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Abstract— This paper addresses the problem of resource allo- measurements from the robots’ odometry sensors can be
cation in formations of mobile robots localizing as a group. Each processed locally by each robot to propagate its own pose
robot receives measurements from various sensors that proved octimates. However, every time an exteroceptive measuteme

relative (robot-to-robot) and absolute positioning information. . . . .
Constraints on the sensors’ bandwidth, as well as communication is received by any of the robots in the formatial, robots

and processing requirements, limit the number of measurements MUst communicate their current pose estimates. Additignal

that are available or can be processed at each time step. Thethe measuring robot must transmit its new measurement in
localization uncertainty of the group, determined by the covari- order for the EKF update to be performed. Therefore, every
ance matrix of the equivalent continuous-time system at steady exteroceptive measurement that is processed incurs atpenal
state, is expressed as a function of the sensor measurements: . .
frequencies. The trace of the submatrix corresponding to the In tgrms of usg of both bandwidth and C_:PU time. In a

position estimates is selected as the optimization criterion, under r€alistic scenario, the robots of a team will need to allo-

linear constraints on the measuring frequency of each sensor and cate computational and communication resources to mission
the cumulative rate of EKF updates. This formulation leads to a  gpecific tasks and this may force them to reduce the number
convex optimization problem whose solution provides the sensing of measurements they process for localization purposes. Th

frequencies, for each sensor on every robot, required in order limitati th ilabl ources mav thus prohibi th
to maximize the positioning accuracy for the group. Simulation imitations on the available resou y thus proni

