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Abstract—This paper considers prediction of slip from a
distance for wheeledground robots using visual information as
input. Large amounts of slippage which can occur on certain
surfaces,such as sandy slopes,will negatively affect rover mobil-
ity. Therefore, obtaining information about slip before entering
a particular terrain can be very useful for better planning and
avoiding terrains with large slip.

The proposed method is based on learning from experience
and consistsof terrain type recognition and nonlinear regression
modeling. After learning, slip prediction is done remotely using
only the visual information as input. The method has been
implemented and tested ofine on several off-road terrains
including: soil, sand, gravel, and woodchips. The slip prediction
error is about 20% of the step size.

I. INTRODUCTION

Slip is ameasuref thelack of progresof awheeledground
robot while driving. High levels of slip can be obsered on
certainterrains,which canlead to signi cant slow down of
the vehicle, inability to reachits prede ned goals,or, in the
worst case,getting stuck without the possibility of recovery.
Similar problemswere experiencedin the Mars Exploration
Rover (MER) missionin which one of its rovers got trapped
in a sanddune,experiencinga 100% slip (Figure 1). In future
missionsit will be importantto avoid such terrains, which
necessitatethe capability of slip predictionfrom a distance,
sothatadequatlanningcould be performed.This researchs
relevantto both Marsroversandto Earth-basegroundrobots.

While someeffort hasbeendonein mechanicaimodeling
of slip for wheeledgroundrobots[2], [8], [14], no work, to
our bestknowledge, has consideredpredicting slip, or other
propertiesof the vehicle-terraininteraction,remotely In this
paperwe usevision informationto enablethat.

We proposeto learn a mapping betweenvisual informa-
tion (i.e. geometryand appearanceoming from the stereo
imagery) and the measuredslip, using the experiencefrom
previous traversals.Thus, after learning,the expectedslip can
be predictedfrom a distanceusing only stereocimagery as
input. The methodconsistsof: 1) recognizingthe terraintype
from visual appearanceand then, after the terrain type is
known, 2) predicting slip from the terrain's geometry Both
componentsare basedon learning.In our previous work we
have shavn that the dependenceof slip on terrain slopes
when the terrain type is known (termed slip behaior’) can
be learnedand predictedsuccessfully[1]. In this paperwe
describethe whole systemfor slip learning and prediction,
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Fig. 1. TheMarsExplorationRover "Opportunity'trappedn the “Pugatory'
duneon sol 447. A similar 100% slip conditioncanleadto missionfailure.

Fig. 2. TheMarsExplorationRover "Spirit' in the JPL SpacecrafAssembly
Facility (left). The LAGR vehicle on off-road terrain (right).

including the texture recognitionand the full slip prediction
from sterecimagery

The output of the slip predictionalgorithm is intendedto
be incorporatedinto a traversability costto be handeddown
to animproved pathplannerwhich, for example,canconsider
regionsof 100% slip asnon-trasersableor cangive highercost
to regionswheremoretime is neededor traversaldueto large
slip. Secondto tip-over hazards,slip is the most important
factorin traversingslopes.Automaticlearningand prediction
of slip behaior could replacemanualmeasurementf slip, as
the one performedby Lindemannet al. [17], which hasbeen
usedsuccessfullyto teleoperatehe "Opportunity’ rover out of
EagleCrater One additionalproblemwhich occurredin [17],
andwhich learningcould easilysolwe, is thatslip modelswere
available only for anglesof attackof O , 45, 90 away from
the gradientof the terrainslope[7], [17].

A. Testbed

This researchs targetedfor planetaryrovers,suchasMER
(Figure 2). For our experiments however, we usedan experi-
mental LAGR! testbed(Figure 2), asit is a more corvenient

1LAGR standsfor LearningApplied to GroundRobots



data collection platform. It hastwo front differential drive
wheelsandtwo rear castorwheels.It is equippedwith a pair
of stereocameraswheel encoders)MU, and GPS (the IMU
and GPS are postprocessethto a “global pose’). It canrun
in autonomousnodeor be manuallyjoysticked using a radio
controller The vehiclecanachieve speedf upto 1.2 m/s. It
is about1lm tall, 0.75mwide and 1m long.

