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Abstract—In this paper, we study the following motion co- of the class of coordination algorithms remains unclearaAs
ordination problem: given n vehicles andn origin-destination  consequence, it is difficult to characterize the true effeoess
pairs in the plane, what is the minimum time needed to transfer of the algorithms available in the literature, especiallyen

each vehicle from its origin to its destination, avoiding conflicts . . . .
with other vehicles? The environment is free of obstacles and a th€ Problem involves a very large input size for which an

conflict occurs when distance between any two vehicles is smallerOptimal solution cannot be practically computed.
than a velocity-dependent safety distance. In the case wheregh ~ The aim of this research is to make a contribution in

origin and destination points can be chosen arbitrarily, we show this direction; namely, to provide (i) a characterizatioh o
that the transfer takes ©(y/nl) time to complete, whereL is tha minimum time needed to solve certain classes of motion

the average distance between the origin and destination points. S - . .
We also analyze the case in which origin and destination points coordination problems, and (ii) algorithms for confliceér

are generated randomly according to a uniform distribution, ~Mmotion coordination, with an asymptotic analysis {as- oo,
and present an algorithm providing a constructive upper bound wheren is the number of vehicles) of their time complexity.

on the time needed to transfer vehicles from origins to their \We note that the expressidime complexityis used here to
corresponding destination, proving that the transfer takesO(v1)  genote the time needed to complete a given task bynall
time for this case. vehicles, and not necessarily tladgorithmic complexity of
the presented algorithm.
This work draws largely upon results from two different
Problems involving the safe coordinated motion of severiformation technology (IT) fields: those of wireless commu
mobile agents in a shared environment are ubiquitous, apeations and distributed computing. Perhaps surprigjrige
pearing in many safety-critical application domains, sash insight gained through the analysis of wireless networks an
surface transportation, air traffic control, and factoryof® mesh routing, and many of the results, can be used to yield
Ground and air traffic involve ever growing numbers ofiovel findings in terms of the time complexity of a class of
individual agents; the ability of human controllers to redu motion coordination problem. In that sense, this resealsth a
traffic congestion in major metropolitan areas and to ensutgkes a step in the direction of bridging the gap between IT
the efficient and safe operation of the national air space dad mechanical science.
approaching its limits. Moreover, as mobile robot techgglo The need to circumvent the intractability of the problem of
progresses, unmanned and autonomously controlled groudetermining an optimal, feasible motion plan for a multiple
air and underwater vehicles will increasingly share a comebot system as the number of robots increases has necessi-
mon environment with their human-controlled counterpartsated compromises in the generality of the problem. Mostroft
Eventually, the design and operation of large-scale “svgarmit is optimality that is sacrificed, such as in environmenkeve
of autonomous robots will become increasingly realistid arthe motion of robots is restricted to fixed paths, or roadmaps
appealing for a variety of applications, ranging from eomir ([1], [2]), or the dynamics of the vehicle is otherwise qlized
mental monitoring, to manufacturing, and national segurit([3]). In other work, it is the feasibility of the solution dh is
As a consequence, autonomous decision making is playingt guaranteed, while optimality may be reached ([4], [5]).
an increasing role in the development of large networks of In this work, we focus on algorithm performance in terms of
mobile agents, and the design of algorithms for the safe ati order of the time complexity as a function of the number of
effective coordination of possibly large numbers of vedscl agents in the system, disregarding additive and multifliea
has attracted a great level of interest in the recent past.  constants. In that sense, the work is closest to that of [6¢rey
While many multiple-vehicle coordination algorithms havéhe author develops a characterization of doenmunication
been proposed by researchers from robotics, computercsgierwomplexity involved in multi-agent coordination. Our waik
systems and control, and optimization, the field suffersnfroinspired by the research of [7] and [8] on the limits of wikde
a lack of common language and framework. Many advancesmmunication networks.
have been made using various models and assumptions, buthe paper is organized as follows. In Section Il we introduce
the fundamental limits in terms of achievable performandbe problem of sensor-based vehicle routing, formulate the

I. INTRODUCTION



notion of its time complexity, introduce some notation,\pde all possible safe routing policies, i.e.,
some preliminary results and motivate the problem we wish " .

