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Abstract— Autonomous systems are efficient but often unre-
liable. In domains where reliability is paramount, efficiency is
sacrificed by putting an operator in control via teleoperation.
We are investigating a mode of shared control called “Sliding
Autonomy” that combines the efficiency of autonomy and the
reliability of human control in the performance of complex
tasks, such as the assembly of large structures by a team of
robots. Here we introduce an approach based on Markov models
that captures interdependencies between the team members and
predicts system performance. We report results from a study
in which three robots work cooperatively with an operator to
assemble a structure. The scenario requires high precision and
has a large number of failure modes. Our results support both
our expectations and modeling and show that our combined
robot-human team is able to perform the assembly at a level
of efficiency approaching that of fully autonomous operation
while increasing overall reliability to near-teleoperation levels.
This increase in performance is achieved while simultaneously
reducing mental operator workload.

I. INTRODUCTION

The demands on robotic systems are rapidly increasing
toward more and more complex application scenarios. In many
cases, the requirements far exceed the abilities of any single
robot of manageable complexity. One approach to this problem
is to use teams of robots whose collective capabilities are
required to complete the scenario, but where each individual
robot’s abilities cover only a small subset of the solution. We
would like to deploy such teams in difficult environments (with
high uncertainty, tight coordination requirements, etc.) that
may be inaccessible to humans. Such scenarios demand great
autonomy on the part of the robots. However, reliable handling
of all possible contingencies in such complex environments is
far beyond the current state of the art.

Traditionally, robots are either fully autonomous or must be
carefully controlled by a remote operator. The latter is partic-
ularly the case in applications where reliability is paramount.
The goal of complete reliable autonomy remains elusive as
systems become increasingly complex and it becomes in-
tractable to anticipate and provide for all possible failure
conditions. As a result, autonomous systems are not likely to
be able to function in complex environments entirely without
human input in the near future. However, human control of

robots through teleoperation is often painstakingly slow and
requires great concentration on the part of the operator, in
addition to latency and the high cost of data communication
incurred by the system to provide the necessary situational
awareness to the user. Thus, there is a need for a hybrid of
autonomy and teleoperation for robot systems to extend their
capabilities and usefulness.

We are investigating an approach, called “Sliding Auton-
omy” (also referred to as “Adjustable Autonomy” [1][2][3])
where control over subtasks is dynamically assigned to either
an autonomous robot or a human operator, and use it to control
a team of robots to perform coordinated assembly operations
in a constrained workspace. In our scenario, the performance
characteristics of full autonomy are high efficiency (measured
by low completion time) and a non-trivial failure rate, whereas
complete teleoperation is characterized by lower efficiency
with very few failures. Our primary objective with Sliding
Autonomy is to enable the team of robots to combine the
two modes of operation in a way that both increases overall
team efficiency and reduces the number and probability of
irrecoverable failures.

Here we introduce our approach to modeling the effects
of Sliding Autonomy by using Markov models to describe
the flow of control between autonomy and teleoperation for
all functional blocks of the scenario. The method is used to
analyze overall system performance based on performance of
main component tasks of our assembly operation. We show
that our models agree with the qualitative expectations that
Sliding Autonomy allows the team to operate at speeds com-
parable to autonomous operation while significantly improving
reliability. In addition, the model can be used to perform
system-level analysis of the flow of control among agents
on the team to help us identify bottlenecks and potential for
improvement. We also report the results of a user study during
which expert operators worked with our robots to complete
assemblies with and without Sliding Autonomy. The results of
the study support both our intuitive expectations and modeling
results and show that Sliding Autonomy provides an increase
in efficiency of 30-50% over teleoperation together with an
increase in reliability of up to 13% over autonomous operation
depending on the operator’s ability.



II. RELATED WORK

Our work combines and extends concepts from primarily
three fields of research: coordinated manipulation, robots
assisting humans and joint human-robot teams.

Work by Rus et al. examines a team of robots collaborating
to reorient and move furniture in a room by appropriately
pushing at it [4]. The emphasis of this research is on com-
posing an assembly plan from a grammar of component tasks.
Investigating a similar problem from a control perspective,
Chaimovizc et al. enabled a team of robots to manipulate boxes
by driving in formation to maintain the desired forces acting on
the objects [5]. Stroupe et al. use the CAMPOUT architecture
to coordinate fully autonomous robots with purely behavior-
based strategies to perform very tightly coupled component
tasks [6]. Two heterogeneous robots carry a beam and position
it with respect to an existing structure with sub-centimeter
accuracy. While our previous work required manipulation
by multiple robots [7], the current focus is on higher-level
coordination between robots and humans. Accordingly, we
switched from a very detailed Petri-net-based single-task
model to a more abstract complete system representation. The
main advantage of this new representation is its ability to
evaluate system performance without the need to run extensive
simulations.

