
Data Structure for Efficient Processing in 3-D
Jean-François Lalonde, Nicolas Vandapel and Martial Hebert

Carnegie Mellon University
{jlalonde,vandapel,hebert}@ri.cmu.edu

Abstract— Autonomous navigation in natural environment re-
quires three-dimensional (3-D) scene representation and inter-
pretation. High density laser-based sensing is commonly used
to capture the geometry of the scene, producing large amount
of 3-D points with variable spatial density. We proposed a
terrain classification method using such data. The approach relies
on the computation of local features in 3-D using a support
volume and belongs, as such, to a larger class of computational
problems where range searches are necessary. This operation on
traditional data structure is very expensive and, in this paper,
we present an approach to address this issue. The method relies
on reusing already computed data as the terrain classification
process progresses over the environment representation. We
present results that show significant speed improvement using
ladar data collected in various environments with a ground
mobile robot.

I. I NTRODUCTION

Autonomous ground robot navigation in outdoor natu-
ral environment, specifically in the presence of vegetation,
requires advanced three-dimensional perception capabilities
[13], [2]. Cross-country navigation, like in a forest or meadow,
introduces new challenges compared to road following or
desert/planetary environment traverses. In the latter case, ele-
vation maps built from 3-D data suffice to represent and reason
about the robot surroundings. In the former case, however, a
full 3-D internal representation is necessary to accommodate
the complexity of the scene that contains porous material
(vegetation), thin structures (branches, wires) and overhanging
structures (tree canopy). Figure 1 represents an example of
scene considered1. Note the point density variation and the
presence of the structures mentioned above.

Fig. 1. Example of terrain considered. The color of each pointis based on
the elevation, with red (blue) representing high (low) elevation.

1The figures in this paper are best viewed in color

Recent advances in sensor design have enabled the use
of laser radars that provide tens of thousands of 3-D points
per second, even a hundred thousand, with centimeter range
resolution. The problem now is how to handle such a large
point cloud and how to design the data flow from the sensor
to the environment interpretation. One critical aspect is to be
able to perform quickly basic operations such as insertion,
access, and range search. Traditional optimal tree-based data
structures are ill-suited for dynamic data sets because of
numerous insertions produced by a moving robot in an outdoor
environment.

In this paper, we present a new approach for handling 3-
D data for efficient on-board processing. The data processing
we are concerned with are kernel-based methods, where for
a given point, some operations are performed using a support
volume. The core of the approach is to minimize computation
by re-using pre-computed intermediate results. The approach
is demonstrated with data from a ground mobile robot, the
Demo III XUV, for ladar-based terrain classification [14].

The rest of the paper is divided into four sections where we
present: the state of the art in data structures, specifically for
robot navigation; our approach, with a complexity and memory
analysis; results from static ground robot, and the conclusion.

II. STATE OF THE ART

In this section we review recent work on 3-D data structure
for ground mobile robot. We also look at traditional data
structures.

A. Robotics

Three-dimensional data have been used for a long time for
outdoor robot navigation, initially from stereo camera then
from laser radar. If the terrain is unobstructed, one common
approach is to create a 2D grid of the terrain with the terrain
classification results. The data processing can take place in
the sensor reference frame (range image) and the results are
then back-projected in that 2D grid. An alternative is to create
an intermediate digital elevation map by gridding the 3-D data
into a 2D-1/2 map and then doing some processing, convolving
a robot model with the terrain for example [13]. In both cases
however, the data processing is not performed in 3-D.

If the terrain contains vegetation such as trees, grass or
bushes, the previous approach is not sufficient. A full 3-D
representation is necessary to represent the environment and to
produce a better and higher level of scene interpretation. One
such approach has been demonstrated for vegetation detection
and ground surface recovery in [6], [2]. In both cases, a

dense 3-D grid representation of the environment is maintained
around the robot and scrolled as it moves. A ray tracing
algorithm updates each voxel by counting the number of times
it has been traversed by or stopped a laser ray. Such statistics
are then used to determine if the voxel is likely to be the load
bearing surface or vegetation. The data processing requires
data insertion and retrieval, but no range search.