to addF;ess. In éection Il we derive the Ft)>ounds on time (0, D) :Trl?affeT’T(O’D)'

complexity of the routing problem for arbitrary distriboti \ye \write f(n) = O(g(n)) if there exists a positive constant
of origin-destination pairs, showing the time complexifytiee ¢1 such thatf(n) < ¢1g(n) for all n large enough. Similarly,
problem is©(y/nL), whereL is the average distance betweer),q write f(n) = Q(g(n)) if there exists a positive constan
the origin and destination points. In Section IV, we providg,c, thatf(n) > cog(n) for all n large enough. We say that

upper and lower bounds on the time complexity of the vehiclg,,y — g(4(n)) if f(n) = O(g(n)) and f(n) = Q(g(n)).
routing problem in the case in which origin-destinationrpai

are chosen randomly from a uniform distribution, provingtth A- Preliminary results
the problem has time complexi€(./n) with high probability. We have the following trivial bound, showing that our
Finally, in Section V we draw some conclusions and discugsoblem formulation is such that a solution always exists
future directions. (hence making the feasibility decision problem trivial like
the generalized movers’ and warehouseman’s problems), and
Il. PROBLEM FORMULATION providing a conservative upper bound on the time complexity

Consider a square environme@ of area A. Considern ~ Proposition 2.1: For any set ofn origin-destination pairs,
pairs of points inQ, to which we will refer to as origin- the SBVRP is feasible, and its time complexity(%n).
destination(O, D) pairs, with(O, D); € Qx Q,i € {1,..,n}. Proof: Assume agents are labeled by their activation time,
The i*" (O, D) pair is assigned to a mobile aged,i € €. to; < toi41. If agents are activated sequentially, i.e.,
{1,..,n}. Initially each agent isnactive i.e., is not considered agent.4;,, is activated upon deactivation of agedf, no
to be in the environment, and cannot be involved in a confli@onflicts can arise. Each agent moves with the maximum
(In other words, origin and destination points are considers Velocity along the line joining its origin and destinationda
“safe havens,” in which agents are protected from traffiesen hence the time needed for ti¢h agent to reach its destination
may correspond to airports and parking garages in practi€@n be bounded a8; < diam Q/vmax. Hence, the time at
applications.) Let,; > 0 be the time at which th&" agentis Which the last agent arrives at its destinatiofis, (O, D) =
activated and enters the environment at locatignthe agent Y.;—; 7 < n9222 which proves the claint]
reverts to the inactive state upon arrival to its destimafiy, Let us consider now the case in which > 0, i.e., the
at time ¢, ; + 7;. While active, thei’” agent moves withirp —area of the exclusion regions is bounded below by a positive
along a continuous, time-parameterized path [0,7;] — Q. constant. We have the following.

The position of an agent as a function of time is given by Theorem 2.1:if o > 0 in (1), for any set ofn origin-

the functionz; : t — x;(t) = vi(t — to,;); by convention, we destination pairs, such thatin; |O; — D;| > [ > 0, the time

will set z;(t) = ~;(0) for ¢ < t;, andx;(t) = ~;(T;) for all complexity of the SBVRP i©(n).

t > T;. Finally, letv;(t) be the velocity of agent at time, Proof. Each agent has to stay inside the environment and
and assume its magnitude is boundeduy, > 0. Assume since the disk of radius, is the minimum radius disk covering
Vimax < \/X/Q_ For each active agent, we define exclusion anagent, the center of this disk also lies inside the enment
zone G modeled as a disk centered at the agent’s position, a#dany time. Since the environmeg@ is chosen as a square,

with radius depending affinely on the agent's velocity, i.e. €ach active agent claims exclusive ownership of a regio@ in
of area at leastr3 /4, if ro < \/A/2; in such a case, at most

Ci(t)={zeR | z—a(t) [<ro+ k[ vit) [}, (@) n, = [44/(xr2)| agents can be active at the same time. If

for given constants, > 0,k > 0. o can be understood as'0 ” v A/2, then at most one agent can be active aF any given
time, i.e.,n, = 1. At mostn, new agents can be activated no

the radius of the smallest circle enclosing each vehicléhén . L . .
sooner than every/vy.x time units, i.e., the minimum time

paper, we will sometime identify an agent with its eXCIUSiOpweeded for at least one agent to reach its destination. Hence
zone C;(t) at timet. We say that aconflict occurs between g '

. ) . the time needed to activate and transfer all agents is at leas
agentsA4; and A; if there exists a timé, such that: .
gentsA; Aj ¢ [17/na] - 1/vmax. Therefore, the total time needed to complete