experiments are presented that demonstrate the applicability robots from transmitting and processing all measurements
of this method and provide insight into the properties of the available at every time instant.
resource-constrained cooperative localization problem. It is clear that whether or not an exteroceptive measurement
should be processed in an EKF update, is determined by a
tradeoff between the value of the localization informatibn
A large number of applications require robots to movearries, and the cost of processing it. In this paper, wemssu
in a coordinated fashion, in order to accomplish a certaihat the robots process each of the available measurements a
task (e.g., object moving [1], surveillance [2], platoanifor a constant frequency, and we seek the optimal measurement
efficient transportation systems [3], [4], formation flyifls], frequencies, in order to attain the highest possible mosity
and spacecraft formations [6]). In particular, the casefiictv accuracy. The key element in our analysis is the derivation
the members of a robotic team maintain constant relatigé an equivalent continuous-time system moftel the robot
positions as they traverse the space, offers certain aalyest team, whose noise parameters are functionally relatedeo th
such as simplified motion control, collision avoidance, #m& frequency of the measurements. This enables us to expess th
ability to collectively manipulate objects in the enviroent. covariance matrix of the pose errors aguactional relation
Due to the increased versatility robot formations providef the frequencies, and thus to formulate the problem of
they have recently attracted significant interest in the itaobdetermining the optimal sensing strategy as an optimizatio
robotics community. problem. An important result that we prove is that this
In this paper, we address the problenCufoperative Local- problem is aconvex optimization problerand therefore it is
ization (CL) in robot formations. Clearly, in order for a multi- possible to find a globally optimal solution, using very eéfit
robot team to perform any meaningful task, it must have atgorithms. Before presenting the problem formulationthia
estimate of the positions of its members with respect to sorfidlowing section we outline relevant approaches that appe
coordinate frame of interest. Several estimation tectesquin the literature.
have been applied to the CL problem, such as Extended
Kalman Filtering (EKF) [7], Least Squares Estimation [8],
Particle Filtering [9], etc. In this work, we employ an EKF In [10], [11], [8], localization algorithms for recovering
approach, similar to the one presented in [7]. The reason tbe relative poses between the robots in a formation, using
this is that the EKF encompasses a well-studied mechanismmnidirectional cameras as the primary sensors, are tescri
the Riccati equation, for propagating the covariance matThe authors propose suboptimal estimation algorithms for
of the pose estimates through time, thus providing us withaghieving efficient implementations. These are derived by
theoretically sound localization accuracy metric. either having each robot localize using only relative posit
Roumeliotis and Bekey [7] have shown that proprioceptivmeasurements to a “leader” robot in the team, or by de-
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coupling the problems of orientation and position estiorati we are interested in theteady statestimation accuracy.
Both algorithms are compared to a centralized least-squareA different formulation of the scheduling problem has been
estimation algorithm, that uses all the available measentsn presented in [16], [18]. In this work, the timing of each
In presenting these methods, the trade-offs that existdmiw measurement is modeled by a random variable with a known
localization accuracy and the overhead for communicatipgobability density function (pdf). An upper bound on tie
and processing relative position measurements are pamnied pected steady state covarianokthe target's position estimate
by the authors. However, no analysis is conducted to revéslthen computed as a function of the pdf’s parameters. By
the effect of varying the available resources, and no optimemploying a numerical optimization routine it is possibte t
sensing strategies are proposed. minimize this upper bound, and the resulting pdf is used as th
The impact of the geometry of atatic robot formation optimal sensing strategy. Despite its mathematical elegan
on the accuracy of pose estimation is studied in the work tifis approach only aims at optimizing an upper bound. Since
Zhang et al. [12]. The authors consider formations of robot® means of determining the looseness of the bound are
that receive absolute position measurements, as wella@s/ee| available, we cannot have any guarantee of optimality, or a
measurements (i.e., relative range, bearing, or ori@mpatin measure of suboptimality, when this method is used.
order for the formation to be localizable, a necessary ¢wrdi  Our work differs from the aforementioned approaches, in
on the number of measurements of each type is derived.ti#at we consider a team of robots timabvewhile maintaining
study of the structure of the measurement equations shatwsir formation, and localize in a global coordinate fraffiee
that the information matrix corresponding to the extertiwep steady-state covariance matrix of the robots’ localizaisoex-
measurements is a function of the relative positions of the mpressed as a function of the frequencies of all the extetiveep
bots, and a gradient-based optimization technigue is graglo measurements, and we seek to select the optimal frequencies
to determine local maxima of the trace of this matrix. Howevein order to attain the best possible positioning accuracy fo
due to the non-concavity of the objective function, thestele the team. The constraints imposed by the available congutin
optimization method does not guarantee global optimality and communication resources are taken into account, and
the solution. Furthermore, these results cannot be extietide their effects on the accuracy of the attainable localiratioe
the practical case ahovingrobots. examined.
In [13], a robot team comprised of one master and two slave
robots is studied and portable landmarks-basechnique is
adopted, i.e., at each time instant at least one robot ramainWe consider a team aN robots that move in formation,
stationary. The robots move along a straight-line path aedhploying a suitable control strategy in order to maintain a
record measurements of their relative positions at everdgnstant heading and constant relative positions among.the
spaced intermediate points. The authors propose a methodTbe spatial configuration of the robots is assumed to be given
determining the optimal relative positions between theoteb defined, for example, by the application at hand. All robots a
and identify three configurations that yield the maximuraquipped with proprioceptive sensors (such as wheel engpde
possible localization accuracy at the end of the path. Weat measure their translational and rotational velozitie
note, however, that neither of the aforementioned appemclevery time step. Additionally, some (or all) of the robots
addresses the effects of the number and type of measuremangsequipped with exteroceptive sensors that enable them to
recorded by the robots on localization accuracy. Additigna measure: (i) relative distance between two robots, (igtiet
the constraints imposed by the available computational ahdaring between two robots, (iii) absolute position of aotob
communication resources are not taken into consideration.and (iv) absolute orientation of a robot. The measurements
Our work is more closely related to work in the Sensaieceived from all the sensors are processed using an Extende
Networks community, that aims at determining the optimaalman Filter (EKF), in order to estimate the pose of the
scheduling of measurements, in order to attain the best posbots with respect to global frame of reference.
sible localization of a target. Representative examplethisf ~ Clearly, due to cost, reliability, or other design consider
line of research can be found in [14], [15], [16], while a dami tions, it may not be desirable for all robots to be equippeth wi
analysis, in the context of designing observers for dynamiddentical sensors. This potential heterogeneity of thentéa
systems, is presented in [17]. The defining assumption in altorporated naturally in our approach, under the restrict
these cases is thaffiaite number of measurements is availabl¢hat at least onerobot has access, at least intermittently,
during a certain time interval. This problem amounts tt absolute position information, such as that provided by
determining the optimal measurement ordering (schedyling GPS or from observing previously mapped features. This
so as to maximize the achieved localization accuracy. Foonstraint is imposed because our goal is to minimize the
this problem, tree-search algorithms (e.g., [16]), as wasll steady-statdocalization uncertainty of the robots in a global
optimization methods in the continuous domain (e.g., [17¢oordinate frame. It is well known [19], that when no abselut
have been proposed. This approach to the problem of findipgsition information is available to a robot team, the syste
an optimal measurement strategy is in contrast to the oneobservable, and at steady state, the uncertainty of twso
employed in our work, since we here assume thatfthe continuously increases. The assumption for the avaitgllfi
guenciesof the measurements are the design variables, aaldsolute positioning information could be raised if we &udd
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a scenario in which onlyelative localization was sought. The state vector for the entire robot team is defined as the
For that case, relative range and bearing measurementsl w@iV x 1 vector comprising of the posek; of all the robots.
(under certain conditions) be sufficient, in order to attain Therefore, the covariance propagation equation for thetrob
bounded steady-state error covariance, and our approadd wdormation is