NASA’s ASRO project has investigated mobile robot assis-
tants to help an astronaut by carrying tools, helping to manip-
ulate objects, and providing sensor information [8]. While the
robot was physically working alongside the astronaut, it was
completely teleoperated by an operator at a remote site. The
COBOT project seeks to make manually operated machines
more intelligent by performing the fine manipulation required
for a task autonomously based on force input from a human
operator [9][10]. For example, by simply pushing against a
mechanism, the operator can command a robot to move very
accurately along a desired trajectory. The roles of the human
operator and the robot are clear and unvarying, and both must
operate simultaneously. By design, the operator in our scenario
is not collocated with the robots and thus is only able to have
limited interaction with what happens in the workspace. As
a result, our robots need a certain degree of autonomy to
function while the operator is not actively attending to them.

Offloading part of a tedious operation to an autonomous
agent has been implemented in applications such as scheduling
meetings with many participants. Scerri has proposed Sliding
Autonomy for software agents applied to a daily scheduler
[11]. It autonomously attempts to resolve timing conflicts
(missed meetings, group discussions, personal conflicts, etc.)
among some set of team members. While this system is able
to handle last-minute changes in plans, once a valid meeting
schedule is found no execution-time failures will occur. Due
to sensor noise and inaccuracy in real-world applications such
as ours, we specifically need to be able to deal with failures
in nominally valid plans.

Most closely related to our work are joint teams of humans
and robots where control is shared between both in response

to the overall system’s performance. Using a roving eye
and a (fixed) manipulator similar to ours, Kortenkamp et
al. developed and tested a software infrastructure that allows
for sliding autonomous control of a robot manipulator [3].
Their scenario involved a pick-and-place operation during
which adjustable autonomy allowed the operator to recover
from visual servoing errors, participate in high-level planning,
and teleoperate the manipulator to complete tasks beyond its
autonomous capabilities. Using an approach to human-robot
interaction related to ours, Fong et al. enable the robot and the
user to participate in a dialogue [12]. The robot can ask the
operator to help with localization or to clarify sensor readings.
The operator can also make queries of the robot. Our work
extends these experiments with a more complex multi-robot
scenario and a finer granularity of Sliding Autonomy.

Due to high demands on reliability, space applications are
often found among scenarios employing Sliding Autonomy.
Dorais et al. provide several examples of how Sliding Auton-
omy will be essential for space operations where demands on
the operator must be focused and minimized [2]. Our work
presents a working implementation of Sliding Autonomy in
a complex domain and tries to provide some general insights
into the effects of this control paradigm on the performance
of the overall system.

III. MOTIVATION

The motivating scenario for our work is a robotic con-
struction crew of three heterogeneous robots. Each agent has
a distinct set of capabilities needed to perform a complex
assembly operation that decomposes into many component
tasks. The team (see Fig. 1) consists of a strong but imprecise
NIST RoboCrane [13], an ATRV-2-base Mobile Manipulator
with a 5-DOF arm built by Metrica/TRACLabs [14] and an
RWI B24 synchro-drive robot with a pan-tilt stereo pair, the
Roving Eye [15].

Fig. 1. The Mobile Manipulator (top left), the Roving Eye (top right), the
Crane (bottom left) and the completed structure (bottom right).

The robots assemble four sides of a square structure of
four beams supported by four corner nodes (Fig. 1, bottom
right) following the script shown in Fig. 2. The nodes are
passively mobile and cannot resist the forces required to



Fig. 2. Task script for and a plan view graphical representation of a single node-beam-node subassembly. The robots are represented by their characteristic
shapes (the square represents the Crane’s end-effector). Arcs between nodes on different agents indicate preconditions for the target node’s task.

securely dock a beam into them – they slide away unless
they are “braced” by another robot. To perform the assembly
task, the Crane braces a node using relative pose information
the Roving Eye can extract from fiducials attached to all
relevant bodies. The Mobile Manipulator then moves a beam
into place and connects it to the node (again using tracking
information provided by the Roving Eye). After the Roving
Eye relocates to the next corner of the square, the same
sequence of bracing and docking operations is repeated to
construct a node-beam-node subassembly. To complete the
task, the Mobile Manipulator repositions to the next side of
the square. During testing and experimentation, we repeat this
scenario four times to assemble an entire square structure.