« Both A; and A; are active at time. and the transfer of all agents can be bounded as
(] Ci(tc) N Cj(tc) 7é (Z) 7TT‘2l
A routing policyis a mapw : (O,D) — (to,T,7) that, Tro>0 > "I 9

vmax

given a set of O, D) pairs, assigns to each agent an activation
schedule, and a time-parameterized path. A routing poticyif ro < \/A/2, andT,,~o > nl/vmax Otherwise. The lower

is safeif it generates no conflicts. We define the Sensor-Basedunds, together with the upper bound in Proposition 2.1,
Vehicle Routing Problem (SBVRP) as the problem of findingrove the claim. a

a safe routing policy, given th@D, D) pairs. Let us indicate  This result condemns sensor-based vehicle routing prablem
with T (O, D) the time at which the last agent is deactivatedith agents of non-zero size to linear time complexity, tisat
according to policyr; we will define the time complexity of no better than a sequential agent activation, whdrecomes
SBVRP for the(O, D) pairs as the infimum of this time overlarge. In the remainder of this work, we will study the case in



which ro = 0 in the definition of the no-conflict constraints,By definition, all agents reach their destination within é¢im

i.e., the case in which the radius of the exclusion region B = hr. Let us denote by the length of the straight-

directly proportional to the agent’s velocity and each ageftine segment along which théth agent moves during the

occupies a point in the environment. j-th time interval. Obviously, we havg?z1 r} > L;, where
While this is not—strictly speaking—a physically realisticL; = |O; — D;|, and

modeling assumption, one must keep in mind that, in most n h

problems of interest, conflicts are generated when vehicles erf > nl, )

get closer than some safety distance that is much bigger than

the physical dimensions of the vehicle; for example, in air _ "

traffic control, a conflict is generated whenever two aircrafVhere.L = w i1 Li. _ o

get within 5 nautical miles from each other. In automotive ASSuming the velocity of any ageatduring a time interval

traffic, defensive drivers typically maintain a safety diste J Stays constant and is denoted iy we defines; = kvj =

from a leading car equivalent at least to the distance teavel:/7- Hence the exclusion region area at any time during

in 2 seconds, which at 50 km/h (about 30 mph) amounts @jerval j for agenti is given by

about 30 meters (about 90 ft), i.e., several times the leafjth ) i\ 2

a standard car. Even pedestrian traffic follows a similae,rul A{ =7 (55) — k2 <T1>

as people generally regulate their walking speed to maintai T

a comfortable distance from others when moving througfhe collision avoidance constraint requires that at anyetim
crowded areas. during a time interval, the sum of the areas of the exclusion
In addition, settingro = 0 lets us study the effect of yegions of all agents lying inside the environmedtcannot
velocity on traffic congestion, and provides insight int@ thexceed the area of the environment. Since the environment
nature of cooperation between agents aiming at minimiziRgosen is a square, this means that at least one fourth of each
the overall transfer time. The intuition is that as agents/@no gyclysion region is withind. Hence, the sum of the areas of
faster, they need a bigger buffer to avoid collisions withens, the exclusion regions of all agents at any time during ang tim

hence reclaiming a larger portion of a shared resource (fipgerval cannot exceed four times the area of the environmen
environment), and thereby imposing severe constraintien { o

1 2 n n
motion of other agents. i (rf)Q _ ZAf <14,
lIl. ARBITRARY (O, D) PAIRS ™= i=1
In this section we will compute the lower and uppeBumming over all intervals in the time schedule, and reggran
bounds on the time complexity of SBVRP, where the origiring, we get
destination pairs are chosen arbitrarily. Note that “aality” n L i\ 2 4AhT?
here must be understood as “in such a way as to minimize ZZ (Tz> = k2
time complexity.” In other words, while the lower bound
by definition applies to all network configurations, the uppe Consider a convex functiofi : 8 — R; Jensen’s inequality
bound is meant to apply to transportation networks designgttes that

P P
for efficiency (rather than an adversarial worst-case). 1 1
Y ) f(Ppr> <53 ).
p=1 p=1

i=1j=1

®3)

i=1 j=1

In talking about arbitrary networks, we note that the diséan
between origin and destination for each agent is an arpitrar
variable that directly affects the time complexity. It caa bSince the function: — z* is convex, we can apply Jensen’s
made arbitrarily small, hence making the completion time dfequality to (3) to obtain

the algorithm likewise arbitrarily small. A relevant measu - 2 - R
in the arbitrary case is therefore not completion time, but j j TN
time per average distance traveled by the agents. This is ZZTZ = hnzz (rz) = R
equivalent to including the distance variable in the bound o ==t ==t
time complexity. that is, )
. . PN (A(T*)2An) 2
A. A lower bound on the time complexity Z er < (W) . 4)
i=1 j=1

In the arbitrary case, we have the following lower bound.