be applicable. T

P = oP, P 6

We now present the system and measurement models used kt1lk r® +Q ©)

for pose estimation. where Py, = Diag(P;,,), ® = Diag(®,), and Q =
Diag(G,Q;GY) are3N x 3N block diagonal matrices.

A. Propagation

Consider N non-holonomic robots moving in 2D. The
discrete-time kinematic equations for thwh robot are:

B. Update

The robots of the team employ the measurements recorded
by their exteroceptive sensors, in order to perform pose

Ti(k+1) = x;(k) + Vi(k)t cos(¢p;(k)) (1) updates in the EKF. Our method is applicable to any exterocep

yilk+1) = yi(k) + Vi(k)ot sin(e; (k) (2) tive measurement model, but for simplicity, we here conside
5 ) the following four types of exteroceptive measurements:

$ik+1) = i(k) twi(k)ot, i=1...N ®) 1) Relative range measurementgrobot i is equipped with

where V; (k) andw; (k) denote the translational and rotationaf S€NSor capable of measuring the distance of other robthts wi
velocity of thei-th robot at time steg, respectively, andt is  "€SPect to itself, such as a laser scanner, then the distance
the odometry sampling period. In the Kalman filter frameworkn€asurement between robaetandj is

the position estimates of roboare propagated using the mea- o \/ 9 2

surements of the robot’s translational and rotational ciglp Zpiy (B) =/ Big (07 + Ag (0)7 + i ()

Vi, (k) @andw,y,, (k), respectively. By linearizing Egs. (1) - (3)whereAz;; = z; — x;, Ay;; = y; — yi, andn,,; is a white,

the error propagation equation for the robot’s pose is hgadzero-mean, Gaussian noise process, whose standard deyiati
derived: 0,,, is determined by the characteristics of the sensor. By

linearizing, the measurement error equation is derived:

%iwwc 1 0 —Vp,(k)ot Sin(fz)i(k)) '?jtik\k ~ ~
Yieyyw | = | 0 1 Vi, (k)0t cos(pi(k)) Yigp Zpy (k) = Hpy ()X (k) + 1y, ()
¢ik+1|k 0 O 1 ¢ik|k = [ 0 . HP'L . Hﬁj . 0 ] X —‘rnpij
ot cos((éi(k)) 0 wy (k) where H,, (k) is al x 3N matrix, whosei-th andj-th block
+ | Otsin(gi(k)) O [ w ’ k) ] elements are, respectively:
0 ot . oo B
N Hy k) = —Hy() = | Srat 2w g |
S X = QX + Gik)Wik) 4) B g

