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Abstract— The majority of current image-based road following
algorithms operate, at least in part, by assuming the presence of
structural or visual cues unique to the roadway. As a result,
these algorithms are poorly suited to the task of tracking
unstructured roads typical in desert environments. In this paper,
we propose a road following algorithm that operates in a self-
supervised learning regime, allowing it to adapt to changing
road conditions while making no assumptions about the general
structure or appearance of the road surface. An application of
optical flow techniques, paired with one-dimensional template
matching, allows identification of regions in the current camera
image that closely resemble the learned appearance of the road
in the recent past. The algorithm assumes the vehicle lies on
the road in order to form templates of the road’s appearance.
A dynamic programming variant is then applied to optimize the
1-D template match results while enforcing a constraint on the
maximum road curvature expected. Algorithm output images,
as well as quantitative results, are presented for three distinct
road types encountered in actual driving video acquired in the
California Mojave Desert.

I. I NTRODUCTION

The past few decades witnessed the emergence of numerous
image-based techniques addressing various tasks critical to the
development of robust autonomous driving systems for both
on- and off-road conditions [1], [2]. The focus of much of
this work has been the development of road following and
lane tracking algorithms. In recent years, these technologies
have received increasing publicity in both the civilian and
military domains. Several automotive manufacturers are now
offering lane-departure warning systems [3], [4], a first step
in the realization of fully autonomous highway driving. The
institution of the DARPA Grand Challenge [5], a competition
between autonomous off-road vehicles in the Mojave Desert,
has triggered extensive interest in camera-based road following
algorithms.

Many road following algorithms are not adaptive. Some
rely ona priori knowledge of specific visual characteristics of
the road surface or structure, while others employ supervised
learning techniques to learn to recognize a desired class of
roads. For example, one class of algorithms searches for image
edges that define the roadway, such as lane markers or road
boundaries [6], [7]. Other methods exploit color cues unique
to the road surface, often in combination with sophisticated
segmentation algorithms [8] or known edge information [9].
Supervised learning algorithms also use these same types of

road cues to train classifiers which identify road regions [10],
[11], [12]. Approaches of this nature are limited because they
cannot adapt to changing road conditions without either re-
tuning of a priori road identifiers or re-learning of trained
classifiers with human supervision.

Some road following algorithms address this problem by
incorporating adaptive learning techniques. Early work on
adaptive algorithms used evolving templates consisting of
traditional road cues [13] or color pixel clustering applied to
known road models [14]. Other methods achieve adaptability
by using color information of recent known road regions
to search for future road regions [15] or by using color-
based cues as the input to neural networks [16]. While these
approaches successfully adapt to different or changing road
types, each still relies on the presence of unique identify-
ing features of the roadway, such as lane markings, edge
boundaries, or distinct color or texture regions. Algorithms
of this type would suffer on ill-structured roads lacking these
distinct cues. Such roads posses neither clearly delimited
boundaries nor unique surface features, and the color and
texture of regions outside the roadway are often similar to
those in the roadway, as in Fig. 1. Rasmussen presents an
approach to handle this type of terrain wherein dominant
texture orientations in each frame vote for the location of
the road’s vanishing point [17]. This approach successfully
computes road vanishing points on loosely defined roadways
but it relies on texture artifacts left on the roadway by the
passage of other vehicles. In some terrain types, such as desert,
seasonal weather disturbances such as flash floods and wind
storms may erase these texture artifacts.

We present an adaptive, self-supervised learning algorithm
that targets this class of ill-structured roads using a reverse
optical flow technique. Our algorithm makes no assumptions
about the visual appearance of the roadway. Learning and
adaptation are achieved according to a simple premise: use
the region on which the vehicle currently lies as the definition
of the roadway, and subsequently follow regions matching
this description. The algorithm learns the most recent char-
acteristics of the road by examining the appearance of the
current vehicle location in a set of past camera images in which
the vehicle was still some distance from its current location.
Using reverse optical flow techniques, a set of templates is
assembled from these previous images, each representing the



Fig. 1. An example of typical desert terrain containing a loosely defined road.
The outline has been added by our algorithm, as described in the Methods
section.

appearance of the most recent known road (the region currently
directly in front of the vehicle) at a different distance. Template
matching in the current camera image allows road localization
without any assumptions about the visual characteristics of the
roadway. This entire process is continually repeated, resulting
in a self-supervised learning system able to adapt to changing
road conditions. The results of running this algorithm on three
sets of test videos taken from a moving vehicle traveling the
2004 DARPA Grand Challenge test course are included in the
Results section of this paper.