Our team of robots regularly constructs this structure with-
out supervision or intervention from an operator in seven to
eight minutes per side or approximately thirty minutes for the
entire square. However, in the course of the assembly much
can go wrong. Failures range from the Roving Eye losing
track of a part of the structure it needs to see, to the Mobile
Manipulator maneuvering the beam into a spot from which
docking becomes impossible, to terminal failures such as a
beam being knocked off the Mobile Manipulator’s arm.

It is possible to recover from some of the failures with
simple contingencies. Others, however, are impossible to re-
cover from autonomously because the available sensors do
not provide adequate information. Still, in the majority of
problem cases, the autonomous system can at least detect that
something is wrong, even if it cannot determine the particular
problem. In such a situation, our robots are able to ask for
help from an operator using Sliding Autonomy.

As a whole, the entire assembly team is a complex system
consisting of many subsystems. Gathering data to understand
the inner workings of the team as a whole is very time-
consuming. However, during development and testing we can
easily collect large amounts of data for specific subsystems
working autonomously or under teleoperation. In order to
gain a broader understanding of the team’s performance,
we introduce a modeling approach that combines abstract

representations of component performance (for which we have
lots of data) into a model of the entire robot team. With this
composite model we want to predict overall efficiency and
reliability without having to run system simulations. We also
want to use the model to perform system analysis to predict
bottlenecks and potential deadlocks.

IV. SLIDING AUTONOMY

A. Infrastructure

We have developed a tiered distributed multi-agent archi-
tecture to support Sliding Autonomy for our team of robots.
Each component task of the scenario is split into a monitor
and an action component, each of which can either be under
autonomous or manual control. It is often the case that the
robots are good at carrying out a specific task, but they lack the
necessary sensors to reliably determine when they are done.
Alternatively, they may have the sensors but lack autonomous
control. For example, the Mobile Manipulator’s arm could be
under human control during a docking while the Roving Eye
autonomously repositions itself to maintain a clear view of all
fiducials required to determine accurate pose information and
track task progress.

In order to take advantage of Sliding Autonomy, the robot
team needs a principled way of deciding who should be in
control of which part of a component task in order to maximize
the team’s overall performance. In order to make a more
informed decision, we developed a user performance modeling
system [16] to collect data about the robots’ performance as
well as that of each operator working with the team. Each time
a new component task starts or an active one fails, this system
evaluates the expected benefit over the remainder of the entire
scenario of assigning control of a particular component task
either to an autonomous robot or an operator.

An operator working with the team of robots sits in front
of a computer screen away from the robots’ workspace. His
screen shows a graphical interface that allows him to interact
with the robots and change control of active component tasks.
In addition, he is provided with a video feed from the Roving



Eye’s cameras, a visualization tool that provides 3-D scene
information, and audio cues if one of the robots asks for help.
When asked for assistance, the operator can control one robot
at a time using a 6-DOF SpaceMouse [17].

B. Modes of Control

In addition to the obvious control modes of Teleoperation
and full Autonomy, we introduced two intermediate modes in
the autonomy spectrum. System-Initiative Sliding Autonomy
(SISA) and Mixed-Initiative Sliding Autonomy (MISA) differ
in the degree to which the human is involved in the operation
of the team.

In SISA mode, the operator does not follow the robots’
progress until called to help with a problem or a component
task is assigned to him based on his prior performance. At that
time he must become aware of the state of assembly from a
cold start to perform the task at hand [18]. At any time the
human may pass control to the autonomous system if he feels
that the particular problem has been solved and the system
will be able to continue autonomously. While in SISA mode,
the operator can perform other unrelated tasks in parallel to
working with the robot team. Since there are situations where
the appropriate reaction to failures is time critical, the inherent
delay due to the acquisition of situational awareness in SISA
makes this mode ill-suited for such applications.

To address this issue, we implemented a second Sliding
Autonomy mode, MISA, where in addition to waiting to be
assigned a task, the operator continually monitors progress
and is able to actively take over control whenever he sees fit.
The ability to proactively take control enables the operator to
avoid certain failures before they are detected or predicted by
the autonomous system. However, this mode demands a much
higher mental workload of the operator and does not allow
him to multi-task while working with a team of robots.

TABLE I
EXPECTED QUALITATIVE SYSTEM BEHAVIOR.