H‘n the preceding expressiorﬁ?rij(k), A\yij(k) and p;; (k)
represent the estimated differences in thendy coordinates,
and the estimated distance between robotd j, respec-
tively. Clearly, the matrixH, (k) is time-varying, due to its
ependence on the position estimates for the robots. Howeve

wherewy, (k) andw,, (k) are white, zero-mean, Gaussian an

uncorrelated noise sequences of variangeando?, affecting

the linear and rotational velocity measurements, resgygti
At this point, we note that since the robot team moves in

predefined formation, all robots are required to head tosvar . : . .
the same direction, and with the same velocity, both of whic replacing the estimates with the values correspondinigeto

are known constants. Assuming that a motion controlleréslus esired formation of the robots (denoted with the subsejipt

in order to minimize the deviations from the desired formai we can make the following approximations:
and that the accuracy of the velocity measurements and  H, (k) [ P T 0} — H,
orientation estimates is sufficiently high, we can replduoe t Pideo Pide ’

. ~ . . Az;j Ay
quantlyesti (k), Wi, (k), qndq&i(k) in the above expressions Hpy (k) =~ [ S P 0 } = H,,
by their respective predgflned valués, w, and¢,, and thus Using these relations, an approximatenstantvalue for the
employ the approximation®; (k) = ®, and Gi(k) =~ Go,  measurement matris,, ~ H,, can be derived.

inac: ido
where®, and G, are theconstanimatrices: For practical reasons, it may not be possible for all robots

1

1 0 —V,dtsin(g,) dtcos(¢,) 0O to measure relative distances to all other robots in the team
®,=|0 1 Vytcos(¢,) |, Go=| tsin(¢,) 0 For example, some robots may not be equipped with range
0 0 1 0 ot sensors, or certain measurements may be impossible due to

occlusions in the formation. In order to describe the setllof a
possible measurements we define the set

HP = {Hpij

With this approximation, the state error covariance pragiag
equation for the-th robot can be written as

07+ G,Q,GT (5)

robot 4 can measure range to robot j}

Pik+1\k+1 = (I)Opik+1\ . . : —
1To make the notation less cumbersome, in the following dedwuatithe

where@; = diag(a%,i , Ugi). time step indices are omitted wherever this does not causeisiont



2) Relative bearing measuremen#ssuming robot mea- wheren,, (k) is a 2 x 1 white, zero-mean, Gaussian noise
sures the relative bearing of robgt the corresponding mea-process, with covariance matrik,,. The measurement error

surement equation is: equation for this type of measurement is
2, (k) = Atan2(Ay;;(k), Axij(k)) — di(k) + ng,, (k) 2y, (k) = Hp, X (k) + ny, (k)
whereny, . (k) is a white, zero-mean, Gaussian noise process, _ | O2xs - 2xz O2x1] - O2x3 )}Jrnpi
with standard deviationy, . Linearization yields the following ith block '
measurement error equation: whereH,,, is a2 x 3N matrix, I>«» denotes the x 2 identity
Zo, (k) = Heij(k))?(k) + ng,, (k) matrix, ando0,,,x,, IS am x n matrix of zeros.

In order to describe all possible absolute position measure
ments we define the set

HP = {H i
where we have once again approximated the time-varyin . ) )
position estimates with their constant, desired valuesteNGC The Riccati recursion
that Hy,, is a1l x 3N matrix, whosei-th and j-th block All exteroceptive measurements recorded by the robots at

~ Hp,, X(k)+ ng, k)

= [0 . H Hp, .. 0]X+ng,

io

robot ¢ can measure abs. position}

elements are, respectively: each time instant are processed by the EKF, in order to update
< _ the robots’ pose estimates. The covariance update equattion
Hy, = { Sbiue ZSTiue ] the EKF is
- Pijo Pijo
Hy;, = { Ry, Eew ] Prstjert = P = ProapHi S HiPry (7)
’ Pigo Pigo whereS;, = HkPkH‘kH{ + Ry. In these equationdl, is