Just as in [15], this algorithm makes the assumption that
the vehicle is currently on the roadway in order to infer the
current characteristics of the road. This learning and control
system requires that the vehicle initially be driven at speed for
a small time period to allow the storage of past images of the
road. Any simple bootstrap algorithm or human supervision
could be used to control the vehicle during the brief required
startup period.

II. M ETHODS

There are three main components to the road following
algorithm, which are described in the following subsections.
First, a set of horizontal cross-sectional templates of the road at
various distances is found using reverse optical flow techniques
by assuming the region currently directly in front of the vehicle
is drivable road. Second, these horizontal road templates are
matched along horizontal lines at appropriate vertical heights
in the current image, providing the locations in the image
of regions that match the road’s past appearance. Third, a
dynamic programming technique is applied to the template
matching responses along each horizontal line in order to find
the globally optimal horizontal position of the road at each ver-
tical height, subject to a constraint on the maximum possible
curvature of the road. Finally, by interpolating between these
optimal template matching positions and the template widths,
road segmentation is achieved. Fig. 2 outlines the structure of
the algorithm.

Fig. 2. Algorithm overview.

A. Finding Road Templates via Reverse Optical Flow

The algorithm assumes that the vehicle is initially traveling
on the road and subsequently follows regions visually similar
to the area directly in front of the vehicle, henceforth referred
to as thedefinition region. The dark line in Fig. 4a shows
the location of a typical one-pixel-high definition region used
in our algorithm. To locate portions of the current image
resembling this definition region via template matching, we
wish to assemble a set of horizontal templates that reflect
the characteristics of the definition region at various distances
in front of the vehicle. Because perspective and illumination
effects alter the width, brightness, and texture of the definition
region at different distances, the best solution is to simply form
the templates by directly pulling the current definition region
from previous images when the region was further away.

To perform this reverse optical flow procedure, the optical
flow fields between successive images must be computed
for a sequence of frames prior to and including the current
frame. For each pair of images, a set of unique features are
found in the first image and traced to their locations in the
subsequent image, with the displacement vectors constituting
the optical flow field. In our implementation, features are
first identified using the Shi-Tomasi algorithm [18], which
selects unambiguous feature locations by finding regions in
the image containing significant spatial image gradient in two
orthogonal directions. Feature tracking is then achieved using
a pyramidal implementation of the Lucas-Kanade tracker [19].
This approach forms image pyramids consisting of filtered and
subsampled versions of the original images. The displacement
vectors between the feature locations in the two images are
found by iteratively maximizing a correlation measure over a
small window, from the coarsest level up to the original level.
The optical flow field between two consecutive images taken



Fig. 3. White lines depict an optical flow field between two consecutive
images.

(a) (b)

(c) (d)

Fig. 4. (a) Dark line shows the definition region used in our algorithm.
(b)-(d) White lines show the locations in previous frames to which reverse
optical flow has traced the definition region.

from a data set acquired in the California Mojave Desert is
shown by small lines in Fig. 3.

By dividing the optical flow field into a rectangular grid, it
is possible to subsample and compress the optical flow field by
storing only the mean displacement vector within each cell. In
this way, the optical flow fields for a large number of frames
can be easily stored and readily accessed in an array structure,
with only slight loss of accuracy. Thus, any point in the current
frame can be traced back to its origin in any prior frame
whose optical flow has been cached by a simple summation
of displacement vectors in a daisy-chain procedure.