Similarly, 3-D occupancy grid approaches create a voxelized
3-D model by performing insertion and access but are not
optimized for range search [9].

Sometimes operations in 3-D can be reduced to 2-D oper-
ations as shown in [11] for natural environment navigation.
Unfortunately, in general, we cannot follow such an approach.

B. Data structures

Traditional pre-computed tree-based data structures (Kd-
tree, range tree) are efficient for performing range search.
Unfortunately, their performance degrades rapidly as addi-
tional data are inserted after construction [10]. Lersch in[7],
presents a data structure for structural segmentation of 3-D
point-cloud data, called the windowed priority queue. The
approach focuses on the indexing of the data for fast retrieval.
The computation performed is similar to the one used in our
work [14] but it is performed off-line. Approximate search is
sometimes proposed, but we did not consider it in order to
maintain the necessary classification rate.

Gao proposes an interesting work on efficient proximity
search in 3-D for kinetic data [4]. The author extends Voronoi
diagram and Delaunay triangulation to an environment made
of 3-D voxels. A simple example is provided. It is not clear
how we can efficiently scale this approach to handle the point
density and grid resolution in our context.

Machine learning and statistical methods require efficient
data structures for nearest neighbor search, range search,
regression or kernel operations [8], [5]. But most of the
attention is focused on high dimensional data set rather than
dynamic data set.

III. N ATURE OF THE COMPUTATION

A. Terrain classification

Using 3-D ladar data as input, we perform point-wise
classification to detect vegetation, thin structures and solid
surfaces. The method relies on the use of the scatter matrix to
extract features via principal component analysis. For each
point, the approach computes the scatter matrix within a
support volume and then extracts its principal component
(eigenvalues). A linear combination of the components and the
associated principal directions define the features. A model of
the features distribution is learned off-line, prior to themission,
from labeled data. As the robot traverses a terrain, data
are accumulated, features computed and maximum likelihood
classification performed on-line. Figure 2 presents an example
of such terrain classification. For additional details please see
[14].

Fig. 2. Example of terrain classification. In red/green/blue:surfaces, scatter
volumes and linear structures.

B. On-board robot implementation

In order to handle a hundred thousand points per second,
we previously implemented a data structure that reduces dra-
matically the amount of data to handle without compromising
the features computation. The environment is represented
as a set of sparse voxels that contain intermediate results
used to compute the scatter matrix. It is straightforward to
see that the scatter matrix can be decomposed in terms of
sums, sums of squared and sums of cross products of 3-D
point coordinates. These results are simply nine numbers. For
each new point falling into a voxel, the nine numbers are
updated. To compute the saliency features for a given point,
range search is performed and the neighboring voxels results
are summed up together to compute the scatter matrix. The
voxels are accessed via a hash-map. Thus, with such a data
structure, we significantly compress the data while keepingall
information, regardless of the performed computation.

The computations we perform belong to a general class
of processing that requires the retrieval and the use of the
data within a support volume around a point of interest. We
introduce here some notations

• PCD = {p1, p2, ..., pm}: point cloud data, a set ofm
3-D points;

• pk = (xk, yk, zk): a 3-D point inPCD;
• N(pi, s): the set of points around a given pointpi, within

a volume of radius or scales, such that‖ pi−pk ‖∞≤ s
with i 6= k;

• F (N(pi, s)): a function over the neighborhood points.

In our caseF =
∑

p∈N(pi,s)
(p − p̄)T (p − p̄). The work

presented in [12] belongs to the same class of computation,
but the objective is to extract simultaneously multiple planar
structures using projection-based regression. The function F
takes the form

F (N(pi, s)) =
1

|N(pi, s)|hθ

|N(pi,s)|
∑

i=1

κ(
yT

i θ − pi

hθ

)

with κ a kernel function scaled to the bandwidthhθ. We refer
the reader to [12], [1] for additional details.