Lemma 3.1:For any set ofn (O, D) pairs, such that the Thus, from (2) and (4) we get
average distance between origin and destination poinfs is 2 1
the time complexity of the SBVRP iQ(\/nL). T* > <W> vnL.

Proof. Let us assume that the motion of all the agents can be 44
represented as a set of straight-line motions, over a comm8&ince we have made no assumptions on the time schedule,
synchronized time schedule of length For simplicity, let us this bound applies in the limit as — 0, i.e., for continuous
assume that each time interval has the common durationschedules, which proves the result. O



Let OD(n) be the set of alln (O, D) pairs lying in Q
and E(QD) be the average distance between the origins and
their corresponding destinations for a given, D) pair. The
combination of Lemmas 3.1 and 3.2 proves our first main
result:

Theorem 3.1:For any(O, D) € OD(n), the time complex-
ity of the SBVRP isQ(y/nL o, p)) and there exist$O, D) €
OD(n) such that the time complexity of the SBVRP for this
pair is O(v/nLo,p))-
Hence the time-average agent velocity toward goal is ofrorde
O(1/+/n). Multiplying by n, we see that the agent-meters
per second throughput metric of the network as a whole is
therefore®(y/n), which corresponds to analogous bounds of
wireless network capacity in arbitrary networks, as in [7].

IV. RANDOM (O, D) PAIRS

In this section, we will consider the case in whigf, D)
pairs are generated randomly, i.e., origin and destingtoants
Fig. 1. lllustration of the procedure used in the proof of Lem@ia to are sampled from a uniform distribution 9, identically and
select origin-destination pairs that achieve the claimegeufpound on time independently. Throughout the paper, we will use the phrase
complexity. In this casep = 16. . ; e : s
with high probability” abbreviated ashpto stand for “with
probability approachind asn — oo.”

B. A constructive upper bound on the time complexity

In this section, we demonstrate that there exists a choiBe A lower bound on the time complexity
of (O, D) pairs that achieves the same time complexity that
appears in the lower bound in Lemma 3.1.

Lemma 3.2:For anyn € N there exist sets ofi (O, D L2 T )
pairs, such that the time complexity of the SBVR@iéE\/E)), distribution in Q, is 2(y/n), \_th .
where [ indicates the average distance between origins and” 00" Denote byL; the distance betweed; and D;, i =
the corresponding destinations. 1,...,n. Since origin and destination points are independently

Proof We will prove the statement by presenting a procé’-nd identicglly distributed (i.i.d.), t_he distancés are i.i.d. .
dure for the selection df0, D) pairs that admits a safe routingrandom variables. The expected distance between two points

policy of time complexity proportional td./7. sampled from a compact set is bounded. In particular, the
Givenn € N, partition Q into p* openly disjoint identical expected distance between two uniformly distributed ramdo

squares, where we defipe= [/n] if [\/n] is even otherwise POINtS in a square of ared can be computed as

p = [v/n] + 1. Here[z] is the smallest integer larger than or

equal toz. The side length of each such square is théf/p. E[L;] = 2+ v2+5m(1+v2) VA= 0521VA  (5)

Consider a minimum-length todir through the centers of such 15

squares as shown in Figure 1; the lengti'a§ equal topv'A.  Similar arguments can be made to show that the variance of

Notice such a tour can always be constructed spiEeven. e distance is bounded. The weak law of large numbers [9]
Pick an arbitrary direction off, and assign to each agent gnsyres that the average distaric@etween origin and desti-

unique square center as its origin, and the next squarercef§ion points convergeshp to the common mean—given in

on I as its destination. The distance between all origin ar(g) in the case of a square environment—aincreases. In

Lemma 4.1:The time complexity of the SBVRP for a set of
n origin-destination pairs, randomly sampled from a uniform

destination points is the same, and equaLte: v/A/p. other words for any > 0,
All agents can be activated at the same time, and can travel
alongI" at speed equal to 1
m JA lim_Prob ﬁ;Li—E[LZ—] >el| =1.
k 2v2p’

wheren; < 1 can be chosen arbitrarily close to one. Thi¥Sing Lemma 3.1, we can conclude that
ensures that no two agents collide during their journey. The

total time taken for transfer of all agents is then given by T > gE[Li] R whp
I 20V/2k -~ 2V2k _
m=Ljv= m \/ZPL = nl\/z(\/ﬁ+ L. . In other words,T* > 0.462k+/n, whp a