This reverse optical flow procedure allows the location of
the definition region in previous frames to be found with
good accuracy. Sampling the traced-back definition region
in a set of frames progressively further in the past then
provides a set of horizontal templates of the definition region
at various distances. Fig. 4(b-d) show the results of the reverse
optical flow procedure applied to the definition region shown
in Fig 4a. Horizontal templates such as those located along
the white lines in Fig. 4(b-d) then serve as cross-sectional
templates used to locate the road in the current image.

B. Horizontal 1-D Template Matching

Armed with a set of horizontal templates that depict the ap-
pearance of the definition region at various distances, standard
template matching algorithms can be used to search for the
most likely position of the road at various vertical heights in
the current image. To ensure that the road in the current image
is roughly the same width as the horizontal templates, these
vertical search heights are chosen as the same vertical heights
from which the definition region templates were drawn, with
one caveat. Changes in scene topology and vehicle pitch can
drastically alter the distance of a particular cross-section of
road as a function of its vertical position in the image. To
mitigate this effect, a simple Hough transform-based horizon
detector is used to scale the vertical heights of the template
search lines according to the vertical height of the horizon in
the current image.

Because both the templates and the search space are hor-
izontal slices, templates taken from curved roads appear and
behave almost exactly as those from straight road segments.
The only effect is that horizontal templates taken from roads
with different orientation than the vehicle’s current path will
be artificially wide, as the horizontal cross-section of the
road is wider at these points. This is the same effect that
would be produced if the vehicle was undergoing moderate
amounts of roll. The template matching measure, combined
with the dynamic programming procedure described in the
next section, serves to alleviate problems caused by these
effects. In the presence of significant roll, however, problems
with the horizon detector could adversely affect the accuracy
of the algorithm.

An SSD (sum of squared differences) matching measure
is used to compute the strength of the template match along
each horizontal search line. The normalized SSD measure is
defined as follows (whereI is the image,T is the template,
{x′, y′} range over the template, and{x, y} range over the
image):

R(x, y) =∑
x′

∑
y′ [T (x′, y′) − I(x + x′, y + y′)]2

[
∑

x′
∑

y′ T (x′, y′)2 ·
∑

x′
∑

y′ I(x + x′, y + y′)2]0.5
(1)

Since the search space for each template is a single horizontal
line, and the template height is small (typically around 10-
20 pixels), this matching measure can be quickly computed.
Fig. 5a shows a visualization of the matching response for a
set of 10 horizontal templates along 10 horizontal lines in a
typical camera image (shown in Fig. 5b), with the road curving
to the left in the distance. White regions indicate a strong
match while dark regions indicate a poor match. Although
the matching is performed along only a single horizontal line,
the responses in the figure have been widened vertically for
visibility. Clearly, strong responses occur in image regions near
the center of the road. However, it is also evident that strong
responses may also occur elsewhere along each search line
if the road is not clearly distinguishable from the rest of the



(a)

(b)

Fig. 5. (a) Visualization of SSD matching response for 10 horizontal
templates. White indicates a strong response, black a weak response. (b)
Corresponding input frame.

scene, as is the case in the lower left portions of Fig. 5a and 5b,
where the shadows and lack of vegetation combine to make
some template matches to the left of the road appear attractive.
This collection of SSD matching responses can also be used
as a confidence measure. If the value of the best SSD measure
drops sharply for all of the horizontal lines in the current image
at once, it is likely that the vehicle has left the road or that the
characteristics of the road have changed drastically. Actions
could be taken at this point such as alerting a human operator
or beginning an active search for areas with the characteristics
of the road last seen.

Fig. 6 indicates the position of the maximum SSD response
along each horizontal search line with dark circles. While
several of the circles correctly locate the position of the road, it
is clear that the maximum response location is not necessarily
correct. Choosing the location of maximum response along
each line would also allow physically unrealizable estimates
of the position of the road at various distances.