This approach has been tested extensively on-board a
ground robot. The processing time on the current hardware
allows operation at slow speed (1-2 m/s) with a hundred
thousand input points per second, depending on the complexity
of the terrain. The motivation behind our recent work is

to increase the processing speed to handle higher terrain
representation resolution and faster robot navigation speed.

IV. A PPROACH

A. General principle

Real-time area-based correlation stereo algorithms reuse
previously-computed data to achieve greater execution speed.
For example, in [3], Faugeras et al. decompose the zero mean
normalized correlation score into partial sums, and add/remove
only columns contribution as the epipolar line is scanned.
A similar approach is used to handle change of line by
removing/adding line contribution at the image borders. Since
the nature of the computation needed for feature extractionis
analogous to correlation (i.e. it can be decomposed into partial
sums), we apply that principle to a voxel representation in 3-D.

However, there are two fundamental differences between the
2-D and 3-D cases that justify the need for a novel approach.
First, in stereo, correlation is performed along the epipolar
line, resulting in a unidirectional scanning. However, many
different strategies exist to scan the 3-D space (obtained by
permuting the order of axes). Figure 3 illustrates two examples.
Second and most importantly, full 3-D data is usually very
sparse, that is, a large number of voxels are empty. This
contrasts with images in which each pixel contain information
that can easily be retrieved in a subsequent step.

Fig. 3. Two possible scanning strategies in 3-D

First, we introduce some notation. Given a volumeV
subdivided into voxels, let:

• n = nx × ny × nz the total number of voxels in the
volume;

• v be the number of occupied (non-empty) voxels in the
volume;

• k = (2r+1) the neighborhood size (eg. for range search),
wherer is the radius, in number of voxels

We derive the following equations to compute the number
of voxels that need to be visited for range search computation.
We do not take into account the differences that may arise at
the boundaries of the volume: for a large volume, they are
assumed to be negligible. We also assume thatk is the same
in each dimension.

B. Brute force approach

1) Description: The implementation presented in Section
III-B, relies on a brute force approach [14] that visit the whole
k3 neighborhood each time: a hash map is used as a data
structure and occupied voxels are scanned in random order.

2) Analysis: The total number of visited voxels is simply

tbrute = vk3 (1)

This method takes advantage of the sparseness of the data:
only occupied voxels are visited. However, on the dense
regions, much of the computations are repeated many times
because neighborhoods overlap.

C. Naive approach

1) Description: A naive approach would be to act as if
the volume was densely populated, that is, to scan the whole
volume in an ordered way while executing neighborhood
computation for every voxel, even the empty ones. This is
the direct translation of the 2-D approach using 3-D data.

An appropriate data structure is the dense voxel representa-
tion, in which memory space is reserved for each voxel of
the volume at the beginning. The drawback of this choice
is that memory usage is mostly inefficient, thus limiting the
volume of interest. It is, however, much faster since it doesnot
require hash key computation, and allows ordered traversalof
the volume.

2) Analysis:Since it re-uses previously-computed data and
recomputes neighborhood slices each time, the number of
visited voxels at each step is2k2. Since it is done over the
whole volume,n = v, and the total number of visited voxel
is

tnaive = 2nk2 (2)

This method does not take advantage of the sparseness of
the data, and must scan the whole volume each time. The
condition for tnaive to be less thantbrute is :

tnaive < tbrute : 2nk2 < vk3

v

n
>

2

k

If k = 9, then v/n > 0.23. At least 23% of the voxels
in the volume must be valid for the naive method to be faster
than the brute force. As our experimental results show (Section
V), the v/n ratio tends to be very low, typically under 2%,
justifying the need for a better approach.

D. Memory-based approach

1) Description: This method takes advantage of the dense
regions in the volume. The principle is the same as in Section
IV-C, but the computations are done only on the occupied
voxels. Therefore, this algorithm will need to find theprevious
occupied voxeland see if it is close enough, that is, if the
distance between the two is less thank/2. This concept

is related to the volume traversal order because it directly
depends on the scanning direction.