Time to Success Operator
Completion Rate Workload

Teleoperation worst best worst
Autonomous best worst best
SISA good good better
MISA better better good

Table I summarizes our qualitative expectations for overall
system performance. For each metric, we expect Teleoperation
and Autonomy to behave in opposite fashions. While Teleoper-
ation is slow, demanding and reliable, we expect autonomous
operation to be fast and less reliable, without any workload
on an operator. In the Sliding Autonomy modes, we expect a
higher workload for MISA to yield better performance while
SISA’s performance suffers from its lower operator demand.

V. SYSTEM MODELING AND ANALYSIS

A. System Modeling

Our current assembly script (Fig. 2) can be represented by
a linear sequence of functional blocks as shown in Fig. 3.

Each block involves multiple robots and can be decomposed
into finer levels of detail describing the actual tasks of each
individual agent. While such fine granularity is of interest
when studying the internal workings of a system [7], it
unnecessarily complicates the understanding of the effects of
Sliding Autonomy on a robot team’s performance for a given
scenario. For the remainder of this paper, we will consider this
simplified task script as the model underlying our analysis.

Fig. 3. Simplified script for our assembly scenario. Each of the tasks shown
decomposes into a sequence of smaller tasks. The data shown on the left was
used to predict system performance. The numbers were collected on a per task
basis based on several months of experience of the users with our system.

To model the assembly scenario performed by our robots,
we represent each functional block along the sequence in
Fig. 3 with a Markov system (Fig. 4) corresponding to the
mode of Sliding Autonomy we want to model. With the team
working in a particular mode, all functional blocks follow
the same transition model, but their transition probabilities
may vary. While we can use this model to study the effects
of different transition probability assignments (i.e. user and
robot abilities), we can also use information collected by our
user performance models over many trials to obtain realistic
estimates appropriate for our implementation.

The functional models for autonomous and manual oper-
ation are simple (Fig. 4, top). The autonomous robots have
a certain probability of succeeding at the task at hand and
continuing on to the next functional block. Alternatively, they
may fail, which will either be a catastrophic failure or one
for which an autonomous recovery strategy exists. During
teleoperation, we assume that the operator will continue to
try and achieve the task goal until either he succeeds and
continues on to the next functional block or he gets stuck
in an unrecoverable condition.

The models for System-Initiative and Mixed-Initiative Slid-
ing Autonomy are built up from the basic models for teleop-
eration and autonomy as indicated by corresponding arrows
in Fig. 4. They are almost identical, with an additional
transition (labeled P(takeover)) from autonomous operation
to human operation when the operator decides to take over
control in MISA mode. At the beginning of a block, the user
model decides who attempts to perform the task [16]. If the
autonomous system is chosen and the attempt fails in a way
that is recoverable, the user model reevaluates the situation
and makes another decision about who will assume control.
If the human is in charge, he may choose to yield control



Fig. 4. Functional models for the different modes of control. Each block in
the script can be represented by the transition model for the chosen mode
of operation. Corresponding arrows are used to indicate how the sliding
autonomy model is built up from the basic teleoperation and autonomy
models. Note: the transition labeled P(takeover) is only present in MISA mode.

back to the robots at any time. The remaining transitions are
analogous to pure autonomy or teleoperation.

Considering the entire task sequence, we obtain a large
Markov system with two absorbing states: one for the goal
state (successful completion) and one representing terminal
failure at any point along the script. We can estimate the
robot team’s failure rate by computing the probability of being
absorbed by the TERMINAL FAILURE state. We can also
compute the number of expected visits to any state prior to
absorption. If we assign completion times to the appropriate
states, we can add up the times associated with each state
multiplied by the expected number of visits to that state to
obtain an estimate of the time taken to complete the scenario.
The number of visits to each state also provides us with
valuable information about potential bottlenecks in the flow
of control. If a particular state is visited disproportionally
often, we can either focus our efforts toward improving the
autonomous system’s performance at the particular step, or we
can specifically train operators for the reoccurring problem.