Similarly to the case of relative range measurements, e measurement matrix for the system at time étegndR,
describe all possible bearing measurements with the set is the corresponding measurement-noise covariance matrix
Hy = {H It is clear that since at each time instant a different set
0 Oi of measurements is recordeH, and R, will not remain
3) Absolute orientation measuremenBecause in the EKF constant, and will possibly vary even in size at each timp.ste
framework, the pose propagation equations are lineariz8gecifically, if at time steg a total of m; measurements are
around the current orientation estimates for each robot (performed,H; will comprise of m;, block rows belonging in
Eq. (4)), it is necessary to guarantee sufficiently smal otihe seti = H,|J Ho U Hs U Hp, andR, will be a diagonal
entation errors for all robots. If the errors in the robotgnatrix whose elements can be defined accordingly.
orientation are allowed to grow unbounded, the lineamzati Combining Egs. (6) and (7) yields the Riccati recursion
will unavoidably fail, and the EKF estimates will diverge 1 T
Therefore, it is reasonable to equip robots with absolufer-+2lk+1 =® (Pryre = P HE S HiPrpape) 7 +Q
orientation sensors, such as, for example a compass. Th&t describes the discrete-time evolution of the covasan
measurement equation for tigh robot is of the pose estimates for the robot team. If the system is
2o 6) = dilk) + ns, () tohbservablg then aftgr uqdergoing an initial, transierdasgh .
e covariance matrix will enter a steady state, where its
wherengy, is a white, zero-mean, Gaussian noise process, wiglements will fluctuate around some mean value (cf. Fig. 1).
standard deviatiow,,. The measurement error equation is: Had we been able to provide a description of this mean
value as a function of the measurement frequencies, then

robot i can measure bearing of robot j}

Zouk) = Hp X(k)+ ng, (k) we would have a means of directly relating the localization
_ [0 . o011 .0 Ky + s, (0 performance of the system to these frequencies. However,
ith block ' there exist no analytical tools for describing the mean evalu
All possible absolute orientation measurements are dessitri Of @ Riccati recursion with time-varying coefficients. Tdveo
by the set this problem, we propose a transition from the discretetim
system model to a continuous-time one, as described in the
Hg = {¢:| robot ¢ can measure abs. orientation} following section.
4) Absolute position measurements:this work, the robots IV. THE RICCATI DIFFERENTIAL EQUATION

localize with r tt lobal rdinate frame. Thersf o . : .
ocalize espect to a global coordinate frame. Thewsfo In [20], it is shown that given a discrete-time system

in order for the position errors to remain bounded for allegn del. anequivalentcontinuous-time svstem model can be
it is necessary that at least one of the robots has accesd"e" q : . y .
Hved. Equivalence is established based on the requiteme

absolute position measurements. The measurement equ I . ; . .
for the i-th robot is at at the state estimates’ accuracy in both systems is the

. same. In particular, it is shown that if state observations
Zp, (k) = [ zi(k)  yi(k) } + np, (k) whose covariance iR; are performed at frequency in



0.012

the discrete-time description, then the equivalent coiotirs- — Thevae
time measurements’ covariance functionfi$n.(t)n.(7)} = = F---- TR i il i i
R.6(t — 1), wheren.(-) is the white Gaussian noise process,
§(-) denotes the Dirac delta function, afti = f~'R,. The

intuition behind the scaling of the covariance matrix isttita 0.008"
ensures a constant information influx to the continuougtim

system, for any value of the sampling frequency. By a similar

0.006 -

Covariance (mz)

argument, we can derive the appropriate value of the system-¢ | | gV
noise covariance matrix. 0004 |- - v

We now employ the idea of deriving an equivalent C o el ) A
continuous-time system, in order to formulatd.iaear Time 0002}