B. De nition of slip

Slip s is de ned asthe differencebetweerthe velocity mea-
suredby thewheel(wr) andtheactualvelocityv: s= wr v,
wherew is angularwheelvelocity andr is the wheelradius.
It canalsobe normalized:s = * - (thusthe resultscanbe
reportedin percent).Similarly, the slip for the whole rover is
de ned as the differencebetweenthe actual vehicle velocity
andthe velocity estimatedrom the kinematicmodelfor each
DOF of therover perstep(i.e. betweenwo consecutie stereo
pairs)[10]. We will useinterchangeablyhe changen position
and velocity per step,normalizingso that eachsteptakesthe
sametime. A differentialdrive modelis usedfor the kinematic
estimateof the LAGR vehicle. The actual position (ground
truth) canbe estimatedy visually trackingfeaturesa method
called Visual Odometry (VO) [19], [20], or measuredwith
someglobal position estimationdevice. VO is the preferred
methodfor groundtruth estimationbecauseét is a corvenient
self-containedsensoron the vehicle, so data collection for
training could be done automaticallyand the whole learning
could be done online onboardthe vehicle, which coincides
with the goalsof planetaryexplorationmissions Furthermore,
global positioningdevices are not alwaysavailable, especially
regarding planetary missions.VO position estimation error
is lessthan 2.5% of the distancetraveled for runs of 10-30
meters[1], [10], but stepwise,larger errors could occur [1].
Random effects from the terrain could result in signi cant
additionalnoisein the slip measurementsee([1] for details.

We have adopteda macro-level (of the whole rover) mod-
eling of slip, in the spirit of [10], [17]. This modeling is
justi ed, asthe slip predictionwill be usedin a rst, quick
evaluationof terraintraversability We considerthe slip in the
previous rover frame (correspondingo the beginning of the
step) which is de ned as follows: the X coordinateis along
the direction of forward motion, Y is along the wheel axis,
andZ is pointing down. As the LAGR vehicle hasonly three
kinematically obsenable DOFs, we de ne slip in X andslip
in Y asthe componentf slip alongthe X andthe Y axes,
respectrely. Slip in Yaw is the rotation angle aroundthe Z
axis. In this paperwe focuson predictingslip in X. Prediction
of alsoslip in Y and Yaw hasbeenconsideredn [1].

C. Previouswork

Mechanicalmodelingand estimationof slip hasbeendone
at various levels of compleity [2], [4], [8], [14], [15], [26]
and for various vehicle architectures.These methods are
rathercomplicatedand needto be performedat the particular
traversed location, as they require detailed knowledge of
the wheel-soil interactions.Additional estimationof terrain
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Fig. 3. Slip learningand predictionalgorithm framework.

parametergsuch as cohesionand friction angle)[12], [15],
andsoil behaior modeling[2], [4], [23] areneededRegarding
planetary exploration, in-situ soil parameterestimation has
beendonefor the Mars Sojournerrover [18] and MER [3].
Thesemethodsare not predictive either

Several authorsconsideredcounteractingslip for improv-
ing vehicle mobility: e.g. the slip compensationalgorithm
of Helmick et al. [10], [11], or improving traction control,
proposedby lagnemmaet al. [12]. Those methods,again,
work at the traversedrover location. The only approachwe
areaware of which hasbeenusedto evaluateslip at a not yet
traversedlocationis the one of Lindemann[17]. However, it
is limited to evaluatingthe behaior of the rover for several
isolatedterrainslopes requiresmanualmeasurementgnd,in
general,needscareful selectionof the soil type on which the
testsare performedto matchthe target Mars soil.

D. Outline

In Sectionll we proposeageneraframevork for learningof
slip from stereoimagery in which the problemis subdvided
into 1) visual recognition of terrain type (Sectionlll) and
2) learning/predictionof slip behaior, once the terrain type
is known (Section IV). Final experimental results of slip
predictionare givenin SectionV.

Il. SLIPLEARNING AND PREDICTION

In this sectionwe give a generalframevork to learn the
functional relationship betweenvisual information and the
measuredslip usingtraining examples.