To help formalize the problem, we follow a two-step pro-
cedure: first we assume a constant cost independent of the
number of visited voxels so we can derive easily a lower bound
on the v

n
ratio, second we determine the expression for this

cost.
2) Simplified lower bound estimation:Since this approach

requires the voxels to be scanned in predetermined order, let
d be the distance (in number of voxels) between the current
voxel and the previous occupied voxel in the volume, along
the scanning direction. LetX be the discrete random variable
representingd. The distribution ofX depends only on the
data.

For the sake of simplicity, we first assume that, for a given
voxel vp, the range search computation will require visiting
αk2 voxels if d < k

2 , and k3 otherwise, with constantα.
Moreover, since every voxel in the whole volume must be
analyzed, a cost ofn must be added.tmemory is computed as
the expected cost:

tmemory = v

(

αk2P [X <
k

2
] + k3P [X ≥

k

2
]

)

+ n

= v

(

αk2P [X <
k

2
] + k3(1− P [X <

k

2
])

)

+ n

= v

(

(αk2 − k3)P [X <
k

2
] + k3

)

+ n

The condition fortmemory to require less operations than
tbrute becomes:

v

(

(αk2 − k3)P [X <
k

2
] + k3

)

+ n < vk3

v

n
>

1

(k3 − αk2) P [X < k
2]

For example, if half of the occupied voxels are located
within less thank

2 distance from the previous occupied voxel
(that is,P [X < k

2] = 0.5), the condition becomes

v

n
>

1

0.5k3 − αk2

If k = 9 and α = 1 then v
n

> 0.00352. In that case, at
least 0.3% of the voxels in the volume must be valid for this
method to visit fewer voxels than the first.

3) Lower bound estimation:Now, we relax the previous
assumption and consider the general case where the number of
visited voxels depends ond. Figure 4 illustrates this problem
in 2-D. Sinced = 2, the two rightmost columns are added to
the neighborhood of the voxel at(2, 2), and the two leftmost
columns are subtracted. In total, four columns (instead of five)
must be computed.

We defined̄ as the expected value ofd over those voxels
for which d < k

2 .

x

y

d

Fig. 4. Illustration of data reuse with sparse 2-D data withk = 5. Each
square is a voxel, and dots indicate occupied voxels.

d̄ =

k

2
−1

∑

d=1

d
P (X = d)

P (X < k
2)

tmemory, in the general case, becomes

tmemory = v

(

(2d̄k2 − k3)P [X <
k

2
] + k3

)

+ n (3)

In the worst case,P [X < k
2] = 0, Equation 3 becomes

tmemory = vk3+n, which is equivalent totmemory = tbrute+
n. The only difference with the brute force method is the need
to visit each voxel in the volume. The condition fortmemory

to require less operations thantbrute becomes:

v

n
>

1
(

k3 − 2d̄k2
)

P [X < k
2]

(4)

As shown in Section V-B, Equation 4 is a lower limit on
which we can guarantee faster execution.

E. Algorithm and data structure

The proposed algorithm is illustrated in pseudo-code by
Algorithm 1. In this example, the scanning order is specifiedas
input by the user, and the algorithm automatically determines
in what direction it should look for re-usable data.

The data structure previously used in Section IV-C.1 is
insufficient for the needs of Algorithm 1. We therefore propose
a variant of the dense voxel representation that maintains
an array of pointers to previously visited occupied voxels in
memory. Figure 5 illustrates the principle in 2-D, but it is
easily generalizable to higher dimensions. The5 × 4 grid is
the original dense voxel representation, and the two additional
arrays are pointers to previously-visited, occupied voxels in
memory. In this example, the scanning order isx theny, and
the current voxelvc is filled in blue, whereas the previously
visited voxels are shown in a lighter shade of blue. The
occupied voxels are dotted. The algorithm has access to the
nearest previously visited occupied voxel just by looking at the
cells in red, which correspond to the(x, y) position ofvc. vp

(position (2, 0) in this example), can then easily be retrieved.