Invariant (LT1) system model for the robot team. Specifically,
since each of the measurements in the Hebccurs at a
constant frequency (generally different for each measargmn
we can formulate a continuous-time system model, wiadire
the measurements occur continuously, and the covariancerigf 1. True covariance vs. theoretical values. The diagelements of the
each measurement is scaled by the inverse of its frequamcy_cqvariance matrix corresponding to the position of the 3 t®laoe plotted.
the continuous time system model, the measurement matrix

H_ will be a constantmatrix comprising of all the block rows dd its eigend . B ~1 Wit
in the set’{. The covariance matrix of the measurementg&nd denote its eigen ecompositionldy; = UAU™. Wit

R., will be a diagonal matrix, with elements the weighte&his definition, the steady state solution of Eq. (8) is edaal

covariances of the discrete-time measurements. For eeampl P, = Uy Uy} (10)
if robot i receives absolute orientation measurements at a rate
of f4,, then the continuous-time covariance corresponding téhere Uy, and Uy, are 3N x 3N matrices, defined by the

. . . . . . . . . )
0 50 100 150 200 250 300 350 400 450 500
Time (sec)

this measurement is partitioningU = [ U, |, 4,5 =1, 2.
o2 1 The preceding analysis shows that it is indeed possible to
_ 2 _ "¢ _ . .
Ry, = O, = Fa = fo Ry, express the steady-state covariance of the pose estinmates f

he Ri - ol . the robots of the formation as a function of the measure-
We can now use the Riccati differential equation in ordefeny frequencies. To be more precise, the covariance matrix
to describe the time evolution of the covariance of the m’bortomputed in Eq. (10) is the steady-state covariance of the
pose estimates. We note that the state transition matrix {Qf, jivalent continuous-time system, whose parametersndepe

the system in continuous time is equal o = Diag(£s), on the measurement frequencies. In Fig. 1, we present the

while the matrix describing the influx of uncertaintyTin th&ime evolution of the diagonal elements of the covariance
continuous time system is equal @. = Diag(Go.Qi.Go,):  matrix for the actual discrete-time system (solid lines) and

with compare them to the theoretically computed values (dashed
0 0 —V,sin(¢,) cos(¢o) 0 lines) from Eq. (10). For these simulations, a team of 3
Fo=10 0 Vocos(¢o) |, Go. = | sin(¢g,) 0 robots, that have access to all four types of exteroceptive
0 0 0 0 1 measurements, discussed in Section I1I-B, was consid@hes.

and Q;, = f,, diag(c?,,02). In this last expressionf,, relative positions, as well as the measurement frequeraies
denotes the rate at which robotsamples its proprioceptive all robots were selected randomly.
sensors. Using the previous relations, the Riccati difféaé It becomes clear that, at steady state, the actual valuée of t
equation is written as covariance fluctuate around the theoretically predictddesm
. T Thus, we can employ the continuous-time analysis in order
P@ = FPu+POF:. +Q.-POCP®H (8) to study the properties of the localization accuracy in the
where we have define@ = H’R_'H,. It is important to formation.
point out that inR_ !, the frequencies of all measurements
appear in the numerator of fractions on the diagonal. Theeef V. MEASUREMENTFREQUENCY OPTIMIZATION
the elements o€ arelinear combination®f the measurement In this section, we formulate the problem of determining
frequencies. The importance of this observation will beeomhe optimal measurement frequencies as a convex optimizati
apparent shortly. problem. Our goal is to find the optimal frequencies for all
We note that the Riccati differential equation in Eq. (8) iavailable measurements, i.e., those frequencies thahtiin
a constant coefficiendifferential equation, and its steady statgéhe best possible localization results, under given cairgs.
solution can be found in closed form [21]. Specifically, W€learly, in order to improve the localization accuracy of
define the Hamiltonian matrix the formation, the steady state covariance matrix should be
M, — FT -C 9 minimized. However,P,, is a 3N x 3N matrix, and sev-
H=1 _Q. -F. ©) eral criteria of optimality can be defined based on it (e.g.,