C. Dynamic Programming for Road Location Optimization

The problem of finding the globally optimal set of road
location estimates while satisfying a constraint on the max-
imum curvature of the road lends itself well to the use
of dynamic programming. Dynamic programming variants
have been used in the past for both aerial [20] and ground-
based [21], [22], [23] road and lane detection. The goal of
the dynamic programming module is to determine the hori-
zontal position of each template along the horizontal search
lines, such that when taken together the positions minimize a
global cost function. The cost function used in this algorithm
is simply the arithmetic inverse of the SSD response at a

Fig. 6. Dark circles represent locations of maximum SSD response along
each horizontal search line. Light circles are the output of the dynamic
programming routine. The white region is the algorithm’s final output and
is interpolated from the dynamic programming output and template widths.

particular horizontal position along each line, summed over
all search lines. Dynamic programming is then performed
as usual: The horizontal search lines are processed from the
topmost downward, with the cost at each horizontal position
computed as the SSD cost at that particular location plus the
minimum cost within a limited window around the current
horizontal position in the search line above. The horizontal
position of this minimum cost location is also stored as a
link. The window restriction serves to enforce a constraint on
the maximum allowable curvature of the road as well as to
reduce the computation time of the optimization. Once the
bottommost search line has been processed in this manner,
the globally optimal solution is found by following the set
of stored links that point to the minimum cost position in the
search line above. The path traversed represents the center line
of the road estimate.

The output of the dynamic programming algorithm is shown
as light circles in Fig. 6. The entire road can now be segmented
by interpolating between the optimal positions determined by
dynamic programming. The white region in Fig. 6 illustrates
road segmentation by interpolation using a 4th-degree poly-
nomial fit of the dynamic programming output. The width of
the road region is linearly interpolated from the widths of the
horizontal templates.

III. RESULTS

A. Test Data

Road detection by one-dimensional template matching using
reverse optical flow worked well in a variety of test conditions.
Single frame results from three different 720 x 480 pixel video
sequences taken in the Mojave Desert are shown in Fig. 7.
Each column of Fig. 7 contains results from one of these data
sets. The first video sequence consists mainly of a straight
dirt road in a sparse desert environment and illustrates the
ability of our algorithm to correctly find the road even in
environments containing many regions visually similar to the
road surface. The second video sequence consists of a gravel
road winding up and down a rocky hill in broad daylight. The



Fig. 7. Single frame algorithm output for three Mojave Desert data sets. Each column contains results from one of the three video sequences.

third sequence consists of a curved road traversed late in the
day when shadows intermittently fall on the roadway.

The results presented here were found by 1-D template
matching of a set of 10 horizontal templates acquired using
the reverse optical flow procedure. The templates are samples
of a definition region directly ahead of, and slightly wider
than, the vehicle. They were taken from different times in the
past, ranging from 1 frame to roughly 200 frames prior to the
current frame. The particular temporal samples were chosen
to provide an evenly spaced set of templates. Each template is
20 pixels high, and the definition region and templates were
refreshed every 10 frames to accommodate gradual changes
in road appearance. Optical flow fields were measured using
a set of 3000 feature correspondences and cached into a grid
structure of 96 rectangular cells covering the entire camera
image. Interpolation of the dynamic programming output was
achieved using a 4th-degree polynomial fit.

B. Quantitative Test Metrics

To quantify the overall performance of the algorithm, we
have evaluated the results of the three 1000-frame Mojave
Desert data sets described above using two performance met-
rics. For our own comparison purposes we have also imple-
mented and tested two additional road following algorithms:
one color-based and one texture-based. The color-based algo-
rithm labels pixels with color values within a tolerance range
of a target color acquired from the definition region, as shown
in Fig. 8. The texture-based algorithm labels image regions
displaying texture similar to that of an image patch in the
definition region, as shown in Fig. 9 (texture matches above
the horizon were ignored). Both algorithms were manually

Fig. 8. White pixels represent the output of the color-based road following
algorithm

tuned to optimize correct pixel coverage. Neither comparison
algorithm performs any reverse optical flow. While these two
algorithms are somewhat elementary, they serve to illustrate
several of the advantages of the algorithm described in this pa-
per. However, since our implementations of these approaches
were naive, the fact that our algorithm quantitatively outper-
forms them is not informative. The outputs of these algorithms
are shown in our comparison videos, but are not included in the
Results section. The two performance metrics used to evaluate
our algorithm are described below.