A. Geneal framevork

The amount of slip for a particular terrain is a highly
nonlinearfunction of the terrainslopes[17]. This dependence
(called earlier slip behavioj changeson different terrains,
so we can castthe probleminto a framevork similar to the
Mixture of Experts(MoE) framewvork [13] in which the input
spaces partitionedinto subrgyions(correspondingo different
terrain types) and then different functions (correspondingo
differentslip behaiors), are learnedfor eachsubraion. Our
inputswill be terrain geometry(G) (capturedby slopes)and



Fig. 4. Exampleimagesfrom someof the terrainscollectedby the LAGR vehicle: sand,soil, gravel, woodchips,asphalt.

terraintype (describedby its appearancéA), suchastexture
and color); the outputwill betheslip in X (the slip alongthe
direction of forward motion).

More formally, let I be all the information available
from stereopair images,| = (A;G). Let f (Sjl) be the
regressionfunction of slip S on the input variablesA; G.
Now consideringthat we have several options for a terrain
type T, each one occurring with probability P(TjA; G)
(given the informationfrom the imagein questionA; G), we
canwrite f (Sjl) asfollows:

£(Sil) = f(SIAG) = 1 P(TIA O)f (SIT;A; G),
where P + P(TjA; G) = 1. This type of modeling admits
one exclusive terrain type to be selectedper image, or a
soft partitioning of the space,which allows for uncertainty
in terrain classi cation. We assumethat the terrain type is
independenof terrain geometryP (TjA; G) = P(TjA) and
that, given the terraintype, slip is independentf appearance
f(S|T; A; G) f(SjT;G). Assuming independenceof
appearanceand geometryis quite reasonablebecause for
example,a sandyterrainin front of the rover, would appear
approximatelythe same,no matterif the rover is traversinga
level or tilted surface.So we get:

f(Si =" 1 P(TIAX (SIT;O).

In summary we divide the slip learning probleminto a
terrain recognition part (P(TjA), i.e. the probability of a
terrain type, given some appearancénformation) and a slip
prediction part (f (SjT; G), i.e. the dependenceof slip on
terrain geometry given a x ed terrain type T). The mixing
coefcients P(TjA) will be learnedand predictedby a ter
rain texture classi er (Sectionlll). The regressionfunctions
f(SjT;G) for different terrain types will be learned and
predictedby a nonlinearregressionmethod(SectionlV).

B. Architectue

In this sectionwe brie y describethe architectureof our
system,summarizedn Figure 3. We will be usingthe stereo
imagery as input, as well asthe IMU of the vehicle and its
wheelencoderdthe latter is neededonly for training). Stereo
imageryis usedto createa 2D cell map of the ervironment
from its rangedata. It also provides appearancénformation
which can be associatedo certain locations (cells) in the
map. The 2D map can give us geometryinformation about

the terrain G and, aswe are interestedn terrain slopeswith
respectto gravity, we use the vehicle's IMU to retrieve an
initial gravity leveled pose (in fact a global pose which is
the postprocessetMU and GPSsignals,is usedinstead).The
appearancenformationA will be usedto decidewhichterrain
type correspondgo a cell or a neighborhoodf cells. This is
all the necessarynformationto performslip predictionwith
our algorithm.

In orderto learnslip we have addeda slip feedback.The
mechanismto measureslip is as follows. The actual motion
(relative position) betweentwo framesis estimatedby Visual
Odometry[19] which only needstwo consecutie stereopairs
asinput. Themotionwhich the vehiclethinksit hasperformed
is given by the vehicles forward kinematics.As the LAGR
vehicle hasa differential drive model the wheelencodersare
sufcient to computeits full kinematics.A more comple
kinematicmodelis neededor a MER type of vehicle[22], but
it is well understoodhow to computeit [10], [22]. Differencing
the actualmotion and the motion estimatedby the kinematic
model gives a measuremenof slip for a particularstep[10].
This feedbackis usedfor collectingtraining examplesto learn
slip from stereocimagery

The slip predictioncoming from appearancand geometry
information is basedon frameswhich obsere a particular
location from a distance,i.e. those stereoframeswill come
much earlierin time thanthe frameswhich measurehe slip
feedback(using VO). Both typesof information come from
a single stereoimagery sensoy as shovn in Figure 3. The
adwantageof sucha systemis that it can sensethe terrain
remotely and that it needsonly passie, cheap and self-
containedsensorson the vehicle, suchas stereovision. Now,
the main challengeis understandingdhis visual information.