B. Performance Analysis

Given a Markov system made up of transition blocks as
described above, we can analyze the system’s behavior using
standard techniques [19]. If we number the states with the two
absorbing states consecutively at the end of the list, we can
write the system’s transition matrix P for n states as

P =

(
Q R

O I

)
(1)

where
Q = (n− 2)× (n− 2) matrix

R = (n− 2)× 2 matrix

O = 2× (n− 2) zero matrix

I = 2× 2 identity matrix

Q is the transition matrix between non-absorbing states
while R represents transitions from non-absorbing states to
absorbing states. If we only consider the non-absorbing states,
we can write the matrix N to determine the expected number
of visits to each state as

N = I +
∞∑

i=1

Qi = (I −Q)−1 (2)

where I is the appropriately sized identity matrix. The entry
Nij represents the number of times we expect to visit state
j when starting in state i before absorption. If we write a
vector t whose entries are the average time spent in each
state, then the dot product of t with the first row of N gives
us the expected time the system will take before completing
the scenario (either successfully or unsuccessfully). Note that
this timing estimate will differ from the robots’ performance
since revisiting a state in real operation corresponds to either
recovering from a failure (in which case the second attempt
may take significantly longer than the first) or the result of
a take-over or yield of control in Sliding Autonomy mode
(which can cause the task to complete faster than if it had to
run from the start). A more faithful representation of the robot
team’s performance would include additional states for each
of these cases with appropriate timings assigned to them.

To compute the probabilities of success or failure for a task
sequence described by a given Markov system we compute
matrix M as

M = NR. (3)

The entry Mij represents the probability of ending up in
absorbing state j when starting from (non-absorbing) state i.
In our case, with the states numbered as described above, the
first row of M contains the probability of success (for arriving
at the FINISH state) and the probability of failure (for arriving
at the TERMINAL FAILURE state).

Using accumulated data for operators and robots to estimate
realistic transition probabilities and timing characteristics, we
computed our performance metrics for each of the four modes
of Sliding Autonomy. As mentioned above, the grouping into
functional blocks used here does not correspond directly to
component tasks in our actual scenario for which we have
detailed timing information. Instead, the main underlying
component tasks were selected to estimate completion time.

The system model we have used here makes a simplification
of the decision process used to decide whether the operator
should be asked for help. Since these decisions are based on
the number of preceding failures in a given functional block, to
fully represent this behavior each block would have to consist
of copies of itself corresponding to specific failure counts.
To avoid this explosion of states, our composite model is



based on the assumption that the performance model does not
change over the course of the scenario. Thus, we can represent
the robots’ approximate behavior with a single layer of each
functional block. The user model transitions were set to always
transition to the state corresponding to the agent who would
be assigned that task given its performance model.

C. Results

The results of this analysis are shown in Table II. The
empirical data underlying the transition probabilities encoded
in this model were collected over the course of several months
of the two users working with the system in teleoperation
and autonomy modes. Each probability value shown in Fig. 3
is based on between 15 and 40 data points. The constant
time blind repositioning moves of the Roving Eye and the
Mobile Manipulator were not included in the model. They
are pre-assigned to the autonomous robots during Sliding
Autonomy operation and can be considered 100% reliable.
To allow a comparison of the predicted results with the
experimental results in the following section, corrections were
made when showing the completion times in Table II (210
seconds were added for teleoperation, 97 seconds for the other
modes). These times represent the combined times for the both
blind moves based on approximately 20 and 50 data points,
respectively, collected over several months.

TABLE II
EXPECTED USER PERFORMANCE FOR COMPLETING ONE SIDE OF THE

ASSEMBLY COMPUTED USING THE COMPOSITE MARKOV MODELS.

User 1 User 2
Time to Success Time to Success

Completion Rate Completion Rate
Teleop 740 sec 86% 709 sec 96%
Autonomy 571 sec 76% 571 sec 76%
SISA 612 sec 79% 696 sec 91%
MISA 673 sec 83% 706 sec 92%

The overall trend in these results agrees with our qualitative
expectations in Table I: teleoperation takes longest and shows
the best reliability, whereas autonomy is fastest with a much
lower success rate. Sliding Autonomy lies in between the two
with MISA being slightly more reliable. Note that the timing
predictions are overestimates because the model considers
multiple visits to a state to take the same time. For example, if
a component task performed by an autonomous robot fails in a
recoverable fashion, then the recovery action enters the timing
calculation as another full-time attempt while in many cases
the bulk of the work has already been done and the task can
be completed much faster. To make more accurate prediction
of completion time, the model could discount repeated visits
when computing the time estimates.

With the model shown to be a simple but plausible repre-
sentation of our system’s behavior under Sliding Autonomy,
we can exploit the structure of the Markov system further
to analyze the flow of control throughout the scenario. For
example, we can determine which states along the task script
are visited disproportionally often. This information would

allow us to either provide the team with an expert user with
particularly good performance for the problematic task, or it
could focus our efforts in improving autonomous recovery
strategies for failure-prone tasks. Both measures increase over-
all performance of the entire team.