Pixel Coverage Metric: The first metric compares pixel
overlap between the algorithm output and ground truth images
in which the road has been segmented by a human operator,
as shown in Fig. 10. The number of pixels in the frame
that have been incorrectly labeled as roadway is subtracted
from the number of correctly labeled roadway pixels. This
number is then divided by the total number of pixels labeled



Fig. 9. White pixels represent the output of the texture-based road following
algorithm

Fig. 10. Typical human-labeled ground-truth image

as road by the human operator for that frame. Using the metric
proposed here, a score of 1.0 would correspond to correctly
identifying all the road pixels as lying in the roadway, while
not labeling any pixels outside the roadway as road pixels. A
score of 0.0 would occur when the number of actual road
pixels labeled as roadway is equal to the number of non-
roadway pixels incorrectly identified as being in the road. If
more pixels were incorrectly labeled as roadway than actual
road pixels correctly identified, negative scores would result.
This measure is computed once per frame and averaged over
the entire video sequence. While this pixel coverage metric is
easily visualized and simple to compute, it must be recognized
that, due to perspective effects, it is strongly weighted towards
regions close to the vehicle.

Line Coverage Metric: The second metric alleviates the
distance-related bias by comparing pixel overlap separately
along a set of horizontal lines in the images. Specifically, five
evenly spaced horizontal lines are chosen ranging in vertical
position between the road vanishing point and the vehicle hood
in the ground-truth image. Success scores are calculated just
as in the first metric, except they are reported individually for
each of the five lines. The metric returns five sets of success
scores computed once per frame and averaged over the entire
video sequence.

C. Performance Metric Results

Fig. 11 shows the performance of the algorithm proposed
in this paper on the three different video sequences, evaluated
using the pixel coverage metric. The performance of the color
and texture algorithms is drastically lowered in all three test

Fig. 11. Pixel coverage results on the three test video sequences

sequences due to large rates of incorrectly labeled non-road
pixels. This is in keeping with the large percentage of area
outside the roadway in these videos that displays similar color
and texture characteristics to regions on the roadway.

The strengths of the proposed algorithm are best highlighted
in the first test video sequence, which consists mainly of a
straight dirt road surrounded by large non-road regions with
visual characteristics strikingly similar to that of the road.
Despite the fact that the road is only loosely defined with
respect to the surrounding regions, our algorithm is able to
correctly locate the roadway with a strong pixel coverage
metric score. Our color- and texture-based algorithms do
poorly in terrain of this sort.

The second test video sequence, which contains a gravel
road curving up a hill, presents fewer problems for all three
algorithms. The increased presence of desert vegetation out-
side the roadway helped to reduce the false positive rates of
the color and texture approaches. Curved roads with signif-
icant elevation changes do not seem to adversely affect our
algorithm, as compared to the straight road found in the first
test sequence.

The addition of intermittent shadows as found in the third
test sequence does slightly affect the performance of our
algorithm. This effect has an intuitive explanation and is
discussed in the following section. It is interesting to note the
degree to which the added presence of shadows hinders each
algorithm relative to its performance in the similar, shadow-
free, environment of the second video.

Fig. 12 shows the performance of the algorithm on the same
three data sets, now evaluated using the line coverage metric.
Metric scores are graphed for a set of five evaluation lines in-
creasingly distant from the vehicle. As could be expected, the
performance of the algorithm generally declines as the distance
from the vehicle increases. The proposed algorithm achieves
very low false positive rates by making no assumptions about
the general appearance of the road and following regions that
adhere to its learned roadway information. The inability of our
algorithm to achieve high rates of correct roadway labeling
near the horizon is at least in part due to the fact that optical
flow records are only stored for a fixed number of frames in
the past. Therefore the definition region can never be traced
back all the way to the horizon.