C. Dataset

For our slip prediction experimentswe have collected
dataset®n off-roadterrains.Thereare ve majorterraintypes
which the rover hastraversed:soil, sand,gravel, asphaltand
woodchips(Figure 4). In addition to that, there are several
other terrain types which appearin the sequencessuch as
greenor dry grass.We consideredthose as one additional
‘grass' classin the terrain classi cation. Although we have
good variability in the terrain relief in our dataset(level,
upslopeand down-slopeareason soil, asphaltand woodchip
terrains trans\erseslopeon gravelly terrain, at sandyterrain,
etc.), not all possibleslip behaiors could be obsered in the
area of data collection. For example: there was no sloped
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Exampletexture classi cation resultsfrom eachof the datasetsPatchesfrom the six terraintypesconsideredn the texture classi cation and the

correspondingolor codingassignedare shavn at top left. Eachcompositeéimagecontainsthe original image (top left), the groundtruth terrainclassi cation
(bottom left) and the resultsof the terrain classi cation algorithm representedn two differentways (top right and bottomright). Ambiguousterraintype in
the groundtruth is marked with white (thoseregions are not requiredto be classi ed correctly).

Fig. 5. Schematioof the terrain classi cation algorithm [16], [24].

terrain covered with sand, besides,the rover shaved poor
mobility on at sand(about80%slip [1]); the gravelly terrain
availablewasonly possibleto be traversedsidevaysfor safety
reasonstherewas no trans\erseslopefor the soil dataset.

I1l. TERRAIN CLASSIFICATION

This sectiondescribeghe terrainclassi cation usingvision
information, which is the rst stepof our algorithm. For the
purposesof slip prediction,we consideronly the part of the
image planewhich correspondgo the robot's 2D map of the
ervironment.Thatis, for now, we arenotinterestedn regions
beyond the distancewhere range data is available, because
we simply cannotretrieve ary reliable slopeinformationand
thereforecannotpredictslip. A reasonablenapfor the LAGR
vehicleis of size 12x12mor 15x15m,centeredon the robot.

Note that the MER panoramiccamerahas a considerably
higherresolutionandlook-ahead5]. Our goalis to determine
the terrain type in eachcell of the map (the cell is of size
0.4m).In fact,wewill beclassifyingthepatchesorresponding
to the back-projectionof map cells to the imageplane.

Note that the patchesat closerangeand at far rangehave
considerablydifferent appearanceso a single texture based
classi er could not be usedfor both. This is due to the fact
that the spatialresolutiondecreasesapidly with range.This
couldalsobeclari ed by looking atthe amountof information
in the imageplanewhich correspondso differentareasn the
2D map.For the LAGR vehicle the estimatesare: about70%
of theimageplaneis mappedo rangeshelov 10m, about7%
- to rangesbetween10m and 50m, and about2% - to ranges
betweerbOmandthe horizon[27]. So,for our experimentsve
build ve independentlassi erswhich are active at different
ranges(rangesup to 2m, 2-3m, 3-4m, 4-5m, and 6m and
above).

A. Terrain classi cation algorithm

As we are interestedin classifying patchesthe approach
we useconsiderghe commonoccurrenceof texture elements
(called textons") in someregion (a patch).This representation
is moreappropriatdbecause textureis de ned notby asingle
pixel neighborhoodbut ratherby the co-occurrencef visual
patternsin larger areas.The idea follows the texton-based
texture recognitionmethodsproposeddy Leungetal. [16] and
Varmaet al. [24]. The approachis summarizedn Figure5.