determinant, maximum eigenvalue, trace). A difficulty thgtroperties of this problem. For the results shown here, & tea
arises is that while the elements BX,; that correspond to of 4 robots, that move dt, = 0.5m/sec in a diamond-shaped
the position estimates of the robots have unitsnof, the formation comprising of two adjacent equilateral triarsgtef
elements that correspond to orientation have units@f. side 1m, is considered (cf. Fig 2(a)). The robots are eqaippe
Clearly, we cannot treat these two types of elements equalljith sensors of equal accuracy. Specifically, the standard
One approach would be to introduce a weight ma¥wx and deviation of the noise in the linear velocity measurements
try to minimize a function of the weighted matfWP,,W7”. is equal tooy, = 0.05V,, while for the rotational velocity
However, any selection oW would be ad-hoc and thus it is o, = 5 - 10 2rad/sec. These values are consistent
difficult to motivate. We have therefore chosen to focus onlyith the accuracy of the wheel encoders of Pioneer 1 ro-
on the diagonal elements B, that correspond to the positionbots, that we have determined experimentally. The standard
estimates of the robots, while making sure that the origmtat deviation of the absolute position measurements is equal to
uncertainty of each robot does not exceed a threshiplthis ogps = .25m along each axis, the standard deviation of the
is necessary, in order to guarantee small linearizatioorgyr absolute orientation measurementssjs= 2°, while for the

We thus formulate the following optimization problem: relative measurements between the robots we have selected
3N o, = 0.06m, andog = 3°. The maximum frequency for
minimize Z P..(i,i) + c(Py,) each measuring sensor i_s setﬁ;_r)naleHz, j=1...4. The
Py threshold on the orientation variance for the robets, was
1#3n,n€IN H . - .
. . selected to guarantee an orientation error standard dmviat
subject to 0<fi < fimasfor j=1...M (11) smaller tharge.

receive all types of measurements. The results of the apdimi
tion procedure, when the frequency at which measurements
where f; are the frequencies of th&/ available exteroceptive can be processed for the entire teanyig.;=2Hz, are shown
measurements, andP;) is a penalty term that is negligiblein Table I. In the relative measurements’ part of the taliie, t
whenever the orientation uncertainty of all robots is serall j-th entry in the row corresponding to robotR;), describes
than ¢4, but becomes dominant when the threshold is exe frequency of the measurement performed by rohot
ceeded. In our implementation, we have selected the functigbserving robotj. We note that approximately 65% of the
N p (34, 3i) 100 me_as_uremen_ts processed are ab_solute position measusement
c(Pgs) :Z (“’) (12) It is interesting that at the optimal solutiomo absolute
i=1 €¢ orientation measurements are recorded. This implies that the

The linear constraints on the measurement frequenciessxpfcorrelations that exist between the position and oriemati
the facts that: (i) each sensor has a maximum sampling rtgtimates of the robots suffice in order to provide suffityent
that cannot be exceeded, and (ii) the total frequency of tRECUrate orientation estimates (i.e., variance smalien &)
determined by the available resources. We note that mdl@t & general result. For example, if we double the standard
general constraints can be incorporated in this formulaor deviationo,, of the rotational velocity noise, the results of the
costs associated with them, and this can be easily takdf§ note that in this case, absolute orientation measurement

into consideration, by introducing weights for each of thef'® processed by the robots.
frequencies. In order to show the applicability of our approach to a

In [22], it is shown that the steady-state solution of thBeterogeneous robot team, we consider the case in which
Riccati equation in Eq. (8) is aonvexfunction of the matrix ©ONly one robot is equipped with a GPS receivé; ). This
C. Because the elements & are linear functions of the iS & realistic scenario, as cost considerations may rerider i
measurement frequencies, we conclude Rat is a convex impractical to equip all robots with such a device. In Table |
function of the measurement frequenciés a result, the We show the optimization results obtained for this scenario
optimization problem (11) is a convex one (the objective /e notice that in this case the GPS receiver is fully utilized
the sum of convex functions, and the constraints are lineakfcps, =1Hz), since the positioning information it provides is
This is a very important property, because it implies that tfnore important than this provided by the rest of the avagiabl
problem does not have local minima, and we can empl&jeasurements. It is also worth noting that in this case, as in
standard, and very efficient, optimization algorithms ftw i @ll previous ones, none of the range measurements’ freguenc
solution. Convexity guarantees that a global optimum of tHe Z€ro.