Videos of the three 1000-frame test sets, showing the
results of tracking with the proposed algorithm as well
as the simple color and texture algorithms, are available
at http://www.visiondemo.net/roadfollowing/. The algorithm
runs at 3Hz on a 3.2GHz PC at 720 x 480 pixel resolution.



Fig. 12. Pixel coverage results are shown at different distances from the
front of the vehicle towards the horizon for the three video sequences.

D. Assumptions and Limitations

The road following algorithm described here performs well
in the types of environments depicted in the three Mojave
data sets. The algorithm has been designed to follow typical
desert roads, though, and therefore some limiting assumptions
have been made. The main concept of the algorithm is to
locate the road in front of the vehicle by searching for
regions similar in appearance to what the road was known
to look like in the (not too distant) past. As a result, we
are forced to assume that the general appearance of the road
surface will not change instantaneously. While this is usually
a fairly safe assumption, we see from the third data set that
intermittent shadows or other lighting variations violate this
assumption and adversely affect the algorithm’s performance.
Fig. 7 illustrates two instances of this assumption breaking
down. The top left panel shows the algorithm attempting to

avoid a portion of the road containing tire ruts left in the mud
by another vehicle. In the bottom right panel, the algorithm is
biased toward the right side of the road due to the presence of
shadows on the left. It is interesting to note, though, that the
shadows themselves do not create this bias, as the algorithm
has no difficulties on other portions of the shadow-filled test
video. The effect is entirely dependent on the presence or lack
of shadows in the set of horizontal templates. The templates
in use in the bottom right panel happened to be chosen along
lines predominantly free of shadow.

In this implementation, we have also chosen the width of the
definition region to be fixed at slightly larger than the width
of the vehicle without regard to the road’s actual width. This
is consistent with the roads found in our data sets, but had
the width of the road been different or had the road gradually
changed width along the way, the algorithm would have had
no way of compensating. Similarly, the particular prior frames
from which the templates are drawn have been hard-coded,
therefore fluctuations in vehicle speed affect the range of the
road prediction. When the vehicle slows down, the furthest
template moves closer to the vehicle and the segmented road
shortens; when the vehicle speeds up, the templates extend
farther from the vehicle and the segmented road effectively
lengthens. These frame choices could be automatically tuned
to current vehicle speed, though no such approach has been
implemented in the algorithm presented here.

Another critical requirement of the algorithm is its ability to
find and track image features in the video sequence. Knowl-
edge of the road’s appearance relies entirely on the ability
of the reverse optical flow procedure to accurately locate the
definition region in past images. Low contrast image sequences
resulting from poor lighting or camera saturation typically
lack sufficiently unique image features. Also, regions lacking
physical texture, such as smooth, homogeneous desert ground,
also present problems for feature identification and tracking.
On reasonably planar terrain, though, the optical flow field
in these smooth regions can be interpolated from surrounding
feature-rich regions. The number of features tracked per frame
is proportional (though with diminishing returns) to algorithm
performance, as a better estimate of each frame’s optical flow
is achieved from a larger sample of flow vectors.

IV. CONCLUSION

We have proposed an adaptive, self-supervised learning
algorithm for the detection of unstructured desert roads from
a vehicle-mounted camera that relies on no assumptions about
particular characteristics of the roadway. The region directly in
front of the vehicle is assumed to lie in the roadway, and this
region is then identified in a set of past camera images using
a reverse optical flow routine. A set of horizontal templates
are assembled from the location of this region in the past
images, which are then matched, at similar vertical heights,
along horizontal lines in the current image. The SSD match
responses are then fed into a dynamic programming routine
that determines the globally optimal estimate of the location
of the road at these different heights in the image, given



the physical constraints on the possible radius of curvature
of the road. Interpolation between the output positions of
the dynamic programming routine provides the centerline of
the road estimate, and interpolation between the horizontal
template widths determines the segmented road width.

The algorithm was tested on three video sequences con-
taining varying desert road conditions. Two separate metrics
were used to gauge the success of the proposed algorithm, as
compared to human-labeled ground-truth. The algorithm has
been shown to perform well in the challenging environments
for which it was devised.
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