Five differenttexture classi ers are trained, eachone spe-
cialized at different range. For eachclassi er and for each
terraintype class(we have six terrainclasses)a setof patches
in the image plane (correspondingto the map cells at the
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appropriateranges)are collected.All the training patchesbe-
longingto somerangeareprocessedby extractinga setof 5x5
RGB regions forming a 75 dimensionalvector representation
of a local pixel neighborhood.Those vectors are clustered
with k-meansand the cluster centersare de ned to be the
textons for this class.We extracted k=30 textons per class.
As a result,a total of 180 textons (called "texton dictionary")
are collectedfor the whole training set. Working in a feature
spacecomposedof local neighborhoodsallows for building
statisticsof dependencieamong neighboring pixels, which
is a very viable approach,as shovn by Varmaet al. [24].
Now thatthe dictionaryfor the datasethiasbeende ned, each
texture patchis representeasthe frequenciesof occurrences
of eachtexton within it, i.e. a histogram(insteadof searching
for eachtexton within a patchindividually, eachpixel location
of the patchis assignedo the closestin Euclideandistance
sensdexton). In otherwords,the patchesrom thetraining set
aretransformednto 180 dimensionalectors(eachdimension
giving thefrequeng of occurrencef the correspondingexton
in this patch). All vectors are stored in a databaseto be
used later for classi cation. Similarly, during classi cation,
a query imageis transformedinto a 180 dimensionalvector
(i.e. a texton occurrencehistogram)and comparedto the
histogram representation®f the examplesin the database,
using a NearestNeighbor methodand a 2-baseddistance
measurg24]. The majority vote of N=7 neighbords takenas
the predictedterraintype classof the query patch.The result
of the classi er will be one single class. To determinethe
terraintypein theregiontherobotwill traverse(SectionV) we
selectthe winnertake-all patchclasslabelin theregion (a 4x4
cell neighborhood)ln bothdecisionsa probabilisticresponse,
rather than choosinga single class, would be more robust.
Addressingmore adwanced probabilistic inference within a
patchandamongneighboringpatchess a subjectof our future
work.

B. Terrain classi cation results

In this sectionwe reportresultsof the terrain classi cation
algorithm.As mentioneckarlier we consideithe patchesn the
original colorimage,which correspondo differentcells of the
map.Eachpatchis classi ed into a particularterraintype and
all the pixels which belongto this patchare labeledwith the

labelof the patch(Figure6). The classi cationperformances
measured@sthe percentcorrectlyclassi ed pixelsin theimage
plane. This is more meaningfulthan counting the correctly
classi ed patchesasthe patchesat far rangeare composedf

very smallimageareaand cannotbe expectedto be classi ed
correctlywith this approach(Figure 7). Moreover, an errorin

the terrain classi cation at closerangeaffects much more the
slip prediction,so thosepatchesshouldbe given moreweight
in measuringhe classi cation performance.

Our dataseis composedf ve differentimagesequences
which arecalledsoil, sand,gravel, asphaltandwoodchipafter
the prevailing terrain type in them (Figure 4). Each of the
following six terrainclassesgravel, soil, sand,asphaltwood-
chip andgrasscanappealin thosesequenceslo measurdest
performancewe take a total of 30 framesin eachsequence,
which areseparatedby atleast10 frameswithin the sequence,
soasnot to be similar to oneanother So, the testsetcontains
about 150 frameswhich includesabout10* patchesand 10”
pixels. The groundtruth terraintype in the testsetis given by
a humanoperator Exampleclassi cationresultsare shavn in
Figure 6. Note that most terrain classi cation errorsoccur at
far range.Summaryresultsof the terrainclassi er for the ve
sequencefor differentlook-aheadnapsaregivenin Figure7.
Naturally, alargermapis preferredasit allows therobotto see
farther but the patchesat this rangeare very small (with little
information content) and thereforemuch more likely to be
misclassi ed.So, for the bene ts of slip prediction,a tradeof
betweenaccurag of classi cation and seeingfarther should
be made.To be concrete,in our further experimentswe x
the map size at 12x12m. The confusion matrix for terrain
classi cation for the 12x12mmapis shavn in Figure7.