B. An upper bound on the time complexity initialization and termination phases, a large number einds)
In this subsection, we present an algorithm to compufé® activated at the same time; the absence of conflicts $e the

a safe routing policy for the case of randdi®, D) pairs, phases is achieved by concurrently activating agents tieat a

such that it take®)(y/n) time, whp, to route all agents from Sufficiently far from one another. _ L
their origins to their destinations. The policy can be siplio The followmg result stated in Lemma 3._1 in [10] is critical
three stages of vehicle routing, namely: i) Initializatipmase, N Proving some of the results in this section.

i) Main phase and iii) Termination phase, in this order. We Lemma 4.2:Ea_ch Coarse_cell_ ifP, contains no more than
show that the initialization and final phases can be exedated # T 1)/ log n origins (destinationswhp.

O((log n)*/?) time whp, and the main phase can be finished in SINCe €ach coarse cell, € 7. contains at leasg(u +

O(y/n) whp Hence the overall algorithm terminates(t/n) 1)K'10gn medium cells, an immediate consequence of Lemma
whp 4.2 is that in each coarse cell there are at I¢ast 1)K logn

Our algorithm relies on the definition of the followingmecjium cglls that do nqt co_ntain ‘?”9"‘ pointehp (The_ same
square tilings ofQ: can be said about destination points.) Therefore, it isipless
A tiling P btained b titioning th . to associate to each agedt, i = 1,...,n, two intermediate
« A coarsetiling P.(n), obtained by partitioning the enVI'Way-points,Og and D, with the following properties:

2
ronment lntOL/K{ﬁgJ squares of equal area (coarse1) If O, (resp.,D;) is in the coarse celp., then O} (resp.,

cells), whereKk > - (e is the base of natural Dj) is in the same coarse cell. _
logarithms). Let P2) Each cell in the medium tiling contains at most one of
the points in{O} : i € 1,...,n}, and at most one of the
VA ints in (D’ - i
le(n) = points in{Dj:iel,....n}.
[\/%W P3) If a medium cell contains a point if0} : i € 1,...,n}
(resp.,{D}:i€1,...,n}), then it does not contain any
be the side length of such squares. Léte (0, 1) be the pointin{0; :i€1,...,n} (resp.,{D;:i€1,...,n}).
sole root of the equation P4) All intermediate way-point{O;, D} : i =1,...,n} are
1 at the center of a cell in the medium tiling. Note that since
—#" 4 (L +p")log(l+47) = = each medium cell contains nine fine cells, the center of

a medium cell also coincides with the center of a cell in
the fine partition.

o A mediumtiling Py, (n), obtained by partitioning each
2
cell in P. into [ 2(p + 1)Klognw squares of equal At the end of the initialization phase, all agents will be

area (medium cells), withy > p*. Let active, and at rest at the respective first intermediate peagt
VA O'. Similarly, at the start of the termination phase, all agent
Im(n) = will be at rest at their second intermediate way-pdint Next
[, /#gnw [ 2(p+ 1)K log nw we wish to show that it is possible to move all agents in such
. a configuration in a safe manner, within ting¥ (logn)%/?).
be the side length of such squares. Lemma 4.3:Let O be a set ofn origin points sampled

« A fine tiling P¢(n), obtained by partitioning each cellat random from a uniform distribution, an@’ a set of
in Pp, into nine squares of equal area (fine cells). Lehtermediate way-points, satisfying properties P1-4.rThe
le(n) = Im(n)/3 be the side length of such squares.  agents can be activated and moved from point®ito points

As explained in the following, the coarse tiling will bein O’ within time O((logn)3/2), whp.
used in the initialization phase, to identify regions in the Proof. We will prove the result by providing an algorithm
environment in which agents can be activated and moved indleat solves the problem with a cost satisfying the stated
pendently. The medium tiling will provide the main strueur bound. The algorithm that we propose for the initialization
for the actual routing of agents, through the solution of phase, called &READOUT , requires the solution of a coloring
specialized version of the permutation routing problem-iD 2 problem on the tilingP., in such a way that no neighboring
meshes. The fine tiling will ensure the existence of a buffeells have the same color (including cells touching at one
to safely accommodate agents temporarily sharing a medipaint only, i.e., diagonally). It is straightforward to séwat
cell. four colors would suffice to color such a square tiling on a

