Clarke, “Statistical model checking for Markov de-
cision processes,” Proceedings of the International Con-
ference on Quantitative Evaluation of Systems, pp. 84–
93, 2012.

[8] Y. Chen, J. Tumova, and C. Belta, “LTL robot motion
control based on automata learning of environmental dy-
namics,” in Proceedings of the International Conference
on Robotics and Automation, pp. 5177–5182, 2012.

[9] J. Fu, H. Tanner, and J. Heinz, “Adaptive planning in
unknown environments using grammatical inference,” in
Proceedings of the Decision and Control Conference,
pp. 5357–5363, 2013.

[10] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen,
and B. Nielsen, “Learning Markov decision processes for
model checking,” in Proceedings of Quantities in Formal
Methods (U. Fahrenberg, A. Legay, and C. R. Thrane,
eds.), Electronic Proceedings in Theoretical Computer
Science, pp. 49–63, 2012.

[11] C. Baier, M. Größer, M. Leucker, B. Bollig, and
F. Ciesinski, “Controller synthesis for probabilistic sys-
tems (extended abstract),” in Exploring New Frontiers
of Theoretical Informatics (J.-J. Levy, E. Mayr, and
J. Mitchell, eds.), vol. 155 of International Federation
for Information Processing, pp. 493–506, Springer US,
2004.

[12] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker,
Mathematical Techniques for Analyzing Concurrent and
Probabilistic Systems, P. Panangaden and F. van Breugel
(eds.), vol. 23 of CRM Monograph Series. American

Mathematical Society, 2004.
[13] A. Bianco and L. De Alfaro, “Model checking of proba-

bilistic and nondeterministic systems,” in Foundations of
Software Technology and Theoretical Computer Science,
pp. 499–513, Springer, 1995.

[14] L. De Alfaro, Formal Verification of Probabilistic Sys-
tems. PhD thesis, Stanford University, 1997.

[15] K. Chatterjee and M. Henzinger, “Faster and dynamic
algorithms for maximal end-component decomposition
and related graph problems in probabilistic verification,”
in Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, SODA ’11, pp. 1318–1336, 2011.

[16] M. O. Duff, Optimal Learning: Computational Proce-
dures for Bayes-adaptive Markov Decision Processes.
PhD thesis, University of Massachusetts Amherst, 2002.

[17] T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans,
“Bayesian sparse sampling for on-line reward optimiza-
tion,” in Proceedings of the International Conference on
Machine Learning, pp. 956–963, 2005.

[18] P. S. Castro and D. Precup, “Using linear programming
for Bayesian exploration in Markov decision processes,”
in Proceedings of the International Joint Conferences
on Artificial Intelligence (M. M. Veloso, ed.), pp. 2437–
2442, 2007.

[19] N. Balakrishnan and V. B. Nevzorov, A Primer on
Statistical Distributions. Wiley, 2004.

[20] B. L. Mark and W. Turin, Probability, Random Processes,
and Statistical Analysis. Cambridge University Press
Textbooks, 2011.

[21] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimal
control with weighted average costs and temporal logic
specifications.,” in Robotics: Science and Systems, 2012.

[22] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L.
Littman, “PAC model-free reinforcement learning,” in
Proceedings of the International Conference on Machine
Learning, pp. 881–888, 2006.

	Introduction
	Preliminaries
	A specification language
	Policy synthesis in a known MDP
	Problem statement

	Main result
	Overview
	Maximum likelihood estimation of transition probabilities
	Approximating the underlying MDP
	Exploration and exploitation

	PAC-MDP algorithm in control with temporal logic constraints.
	Examples
	The running example
	A motion planning example

	Conclusion and future work
	Appendix