M In the first set of experiments, we assume that all robots can
Z fj < ftotal
j=1

objective function will be found [23]. In Fig. 2(b), the optimal value of the cost function is
plotted as a function of the total frequency of measurements
VI. OPTIMIZATION RESULTS (frota1=2..32Hz) for all robots in the team. We clearly observe

This section presents simulation results that demonstratéaw of diminishing return: there is a sharp improvement in
the application of our method and provide insight into thperformance by increasing the total number of measurements
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per time step performed by the robots, when this number is

35 o 2 4 6 8
Formation size (m)

(©

[ m R’ R Ri |
small, but the gain is lower as the number of measurements l [ Absolute position measurements
increases further. Since the necessary communication and | [03273 0.3260 0.0247 06728
computational resources increase linearly with the nunaber | [ Absolute orientation measurements
measurements performed by the robots, it becomes clear that [ [ © 0 0 0 ]
unless resources are abundant, it is not beneficial for thetso [ I Relative range measurements
to process a very large number of measurements. [Ri [ X 0.0128 0.0223  0.0109

In order to study the importance of processing each of [ R2 00132 X 0.0390  0.0501]
the available types of measurements with varying formation [Rs [[ 00318 00148 x  0.0240]
size, in Fig. 2(c) we plot the total frequency of measurement [ R4 [ 0.0481 00093 00175 x |
assigned to each of the four possible measurement types, as l [ Relative bearing measurements
a function of the length of the closest distance between any [F ]l x 00159 0  0.0803
two robots in the formation. We observe that as the robots [ B [ 00159 x 0 0.0809 ]

T . [Rs ]] 0.0808 0.0805 x 0 |
get farther from each other, the positioning informatiotuea
of the relative bearing measurements diminishes, and these (] O 0 0 x_ ]
TABLE |

measurements’ frequencies are equal to zero at the optimal
solutions for large formation sizes. To replace the origoa
information that is lost when no bearing measurements are
processed, we note that the frequency of the orientation
measurements increases.

OPTIMAL MEASUREMENTFREQUENCIES(0,).-

As a closing remark, we note that the parameters affecting LI & fz B |
X . Co [ [[ Absolute position measurements
the selection of optimal measurement frequencies inclbde t | [ 02644 02629 5 0.5800
number of robots, the size and configuration of the formation l [ Absolute orientation measurements
in space, the robots’ velocity, the accuracy of all avagabl l [ 0.0656 0.0646 00323 0.126p
sensors, the type and number of available measurements and l I Relative range measurements
the maximum frequency of each sensor. Therefore, it is not (R [ x 00091 0.0107 0.0271
possible, in the limited space of this paper, to demonstrae R, || 0.0143 < 0.0181 _ 0.0330]
effects of all the aforementioned parameters. The predente [Rs [[ 0.0357 0.0283 x 0.0224]
results are only representative. [[R4 [ 0.0272  0.0220 0.0112 x|
Relative bearing measurements
VIl. CONCLUSIONS } = H = 50130 5 0.0799
In this paper we present a new approach to the resource- (R | 00122 x 0 0.0801 |
constrained localization problem for formations of mobile [Rs || 00798 0.0791  x 0|
robots. We consider heterogeneous groups of robots edgliippe [Ra ][ O 0 0 X ]
with sensors that can provide relative and absolute posgitip TABLE Il

information at device-specific maximum frequencies. Updat
ing the robots’ position estimates requires certain measur
ments to be processed by an Extended Kalman Filter (EKF)

OPTIMAL MEASUREMENTFREQUENCIES(20,).

(a) Robot formation and motion direction. (b) Cost fimw vs. Total frequency of measurements. (c) Frequency dfi @easurement type vs.
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