1) Initialization and Termination phasdn the initialization plane in this manner (e.g., see [11] to see standard coloring
phase, all agents are activated, and moved in such a way thatblems).
over-crowding is avoided; more specifically, at the end ef th Given the pointsO; and O}, and a coloring scheme, the
initialization phase, agents will be placed at rest at threereof SPREADOUT algorithm works as follows (see Figure 2 for a
cells in the medium tiling, with at most one agent occupyingictorial representation). Choose a coloand, concurrently
each cell. In the termination phase, the opposite processinsall coarse cells with the same color, activate agentsrim, tu
implemented, in the sense that agents are moved from theving them to their first intermediate way-point. (If angini
centers of cells in the medium tiling to their destinationda point lies at the boundary between two or more coarse cells,
deactivated. In order to minimize the execution time of thassign the corresponding agent to one of the cells arljtjari



moves at most one agent at a time in each coarse cell with
‘ ‘ a given color. Since neighboring coarse cells have differen
colors, active and moving agents are at least a distance
° 25t — pn,1., away from each other. As a consequence, no
o conflicts can arise between agents in motion. Finally, activ
agents are either moving or at rest at the center of a medium
. o cell (because of property P4); by construction, the pathi§
° are greater thad™* distance away from the centers of cells
° occupied by active agents at rest, thus avoiding conflicts
° ° between agents in motion and agents at fést.
The termination phase starts with all agents active and
% = at rest at their second intermediate way-poibt. During
: ‘ this phase, all agents are moved to their destination and
bl deactivated, without conflicts. It can be recognized thatreom
modification to the BREADOUT algorithm (wherein the/tcr™
° paths join theD’ and D points) will achieve this goal, with
the same cost of the initialization phase:
- — - Lemma 4.4:Let D be a set ofi destination points sampled
\ \ at random from a uniform distribution, an®’ a set of
\ \ intermediate way-points, satisfying properties P1-4.nfhe
agents can be moved from points I to points in D and

Fig. 2. Zoomed-in sketch of the algorithm used in the initation phase. d€activated within timed((log n)*/%), whp
The figure shows a typical agent configuration within a coamsé that is 2) Main Phase:As a prelude to describing the algorithm
divided into medFi_Lllldegé'tSS- ri"lglye r?tottﬁefﬁjpcfaet?g:to;\t‘:cgogzgﬂgt'(nr)e sotfat for the main phase, we review a related problem studied in
Ituzﬁtlzssti%?:rtr?edlia?e Way—poi‘?]t which is the center of anglasivé medium the parallel and distributed computing research community
cell. Lightly-shaded cells do not contain origin points,esas darkly shaded Consider a square ofi> processing units (PUs) witm PUs
cells contain an active agent at their centers. The thickecuepresents the jn each row and column. Each PU is connected to its vertical
path~init of the agentA;, that has been recently activated. The point where ) ) . L ;
the curve starts i©; and the point where the arrow ends(3. Location of and hor_lzontal_ neighbors with a C(_)mmumcatlon link. Each
the agent and its exclusion region are also shown at a timaninduring its  processing unit can send and receive one packet along each
transfer fromO; to O;. communication link in a time slot. (Thus every PU can receive
and transmit at most four packets simultaneously in a time
slot.) In addition, each PU is able to store in a buffer a queue

The pathyit followed by agentd; is chosen as the shortes®f Packets waiting to be transmitted. o
continuous curve joining); to O!, without intersecting the Suppose each PU is the source and destination of exactly

interior of medium cells already containing an active agerf"€ Packet. The problem of routing the totaF packets to
Agents travel along their paths at speetl = i, /2k their destinations is a well studied problem in the parafed
wheren, < 1 can be chosen arbitrarily close to one. Oncgistributed computipg literature under th.e nam@efmutation
all agents with origin point in cells with colarare active and "Uting The following result characterizes the performance
at rest at their first intermediate way-point, choose a difie ©f Permutation routing algorithms with minimal queue leémgt
color, and repeat until all agents have been activated. requirements at the PUs. o

Because of property P1, the length of the patfist is Theorem 4.112] Permgta_ltpn rou_tmg n-an >xm mesh
bounded by2/.: as a consequence, each agent reaches its ffraf! be performed deterministically iNpr = 2m —1 time