Algorithm 1 General scanning algorithm
Require: V the voxelized volume and its boundaries

1: for every occupied voxel inV do
2: vc ← V (x, y, z), the current occupied voxel
3: Retrieved, the distance to the closest occupied voxel

that has already been visited, anddir, the direction
associated with it

4: if d ≥ k
2 then

5: nc ← the whole k3 neighborhood.{There’s no
sufficiently close occupied voxel}

6: else
7: Retrievevp, the previous occupied voxel located at

distanced in directiondir of vc

8: np ← stored neighborhood computation ofvp

9: sp ← the d rightmost (alongdir) slices ofvp

10: sc ← the d leftmost (alongdir) slices ofvc

11: nc ← np − sp + sc

12: end if
13: end for

y

x

Fig. 5. 2-D example of the proposed data structure. Occupied voxels are
dotted, and the interest voxel is blue. The previously visited voxels are drawn
in a lighter shade of blue. The cells in red point to the previous valid result
along their respective dimension.

V. RESULTS

A. Implementation and data collection

We implemented a templatized version of Algorithm 1 and
the corresponding data structure in C++ for Linux OS. In order
for it to be efficient, we paid attention to basic rules such as
not to perform costly run-time operations (polymorphism) and
to access the data only using references. The code runs on a
regular PC (Intel Xeon, 2.8 GHz, 1.5 GB RAM).

The data used in this paper were collected using the
GDRS eXperimental Unmanned Vehicle [6]. This car-sized
autonomous vehicle is equipped with a high-speed rugged
range sensor that produces more than 100,000 3-D points
per second with cm range resolution. The laser is mounted
on a turret scanning the ground surface. The field tests
were conducted at Fort Indiantown Gap in Pennsylvania in
December 2004. Various terrain types were traversed including
unstructured roads, forest and meadows.

B. Validation of theoretical results

To validate the derivation of Section IV-D, a set of synthetic
random data is generated over a volume of interest with vari-
ous uniform point density. We compute the speedup obtained
by comparing the brute force method of Section IV-B with
the optimal method of Section IV-D.3. The values ofd̄ and
P [X < k

2] are also computed to determine the lower bound
predicted by Equation 4. Figure 6 shows the results obtained
experimentally.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.05

0.06

0.07

0.08

0.09

0.1

0.11

Point density (%)
T

im
e,

 n
or

m
al

iz
ed

 (
m

s/
vo

xe
l)

Original method
New method

Fig. 6. Validation of theoretical results. The vertical line indicates the lower
bound predicted by Equation 4.

These results emphasize the fact that if Equation 4 is
satisfied, the new method is guaranteed to be faster than
the first. Under this limit, there is no guarantee because the
analysis is only considering the average over the whole volume
and not taking into account the local clustering of the data.

C. Creation and insertion

The creation of the data structure is done only once at
the initialization of the process. For a 200x200x30 grid, it
takes 720 ms to create the 1.2 million voxels. Moreover, with
10 cm grid voxels, we can insert nearly three million points
per second. In our application, each voxel stores nine 64-bit
values for saliency computation. Moreover, each element in
the additional arrays introduced in Section IV-E are 32-bit
pointers, and results are contained within three 64-bit values.
The total memory usage, for the flat ground example shown
in Table I is:

memory = 200× 200× 30× 9× 64

+ 200× 200× 32 + 2× 200× 30× 32

+ 59, 275× 3× 64

≈ 84MB

Similarly we obtain 112 MB for the forest and 126 MB for
the tall grass environment. Those memory requirements are
well within current computers memory capabilities.

TABLE I

STATISTICS FOR THE DIFFERENT TERRAINS WITH10 CM VOXELS.