VI. EXPERIMENTAL EVALUATION

A. Experiment Design

To compare the predictions of our model to the robot team’s
actual performance, we conducted a user study to quantify
the effects of Sliding Autonomy on our assembly scenario.
Since training of novice subjects to the required familiarity
with our robots and scenario proved to be impossible within a
reasonable amount of time, the results presented here are from
two expert users familiar with our system.

An experimental run consisted of one attempt to assemble
one side of the square structure. For each run, we recorded the
total time taken and marked the run a success or failure. After
each run, the operator was given a NASA TLX (Task Load
Index) survey designed to measure mental workload based on
a series of questions asking the user to rank components of
workload (such as mental demand, frustration, etc.) on a scale
from 1 to 10 [20]. The result is a score between 0 and 100
proportional to perceived workload.

B. Results

With the exception of the cells marked in bold font in Table
III, our results for both users generally agreed with our early
predictions in Table I. They also agree with our modeling
results in Table II if we allow for the overestimate in timing
mentioned above. Under Teleoperation, the team worked 1.5-2
times slower that fully autonomous, but at the same time the
success rate was improved by about 30%.

TABLE III
USER PERFORMANCE RESULTS. DISCREPANCIES FROM EXPECTED

RESULTS ARE HIGHLIGHTED IN BOLD. ALL DATA CORRESPOND TO

ATTEMPTS TO ASSEMBLE ONE SIDE OF THE SQUARE STRUCTURE.

Mean Time Success TLX
User 1 to Completion Rate Workload

[std dev] (trials) [std dev]
Teleoperation 729 [139] sec 100% (12) 42 [10]
Autonomous 437 [94] sec 75% (24) —
SISA 462 [63] sec 75% (20) 16 [16]
MISA 492 [140] sec 81% (16) 17 [11]

Mean Time Success TLX
User 2 to Completion Rate Workload

[std dev] (trials) [std dev]
Teleoperation 911 [193] sec 92% (12) 71 [9]
Autonomous 437 [94] sec 75% (24) —
SISA 458 [106] sec 85% (20) 50 [14]
MISA 445 [72] sec 88% (16) 34 [11]

Fig. 5 clearly shows the trends we expected to see in
our performance metrics. With some amount of autonomy as
part of the control mode, the time to complete the scenario



approached the time taken by the autonomous system alone
while in teleoperation mode the time was much higher. At the
same time, we found that nearly any amount of user input
to the system (with the exception of User 1 in SISA mode)
increases the probability of success for the entire scenario. The
more human input, the more reliable the performance.

Fig. 6 best exemplifies the subjectivity of the data provided
by the NASA TLX survey. While User 1 generally follows
the expected trend, User 2’s perception of workload increased
when moving from MISA to SISA even though the operator
should have to pay less attention to the robots there.

Fig. 5. Comparison of our two subjects’ independent runs and the fully
autonomous system. Completion time and success rate generally follow our
expectation.

Fig. 6. Comparison of our two subjects’ perception of workload. These
results are necessarily subjective and depend heavily on the both the task and
the user.

The histograms of User 1’s performance (Fig. 7) show again
that the autonomous modes are clearly faster than teleopera-
tion. The fastest run time was recorded under autonomous
operation at just over 300 seconds. At the same time, a large
portion of the teleoperation runs took almost 900 seconds,
much longer than the slowest run during an autonomy trial.
The multi-modal groupings correspond to assembly attempts
with varying numbers of failures. The left-most grouping
represents smooth runs without failures, and the failure count
increases for each grouping to the right.

VII. DISCUSSION

In general we found that our hypotheses regarding our
team’s performance in both Sliding Autonomy modes accu-
rately predicted their true behavior. While the simplicity of
our current model forces us to accept certain inaccuracies,
particularly in the prediction of performance time, it allows us
to perform meaningful analysis of the flow of control within
the team of robots and human operators.

Our results clearly show the inherent trade-off of speed ver-
sus robustness at the two extremes of the autonomy spectrum.
If we can accept an increase in the time needed to complete
the scenario of 50-100%, a skilled operator can teleoperate

Fig. 7. Histograms comparing User 1’s performance when using the different
Sliding Autonomy modes. The horizontal axis marks completion time in
seconds, and the height of the bars shows the number of experimental runs
for each time interval.

the entire team with minimal failures. The dramatic increase
in mental workload for that operator, however, reduces the
practical usefulness of this approach significantly.