. . e i 4k \/— steps and with maximum queue size equal to 2.
intermediate way-point within timef’ [ 2(p + 1)K log "W An algorithm achieving this performance characteristis i

after it is activated. Since there are at m@st+ 1)K'logn  given in [12]. We will refer to such an algorithm as Permu-
agents per coarse cellhp by Lemma 4.2, activation and i4tion Routing (RRMROUTING ) algorithm. In our proposed
transfer of all agents in a coarse cell will be completed inith g5 ,tion to SBVRP problems, at the start of the main phase,
time 7% (1 + 1)K logn [ 2(p+ 1)K log nw whp Since all gl agents are active and at rest at the intermediate waytgoi
coarse cells with the same colors are processed concyrrertD) : = 1,...,n}; at the start of the termination phase, all
and there are four colors, the execution time @READOUT  agents must be active and at rest at the intermediate wayspoi
is bounded by‘%((u—s—l)Klogn)?’/Q—s—%’“(u+1)Klogn, {D}:i=1,...,n}. Consider the medium partitioR,,(n).
whp Because of property P2, each cell in this partition contains
Now we need to show that theeEEADOUT algorithm is most one of the points i@’ and at most one of the points in
safe, i.e., it does not generate conflicts. The exclusioibneg D’. Hence, the problem of routing agents from the respective
of agents moving according to theSEADOUT algorithm has first intermediate way-point to the second one can be cast as a
radius 6™ = ko™it = 1,1, /2. The SPREADOUT algorithm permutation routing problem, in which medium cells play the




role of processing units. In mesh routing, theRMROUTING | | | |
algorithm associates to each packet and time step a proges: | | | |
unit; in our case, the BRMROUTING algorithm outputs a map AR
S:{1,...,n}x{1,...,Npr+ 1} — Py, associating to each y
agent and time step a cell in the medium partition. We will us . 1 )
the shorthand! = S(¢, ¢) to indicate the cell assigned to the — —
i-th agent at the beginning of time stepNaturally, O} € S}, . .
and D) e SNer T forall i =1,...,n. If ST =8¢t theith  —— --
agent is held in a queue at time stgp.e., it must wait before ! ! ! !
being transfered to the next cell on its path.

A difference between our routing problem and the on ! ! ! !
considered in [12] is that in the case of vehicle routing “eom _
munication links” are not full duplex, i.e., it is not poskib . —
to travel at the same time in both directions across a sing —~ L
link. We obviate this problem by splitting each time slotaint . -\—~=>/q R
four rounds. In each round, only cell transfers in a specifie
direction (e.g., North, South, East, or West) are allowet = -
in turn. Let Neigh : P, x {North,South,East,West} —
P Unull be a map that associates to each medium cell i | | | |
neighbor in a given direction (if it existaull otherwise).

At most four agents will be transferred out of a mediurgiy 3. The figure at the top shows the transfer of vehicles iund
cell during each time slot, one per round. The following three consecutive cells in a row of the medium partitione Tigure at
result will be useful in the analysis of the application o thihe bottom shows the vehicle positions halfway through tend. The dots

. . . are the vehicles at rest at the center of an exclusive fineacellthe moving
PERMROUTING algorithm to Sensor-Based Vehicle Routing:ehicles are depicted by small arrows with the circular esiol zones around

Proposition 4.1: The maximum number of agents in anyhem.
medium cellp,, € P,, at the start of a routing time slot is 6,
ie.,

Sz‘r’“, and put it to rest. Repeat the above for all four directions,
one per round.

Next we characterize the time needed to execute one single
round of the MAINROUTING algorithm safely:
Proof. We prove the claim by contradiction. Assume there Lémma 4.5:Each round of the MINROUTING algorithm

exists an integey and a cellp,, € Py, such thatcard({i ¢ can be performed with no conflicts in tinouna < 24k/73,
{1,...,n}|S? = pu}) > 6. Since during the time slat at most wherens < 1 is an arbitrary constant chosen close to one.

ma ma card({i € {1,..,n} : S} = pn, <6
;Um€7)7(m {qe{l,...,N);R-H} S { } i — P })} >

4 agents can leave the cell,, this implies that cellp,, will Proof. Let ¢ be the current routing time sl_ot; because o_f
have to buffer more than two agents during thth time slot, the symmetry of the problem, we can restrict our analysis
which is a contradiction by Theorem 4.1. O to the case in whichlir = East. Let Iz, be the set of

We are now ready to explain our algorithm for the maitf'dices of agents moving East in the current round. For al
phase, to which we will refer as MNROUTING . The first € rast, choose an empty destination fine gell 57" and

step consists of solving the permutation routing problernwidefine”;" : [0 Touna] — Q as the shortest continuous time-
the FERMROUTING algorithm. For each time slatin the rout- Parameterized trajectory satisfying the following prajes:

ing schedule, perform the following. In each round of theetin1) ;' (0) is the location of the agent at the beginning of the

slot, pick one directiondir € {North, South, East, West}. g-th routing time slot. "
Concurrently, for each cellp,, € Py, pick (if it exists) Q2) 7/ (Tiouna/2) lies on the boundary betweéif andS{™".
the unique agent4; such thatS! = p,,, and sg“ = Q3) 7/ (Trouna) is the center of the destination fine cell for