Terrain Sizen (in cells) Raw data Occupied voxelsv v

n
d̄ P [X <

k

2
]

Flat ground 200x200x30 2.0 million 59,275 0.049 1.0263 0.9917
Forest 160x250x40 1.7 million 112,001 0.070 1.0519 0.9923
Tall grass 200x300x30 1.2 million 117,756 0.065 1.0678 0.9856

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

radius (m)

tim
e,

 n
or

m
al

iz
ed

 (
m

s/
vo

xe
l)

original method

new method

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

radius (m)

tim
e,

 n
or

m
al

iz
ed

 (
m

s/
vo

xe
l)

original method
new method

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

radius (m)

tim
e,

 n
or

m
al

iz
ed

 (
m

s/
vo

xe
l)

original method
new method

(a) (b) (c)

Fig. 7. Point density influence for the tall grass data set. (a) With raw data (117,000 occupied voxels). (b) With data sub-sampled 10 times (55,000 occupied
voxels). (c) With data sub-sampled 100 times (9500 valid voxels).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

radius (m)

tim
e,

 n
or

m
al

iz
ed

 (
m

s/
vo

xe
l)

original method
new method

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

radius (m)

tim
e,

 n
or

m
al

iz
ed

 (
m

s/
vo

xe
l)

original method

new method

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

radius (m)
tim

e,
 n

or
m

al
iz

ed
 (

m
s/

vo
xe

l)

original method
new method

(a) (b) (c)

Fig. 8. Voxel size influence for the flat terrain data set at full density. (a) 5 cm voxel size. (b) 10 cm voxel size. (c) 20 cm voxel size.

D. Comparison for different terrain types

In this section, we compare and analyze the performance of
our approach for different types of terrain: bare ground (Figure
9-(a-c)), highly cluttered forest (Figure 9-(d-f)) and an open
space with vegetation cover (Figure 9-(g-i)). The bare ground
scene includes a gravel trail bordered by a jersey barrier. A
concertina wire is laid across the trail. The forest scene ismade
of large tree trunks scattered over a rough terrain covered with
short grass and debris. The last terrain is a side slope covered
by dense, dry, waist-high grass, with some large poles present.
The statistics relative to each data set are presented in Table I.
The initial results seem to show that the type of terrain does
not influenced̄ and P [X < k

2]. We think that the very high
point density of each data set may have leveled the results.

The center column of Figure 9 illustrates the histograms of
the distribution ofX for different strategies. The strategies il-
lustrated represent the direction in which the previous occupied
voxel is searched (top-right:x, bottom-left:y, bottom-right:z,
top-left: best of the three). As expected, the optimal strategy
always shows the highest peak at 1, whereas thez strategy
always gives the lowest. This is because the ground plane is

roughly aligned with thexy-plane, so adjacent occupied voxel
are more likely to be on that plane than along thez direction.

The speed improvement over the previous method is illus-
trated by the third column of Figure 9. The blue curve indicates
the performance (in ms per occupied voxel) of the previous
method and the red curve shows the performance of the new
method. The speedup is substantial, and increases with the
radius r used for range search. For example, at the current
voxel size used on-board of the robot ofr=0.4 m, the new
method is 4.6 times faster on the flat ground example, 5.5
times on the forest example, and 3.6 times on the tall grass,
which results in an average speedup of approximately 4.5 over
the three examples.

E. Parameters influence

In this section, we analyze the influence of two important
parameters: the point density, which depends on the sensor
used, and the voxel size that is passed as input to the system.

1) Point density: Intuitively, denser data means a larger
number of occupied voxels, which in turn implies a higher
probability of overlapping neighborhoods. This is confirmed

by experimental results obtained by artificially varying point
density by sub-sampling the original data set 10 and 100
times. Timing results for the tall grass example are shown
in Figure 7. We observe that the new method performs faster
with denser data. In addition, Table II shows relevant statistics
for those three examples. We can see thatP [X < k

2] increase
and d̄ decrease with higher point density, which confirms our
intuition.