C. Discussion

The texton-basednethodfor terrain classi cation hasbeen
selectedfor its potentialto be fast and robust to intra-class
variability, often obsered in naturalterrains.Slip prediction
also requiresa ne discrimination betweenvisually similar
terrains(suchas soil, sand,and gravel), which hasnot been
consideredn the previous approachesor terrainclassi cation
in the context of autonomousnavigation [6] (for example,
thosethreeterrain typesfall into one “soil/rock’ classwhich
needdo bediscriminatedrom “grass'and sky' classesn [6]).
Naturally, a normalizedcolor space(insteadof the full RGB
we are currently using) would malke the algorithm robust to
certain illumination variations. The approachcan be easily
extendedto considerthat, aswell.

IV. LEARNING SLIP BEHAVIOR ON A FIXED TERRAIN

In this sectionwe describehe methodfor learningto predict
slip asa function of terraingeometrywhenthe terraintypeis
known (i.e. the slip behavio). The work in this sectionhas
beenconsideredn more detail in a previous contrikution of
ours[1]; we includeit herefor completeness.

A. Learningalgorithm
Slip S (i.e. f(SjT;G)) is approximatedby a nonlinear
functionof terraingeometryG, becauserevious experimental



evidenceshaws that slip behaior is a nonlinearfunction of
terrain slopes[17]. We use a model basedon the receptve
eld regressiommethod[21], [25]. Locally linearfunctionsare
learnedin small neighborhoodswhich gives a good tradeof
between memory based nonlinear regression methods [9]
and global function approximationmethods,such as Neural
Networks. S(x) = f (SjG = x) is estimatedas:

P P
S(x) = SKEGxe)(E+ | HFhpgixi),

where x are the 2-dimensionalinput slopes, K (x;y) =

exp(k x yk®=) is a smoothingkernel, x. is a training
examplewhich senes as a receptie eld center and pf are
several local projectionsin eachreceptve eld c, r is the
numberof local projections(herer = 2), and is a parameter
which controlsthereceptve eld size( > 0). In otherwords,
the slip S, correspondingto a query point x, is computed
as a linear combinationof C linear functions (one per each
receptve eld), wherethe weightsare computedaccordingto
the distancefrom x to the centersof the receptve elds.

We briey describebelov how to estimatethe unknowvn
parametersof the nonlinear regression.The centersx. are
allocatedwherever neededn the input spaceasthe dataarrive
in an online fashion[21]. To estimatethe parametersy, pf
in eachreceptve eld, a Partial Least Squareg(PLS) linear
t [9] is performed,n which the training points are weighted
accordingto their distanceto the receptve eld center[25].
In our caseof only 2-dimensionalnputs,onecanalsousethe
WeightedLinear Regression[21] or someotherlocally linear
projection.However, by usingPLS,thealgorithmcanbeeasily
extendedto working with higher dimensionalinputs, because
of the dimensionalityreductioncapabilitiesof PLS [25]. The
parameter is selectedusinga validation set.

The input for slip prediction,i.e. the terrain geometryG,
is representetby the longitudinalandlateral slopeswhich are
the terrain slopesdecompose@longthe X andY axesof the
currentpositionof therobot, respectrely. They arenamedroll
and pitch angles,asthey correspondo the vehicle's roll and
pitch. The terrain slopesare estimatedby performinga linear
t to the averageelevation of the neighboringcells [1].

B. Results

In this section we give experimentalresults of learning
and prediction of slip in X from terrain slopes (estimated
from visual information) when the traversedterrain type is
known. Our datasetis composedof long stereosequences
(1000-2000frames) which were taken on one terrain type
at a time. The sequences split consecutiely: the rst part
is usedfor training, the secondpart for testing. Somesmall
portion of the data (betweenthe training and testing sets)is
held out for validation. We report belov both training and
test error The training dataare usedto learn the regression
function. After learning, the function is testedon the same
data(training error) andalsoon datanot usedin training (test
error). Naturally the training error will be smaller but the test
error is a criterion for the learning methods genealization
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Fig. 8. Exampleresultsof predictionof slip in X on soil (top) andon gravel
(bottom). Training mode (left), test mode (right). Note the signi cant noise
in the measuredslip signal (see[1] for discussion).

abilities, i.e. how well it will performon new, unseendata.
To be able to measurethe test error, we predict slip only
on locationstraversedby theprgyer. Slip prediction error is
measuredy theRMS, RMS= in=1 (P;  Ti)?=n, whereP;
is the predictedand T; is the target slip at a particularstepi.