As we have shown, introducing Sliding Autonomy as a
mode of operation can overcome this dilemma. As shown
in Fig. 5, any amount of autonomy reduces completion time
and human assistance generally increases reliability. User 1’s
low performance in SISA mode can be explained by his
comparatively lower performance models (see Fig. 3) that
caused the autonomous system to remain in control for much
of the scenario. Taking advantage of both opposing trends,
Sliding Autonomy enables a team of robots to work both
efficiently and reliably by incorporating the human operator’s
intuition to quickly understand problematic conditions and
initiate recovery measures. With tedious and non-critical tasks
still being performed autonomously, Sliding Autonomy also
provides a clear benefit to the mental demand on the operator.

The subjective nature of the TLX results makes a direct
user-to-user comparison meaningless. In addition, there are
at least two factors contributing to a user’s perception of
workload that are not well captured within the TLX frame-
work: boredom of the operator and frequency of the system’s
calls for help. If a strong user working in SISA mode is
asked for help so frequently that effective multi-tasking is
impossible, the constant need to regain situational awareness
can be much more stressful than continuously monitoring the
robots’ progress, as in MISA mode. After the experiment, User
2 confirmed that this was the case during SISA trials.

We are currently in the process of moving to a more
complex assembly scenario with a more flexible ordering of
component tasks and the potential for parallelism in the as-
sembly process. We will have to extend our models to be able
to support such features, and we are investigating how Sliding
Autonomy can be used to prioritize requests for assistance



from different robots working on different component tasks
in order to optimize overall team performance. Part of this
new scenario will also be a planning/scheduling system to task
and retask robots and operators. We are investigating ways of
integrating Sliding Autonomy concepts into the planning stage
as well with the goal of taking advantage of performance gains
similar to those reported here during task execution.

VIII. CONCLUSION

As a hybrid of autonomy and teleoperation, we have shown
that Sliding Autonomy combines the benefits of each mode
individually and enables our team of robots to operate both
efficiently and reliably at the same time. By exploiting the
strengths of each approach, this solution neither overly burdens
the operator nor requires unmanageable complexity of the
autonomous robots to realize its gain in performance.

We showed that the difference between SISA and MISA
operation (i.e. the amount of attention an operator pays to the
system) does not noticeably improve the team’s overall effi-
ciency for our scenario, but that a human’s constant attention
raises the success rate of completing the scenario. The avail-
ability of an operator serves as a safety net for the majority
of failures the robots cannot recover from autonomously.

Purely from a system performance point of view, the choice
between SISA and MISA depends heavily on the system as
a whole. If the operators are comparable in skill level with
the autonomous system, and the system is able to perform
significant portions of the task on its own, then the humans can
productively multi-task when operating under SISA. Clearly,
if the autonomous system were unable to detect most failures,
MISA would be the preferred method in all cases in order to
compensate for the autonomous system’s lack of reliability.
With the system able to reliably detect failure conditions, the
slightly lower success rate of SISA compared to MISA may
be outweighed by the fact that a few operators can oversee
several different teams at the same time. For very skilled users,
however, their abilities often lead to them being continuously
asked for help because the system defers to the operator when
it fails rather than trying over again.

For scenarios where optimizing both efficiency and relia-
bility is not absolutely essential, a Sliding Autonomy system
needs a way to adjust its balance of optimizing performance at
all cost versus frequency of interruption of its operators. This
mechanism is needed to avoid putting skilled operators at the
mercy of the system to either explicitly spend all their time
monitoring the operation in MISA mode or to be be unable to
perform parallel work in SISA mode due to constant calls for
help. If the user has the ability to specify his willingness to
be interrupted, it can be directly incorporated into the decision
process of who will be assigned the next task.

Our user experiment has allowed us to validate our modeling
approach to Sliding Autonomy. The ability to evaluate overall
system behavior based on data collected on a component task
basis enables this approach to model and analyze a Sliding
Autonomy system before it is implemented. The model also
allows us to determine problem areas in an existing system
and focus our efforts to improve its overall performance.

ACKNOWLEDGMENT

This work has been supported by NASA grant NNA04-
CK90A. The experiments were conducted together with Bren-
nan Sellner and Laura Hiatt. In addition, the authors would
like to thank the many individuals who contributed to the
project over the years: Rob Ambrose, David Apfelbaum, Jon
Brookshire, Rob Burridge, Brad Hamner, Dave Hershberger,
Myung Hwangbo, Simon Mehalek, Metrica/TRACLabs, Josue
Ramos, Trey Smith, Pete Staritz, and Paul Tompkins.