On the other hand, it is interesting to note that the previous
method runsslowerwith denser data. This is explained by the
fact that, for each voxel, the neighborhood is likely to contain
more points than with sparser data. Therefore, the number of
visited voxel per occupied voxel is higher, hence the increase
in computation time.

TABLE II

RESULTS STATISTICS FOR THE POINT DENSITY INFLUENCE.

Sub-sampling Raw points Occupied voxelsv d̄ P [X <
k

2
]

0 (raw data) 1,251,402 117,756 1.06 0.9856
10 114,161 54,808 1.2 0.9617
100 10,390 9,469 1.97 0.6926

2) Voxel size:We observe that, for a smaller voxel size,
the number of voxels must be greater to keep the same range
search radiusr. For example, ifr = 4 with voxel size of
10 cm, thenr = 8 with voxel size of 5 cm, so 8 times
more voxels must be visited than before. More generally, if
vsize is the voxel size andnneigh the number of neighbors
of a voxel, then withvsize/k we get k3nneigh neighbors.
Moreover, smaller voxel size increases the number of holes in
the data, which in turn increases̄d and decreasesP [X < k

2],
as shown in Table III. Figure 8 shows timing results obtained
by running the previous and new method on the same full
resolution data set and varying only the voxel size. The
running time is indeed much slower with a voxel size of 5 cm
versus 10 cm. Interestingly, the difference is not as obvious
when comparing 10 and 20 cm.

These results show the important compromise relative to this
parameter. An increasingly high voxel size will result in faster
performance, but also in a loss of precision in scene details.
Indeed, much of the high frequency content of the scene will
be lost. On the other hand, if the voxel size is too low, the
details will be preserved, but the running time will be much
slower. The best parameter (10 cm in our case) is found by
running benchmark tests on typical examples.

VI. CONCLUSION

In this paper we present a method inspired by dense stereo-
correlation in order to improve the computation speed of 3-D
ladar data analysis for terrain classification. It should benoted
that any computation based on a support volume and divisible
into elementary sums can take advantage of this work. The
approach relies on the reuse of computed data. The approach
is validated on ladar data obtained in various environments
using the Demo III XUV.

For the three typical data set analyzed, we observed sig-
nificant improvement in execution speed without noticeable
differences between the various terrain types studied. We
achieve on average a 4.5 fold speedup with a voxel size of
0.1 m and a range search radius of 0.4 m. Those parameters
are the ones used in the field tests reported in [14].

The current implementation is based on a static data struc-
ture and a uniform weighting scheme of the contribution
of the different volume elements. We are working on the
implementation of a scrolling version that will allow us to test
it live on-board the ground vehicle. Also, we are investigating
a different weighting scheme to extend this work to generic
kernel-like computation.

ACKNOWLEDGMENTS

Prepared through collaborative participation in the Robotics
consortium sponsored by the U.S Army Research Laboratory
under the Collaborative Technology Alliance Program, Coop-
erative Agreement DAAD19-01-209912. The authors would
like to thank General Dynamics Robotic Systems for its
support.

REFERENCES

[1] H. Chen and P. Meer. Robust computer vision through kerneldensity
estimation. InEuropean Conference on Computer Vision, 2002.

[2] A. Kelly et al. Toward reliable off-road autonomous vehicle operating in
challenging environments. InInternational Symposium on Experimental
Robotics, 2004.

[3] O. Faugeras et al. Real-time correlation-based stereo : algorithm,
implementations and applications. Technical Report RR-2013, INRIA,
1993.

[4] J. Gao and R. Gupta. Efficient proximity search for 3-d cuboids. In
Computational Science and Its Applications, volume 2669 ofLecture
Notes in Computer Science, 2003.

[5] A. Gray and A. Moore. Data structures for fast statistics. Tutorial
presented at the International Conference on Machine Learning, 2004.

[6] A. Lacaze, K. Murphy, and M. DelGiorno. Autonomous mobility for
the demo iii experimental unmanned veh icles. InProceedings of the
AUVSI Conference, 2002.