Experimentalresults for slip prediction for the soil and
gravel datasetsare given in Figure 8. The RMS test error
achivedonall thedataset¢see[1] for moreresults)is  15%
The gravel datase{RMS=27%) is anexceptionasthetraining
datadid not have combinationsof roll and pitch slopeangles
which were seenlater in the testset. Still, it could generalize
quite well from the available training data(Figure 8).

V. EXPERIMENTAL RESULTS

In the previous sectionswe saw that terrain type (which
entailsthe intrinsic mechanicalpropertiesof the soil) canbe
predictedfrom visual featuresand that slip can be estimated
satishctorily, giventheterraintype. This givesusexperimental
evidence that we can predict slip from visual information
only. In this section we perform full slip prediction from
stereoimagery for various off-road terrains,as describedin
Sectionll, usingthealreadylearnederraintypeclassi er from
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Sectionlll, andthe learnedslip behaior predictorsfor each
terraintype from SectionlV. The algorithmworks asfollows:
rst theterraintypeis estimatedrom appearancenformation
and then the learnedslip model for that terrain is activated
to produceslip results,given the measurederrain slopes.For
these experimentswe perform a winnertake-all among the
terraintypesin neighboringcellsi.e. theterraintype with most
votesis selected We presentthe nal quantitatve resultsby
comparingthe actualmeasuredlip to the predictedslip.

A. Testprocedue

We briey summarizethe test procedure. A 2D cell map
of the ervironmentis built using rangeinformation from the
stereopair images(the cell sizeis 0.4x0.4m).Eachcell keeps
informationaboutits extents,averageelevation, anda pointer
to an image (or images)which have obsened this cell. At a
remote (future rover) location, we performa plane t to the
neighborhoodf the cell andretrieve theroll andpitch angles
of theterrain[1]. We alsopredictthe terraintype by applying
the terrain classi cation algorithm in the neighboringcells.
Theterraintype which hascollectedmostvotesis selectedA
4x4 cell neighborhoods usedfor both terrain classi cation
and plane t. All those operationsare performedremotely
usingvisualinformationonly. Here,aggin, to be ableto report
a testerror, we predictslip only on the pathwhich was later
traversedby the rover, but, in principle, slip predictioncould
be doneon the whole visible map.

Vehicle localization is very important for this methodto
succeedandlocalizationis still not a completelysolved prob-
lem in robotics.VO [19] is usedfor the vehicle's localization.
It is appropriateo be usedhere,aswe arenotinterestedn an
accurateabsoluteglobal position, but in an accuraterelative
position within shortto mid-size (20m long) sequencegi.e.
to be able to map correctly the position of the location seen
from a distanceto the locationtraversedlater on) and VO is
an algorithmwhich can achieve that [20].

Thereis one moreissueof decidingat what rangeto start
reportingthe predictedslip andaccumulatingnformationasa
particularlocationis being approachedwe call it “minimum
range"). Naturally a potential path planner would bene t
more, the farther we can make a good slip prediction. On
the other hand, locationsobsened at a large distancemight
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Fig. 10. Resultsof slip predictionfrom sterecimagery(terraingeometryand
appearance)nthewholedatasetTop: The predictedandmeasuredlip for the
correspondingestsequencesSlip prediction,assumingcorrectly recognized
terraintype,is alsoshown (naturally it coincideswith the nal slip prediction,
wheneer the terraintype is classi ed correctly). Bottom: The predictedand
correctterraintypesacrossthe dataset.