REFERENCES

[1] M. A. Goodrich, D. R. Olsen, J. W. Crandall, and T. J. Palmer,
“Experiments in Adjustable Autonomy,” in Proceedings of the IJCAI
Workshop on Autonomy, Delegation and Control: Interacting with Intel-
ligent Agents, 2001.

[2] G. Dorais, R. Banasso, D. Kortenkamp, P. Pell, and D. Schreckenghost,
“Adjustable Autonomy for Human-Centered Autonomous Systems on
Mars,” Presented at the Mars Society Conference, 1998.

[3] D. Kortenkamp, R. Burridge, P. Bonasso, D. Schreckenghost, and
M. Hudson, “An Intelligent Software Architecture for Semiautonomous
Robot Control,” in Autonomy Control Software Workshop, Autonomous
Agents 99, 1999.

[4] D. Rus, B. Donald, and J. Jennnings, “Moving Furniture with Teams of
Autonomous Robots,” in Proceedings of 1995 IEEE/RSJ International
Conference on Intelligent Robots and Systems 95, vol. 1, 1995.

[5] L. Chaimowizc, T. Sugar, V. Kumar, and M. Campos, “An architecture
for tightly coupled multi-robot cooperation,” in Proceedings of ICRA
2001, Seoul, Korea, May 21-26, 2001.

[6] A. Stroupe, T. Huntsberger, A. Okon, and H. Aghazarian, “Precision
Manipulation with Cooperative Robots,” in Multi-Robot Systems: From
Swarms to Intelligent Automata, L. Parker, F. Schneider, and A. Schultz,
Eds. Springer, 2005.

[7] J. Brookshire, “Enhancing Multi-Robot Coordinated Teams with Sliding
Autonomy,” Master’s thesis, Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, May 2004.

[8] R. R. Burridge, J. Graham, K. Shillcutt, R. Hirsh, and D. Kortenkamp,
“Experiments with an EVA Assistant Robot,” in Proceedings of i-
SAIRAS 2003, Nara, Japan, 2003.

[9] R. B. Gillespie, J. E. Colgate, and M. Peshkin, “A General Framework
for Cobot Control,” in International Conference on Robotics and Au-
tomation, Detroit, MI, 1999.

[10] W. Wannasuphoprasit, P. Akella, M. Peshkin, and J. E. Colgate, “Cobots:
A Novel Material Handling Technology (best paper award),” Inter-
national Mechanical Engineering Congress and Exposition, Anaheim,
ASME 98-WA/MH-2, 1998.

[11] P. Scerri, D. Pynadath, and M. Tambe, “Towards Adjustable Autonomy
for the Real World,” Journal of AI Research, vol. 17, 2003.

[12] T. Fong, C. Thorpe, and C. Baur, “Robot, Asker of Questions,” Robotics
and Autonomous Systems, vol. 42, 2003.

[13] R. Bostelman, J. Albus, N. Dagalakis, and A. Jacoff, “RoboCrane
Project: An Advanced Concept for Large Scale Manufacturing,” in
Proceedings of the AUVSI Conference, Orlando, FL, July 1996.

[14] “Metrica/TRACLabs Arm Website,” Company website. [Online].
Available: ”http://www.traclabs.com/robotarm.htm”

[15] R. Simmons, J. Fernandez, R. Goodwin, S. Koenig, and J. O’Sullivan,
“Lessons learned from xavier,” IEEE Robotics and Automation Maga-
zine, vol. 7, no. 2, pp. 33–39, June 2000.

[16] B. Sellner, R. Simmons, and S. Singh, “User Modelling for Principled
Sliding Autonomy in Human-Robot Teams,” in Multi-Robot Systems:
From Swarms to Intelligent Automata, L. Parker, F. Schneider, and
A. Schultz, Eds. Springer, 2005.

[17] “SpaceMouse manual,” Company website. [Online]. Available:
”http://www.3dconnexion.com/spacemouseplus.htm”

[18] B. Sellner, L. Hiatt, R. Simmons, and S. Singh, “Attaining Situational
Awareness for Sliding Autonomy,” in Procedings of HRI 2006, 2006.

[19] P. Bonacich, “Textbook on Mathematical Sociology, Chapter 9: Markov
Chains - II.” [Online]. Available: http://www.sscnet.ucla.edu/soc/faculty/
bonacich/chapt9-2.pdf

[20] S. G. Hart and L. E. Staveland, Human Mental Workload. Amsterdam:
North-Holland, 1988, ch. Development of the NASA-TLX (task load
index): Results of Empirical and Theoretical Research, pp. 139–183.