[7] J. Lersch, B. Webb, and K. West. Structural-surface extraction from 3-d
laser-radar point clouds. InLaser Radar Technology and Applications
IX, volume 5412. SPIE, 2004.

[8] T. Liu, A. Moore, A. Gray, and K. Yang. An investigation ofprac-
tical approximate nearest neighbor algorithms. InNeural Information
Processing Systems, 2004.

[9] H. Moravec. Robot spatial perception by stereoscopic vision and 3d
evidence grids. Technical Report CMU-RI-TR-96-34, Carnegie Mellon
Univeristy, 1996.

[10] H. Samet.The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1989.

[11] A. Talukder, R. manduchi, A. Rankin, and L. Matthies. Fast and reliable
obstacle detection and segmentation for cross-country navigation. In
IEEE Intelligent Vehicle Symposium, 2002.

[12] Ranjith Unnikrishnan and Martial Hebert. Robust extraction of multiple
structures from non-uniformly sampled data. InIEEE/RSJ International
Conference on Intelligent Robots and Systems, 2003.

[13] N. Vandapel, R. Donamukkala, and M. Hebert. Unmanned ground
vehicle navigation using aerial ladar data.To appear in the International
Journal of Robotics Research, 2005.

[14] N. Vandapel, D. Huber, A. Kapuria, and M. Hebert. Natural terrain
classification using 3-d ladar data. InIEEE International Conference on
Robotics and Automation, April 2004.

TABLE III

STATISTICS FOR THE VOXEL SIZE INFLUENCE. 2,046,123RAW DATA POINTS

Voxel size Sizen (in cells) Occupied voxelsv d̄ P [X <
k

2
]

5 cm 400x400x60 359,327 1.1063 0.993
10 cm 200x200x30 59,275 1.0263 0.991
20 cm 100x100x15 14,485 1.00 0.986

0 10 20 30
0

0.5

1
Optimized version

0 10 20 30
0

0.5

1
X scanning direction

0 10 20 30
0

0.5

1
Y scanning direction

0 10 20 30
0

0.5

1
Z scanning direction

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

radius (m)

tim
e,

 n
or

m
al

iz
ed

 (
m

s/
vo

xe
l)

original method
new method

Flat ground statistics:v
n

= 0.049 ;d̄ = 1.0263 ;P [X <
k

2
] = 0.9917

(a) (b) (c)

0 10 20 30
0

0.5

1
Optimized version

0 10 20 30
0

0.5

1
X scanning direction

0 10 20 30
0

0.5

1
Y scanning direction

0 10 20 30
0

0.5

1
Z scanning direction

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

radius (m)

tim
e,

 n
or

m
al

iz
ed

 (
m

s/
vo

xe
l)

original method

new method

Forest statistics:v
n

= 0.070 ;d̄ = 1.0519 ;P [X <
k

2
]=0.9923

(d) (e) (f)

0 10 20 30
0

0.5

1
Optimized version

0 10 20 30
0

0.5

1
X scanning direction

0 10 20 30
0

0.5

1
Y scanning direction

0 10 20 30
0

0.5

1
Z scanning direction

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

radius (m)

tim
e,

 n
or

m
al

iz
ed

 (
m

s/
vo

xe
l)

original method

new method

Tall grass statistics:v
n

= 0.065 ;d̄ = 1.0678 ;P [X <
k

2
] = 0.9856

(g) (h) (i)

Fig. 9. Terrain influence. Each line corresponds to a terrainor environment type: flat, forest and tall grass. The first column contains a snapshot of a 3-D
model of the scene, the elevation is color coded. The second column contains histograms of distribution of distances between current voxel and previous
occupied voxel, for different scanning directions. Thex (y) axis is the distance in number of voxel (the number of voxels).The rightmost peak represents
infinite distance, that is, there is no previous occupied voxel in that direction. It is positioned at an arbitrary distance in the graph. The last column shows a
comparison of speed of execution of the original versus the new method, with voxel size of 0.1 m.