Neigh(S?, dir). If D) ¢ SI™', then move the agent to the  thei-th agent at the-th routing time step.

center of an empty fine cell insid¥ ', other than the middle Q4) All points in ~/ are at least at a distanég/2 from the

one, and put it to rest. Proposition 4.1 and the fact that atmo ~ boundary ofS7 U S¢*!.

one agent enters a medium cell every round and at most &% No point in+ lies in the interior of a fine cell containing
leaves every round ensure that at most 7 agents are inside any other agent at rest at its center.

a medium cell at the start of a round if there is an ageSuch a trajectory can always be designed, see Figure 3 for an
to be transferred to this cell during the round (notice theexample. The length of the the segment$fwithin S? (and

are only 4 rounds). This ensures that an empty fine cell S$+1) is bounded by2/,,,; agents can move along these paths
always available for the agent to be transferred to. Ottserwi at speedsl¢/2k, wherens < 1 can be chosen arbitrarily close

if D e SZ“, move thei-th agent to its second intermediatdo one. Hence, the exclusion zones of each moving agent has
way-point D}, which is the center of the middle fine cell inradius < i;/2 throughout the motion. This and property Q5



ensure moving agents do not collide with agents at resteSints time complexity. We also intend to introduce formation

it would take at most 2k /73 time for any agent to reach themobility model and show how this can be used to improve
boundary it is crossing and at most the same time from therethe@ time complexity of the vehicle routing problem. Another
the center of its destination cell, choosifi,.na = 24k/ns direction of research is to tie this work back to its origins i
ensures that property Q2 and Q3 are satisfied. Property 2 wireless communications literature. There has beesntec
ensures that the agent maintains separation between agemik ([13],[14]) demonstrating that node mobility imprave
being transferred from the left and right neighboring mediuthe theoretical capacity of wireless networks, estabtisime
cells and does not collide with them. Property Q4 ensures ttj@]. By coupling the capacity problem with a realistic ptoadi

the agent maintains separation and does not collide with tm®del of nodes as mobile agents, we can determine the true
moving agents in neighboring medium cells in the above afadhdamental limits of communication. This new model would

below row of medium cells (recall thag, = 3). a

reflect the constraints imposed by both wireless mediumsacce

Based on this intermediate result, we can conclude that:and the shared resource of physical space.

Lemma 4.6:Considern pairs of intermediate way-points
(O', D') satisfying properties P1-4. Then, all agents at rest
at their respective intermediate first way-point @ can
be routed to their corresponding second way-poinfihin
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Proof. According to theorem 4.1, permutation routing caF‘L
be performed il2m — 1 steps, where in our case is the t
number of cells in a row in the medium partitioR,,, i.e.,

m=vVA/lm=|\/ 5w [\/Z(u + l)Klognw . Since each
routing step is composed of four rounds, one for each doecti [1]
of motion, and each round takes at masdt /n; time, the
total time taken for routing agents from their respectivstfir [2]
way-points to their respective second way-points is at most
9Bk 2,/ g T D(V2(n + 1)K log n+1) —1). This proves
the result. a (3]
Lemmas 4.3, 4.4 and 4.6 together give the following second

main result of this paper: [4]
Theorem 4.2:For any set ofn (O, D) pairs randomly
chosen from a uniform distribution i@, the time complexity [5]
of the SBVRP isO(y/n) whp
V. CONCLUSION [6]

In this paper, we have studied the time complexity of
sensor-based vehicle routing problem where conflict is ddfin [7]
by the intersection of velocity-dependent exclusion ragio
We first showed that if the area of the exclusion region i§8]
bounded away from zero, the time complexity of the routing
problem is©(n), i.e., is no better than the trivial worst-case[°]
bound. We then focused on the case in which the exclusiBf
region can be made arbitrarily small by reducing the agent’s
velocity, and showed that for the case in which origin angll
destination pairs can be chosen arbitrarily, the time cexityl [12]
of the vehicle routing problem i®(y/nL), where L is the
average distance between the origin and destination pdints[13]
the case of random origin-destination pairs, we showed t@{]
the time complexity is©(y/n). In the future, we intend to
present a worst case vehicle routing situation and chaiaete

ndings, and conclusions or recommendations expressed in
is material are those of the authors and do not necessarily
reflect the views of the supporting organizations.
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