give unreliableor noisy slopeestimatespr provide very little
information for the terrain classi er to be correct. Resultsof
theslip predictionerror, asafunctionof the minimumrangeat
which predictionhasstarted,are givenin Figure 9. Note that
amuchbetterslip predictionis receved for smallerminimum
rangesand that the deteriorationin slip predictionis mainly
dueto terrainclassi cation errorsoccurringat far ranges(the
slope angle estimationseemsto be much more stable with
rangefor this dataset).The slope angle errorsare computed
against the roll and pitch anglesreceved from the vehicle's
IMU, which are approximationsof the actual slope angles.
So, for our further experimentswe will x the rangeat which
we startreporting predictedterrain type and slip at 3 meters
as a trade-of betweena good enoughslip predictionand a
far enoughinitial range(preferredfrom the point of view of
the planner).This meansthat if a locationis seenat a closer
than 3m rangewe would not useary informationwe acquire
aboutit (throughvision or othersensors}o improve our slip
prediction.Additionally, we needto accumulatenformationas
the rover approachesomelocation becausehis locationwill
be seenmultiple times at rangesfarther from the minimum
range We do thatby averagingmeasurementsyeightingthem
by the inverseof the rangeat which they were obtained.So,
all estimationsor predictionsaboutslopeangles terraintype,
and slip will be accumulatedbetweenthe rangesof 3m and
possibly8.4m (8.4mis the diagonaldistancefrom the center
to the cornerof a 12x12mmap;in practice,very few cells
will occurat rangeslarger than6m).

B. Results

The testdatasein this sectionis a compositeof sequences
of framesin which the terrain type is the samewithin a
sequencebut can changeto another terrain for the next



sequenceln this way a humanoperatorcanspecifytheterrain
type of along imagesequenceinsteadof giving groundtruth
for eachimage. The terrain classi cation algorithm doesnot
have the knowledge that the terrain is continuousfor some
numberof framesandthencanabruptlychangeThealgorithm
which estimateshe slopes,however is aware of that change
becausea new frame sequencenasto comewith a different
initial gravity leveled (IMU based)pose. A sequencesize
varies between60 and 200 framesand the whole composite
datasetontainsabout2000testframes.The terrainsare quite
challenging,as the datasetis collectedin the eld. We have
madesurethat the testdatasethasnot beenusedfor training.

The results of the full slip prediction experiment for
the aborementionedlarge “composite’ datasetare shavn in
Figure 10. The gure shaws the color coded terrain type
classi cation results, the measuredslip, the predictedslip,
and the predictedslip if the terrain type were known. The
nal slip prediction error for the whole datasetis 21:8%.
Whentheterraintypeis classi ed correctly theslip prediction
erroris 11:2%. As seenin the gure, large slip errorscome
from misclassi ed terrain types (usually soil and gravel are
misclassi ed for sand).In this datasethe error is arti cially
increasedasthe slip measuredor level sandyterrainis about
80% which gives a rather large slip error due to terrain
misclassi cation (compareto the error if the terrain type
were correct). This result also shovs that some errors are
more dangeroughan others.In other words, that the terrain
classi cationalgorithm shouldbe applying different penalties
for differenttypesof error, i.e. terrainmisclassi cationwhich
leadsto large slip errorsshouldbe given larger cost.

V1. CONCLUSIONS AND FUTURE WORK

In this paperwe have proposedo predictslip (a propertyof
mechanicalvehicle-terraininteraction) remotely from visual
information only. We have achieved very promising results,
given the fact that there is a large noise componentin the
measuremendf slip (see[1] for discussion).The predicted
slip will be usedto enhancea path planning algorithm so
that areasof large slip are avoided as potentialhazards.The
individual componentsof the slip learning and prediction
framework could have independentpplications.Learning of
slippagefor a x ed terrain type could be used instead of
tediousmanualslip measurementd 7]. Predictingterraintype
from visual information could be usedto supply information
remotelyaboutsoil parametersvhich areneededy advanced
mechanicaterrainandrover-terraininteractionmodeling[12].

For the time being, we do ofine training of both the
terraintype classi er andthe slip behaior predictorsfor each
terraintype, but our future work is targetedat slip learningin
an online fashion,which hasin uenced the selectionof the
algorithmsand methodsin this work.

Furtherefforts are neededto develop a betterterrain clas-
si cation algorithm,to avoid erroneousslip predictiondueto
terraintype classi cation errors.Visual information might not
besufcient to distinguishvariousterraintypesandproperties,
especiallyconsideringMars terrains.It canbe complemented

with multispectralimaging or other sensorgsto resohe some
inherentvisual ambiguitiesand improve on the classi cation
results.A more advancedalgorithm to considerspatial con-
tinuity of terrain classi cation over neighboring patchesor
dependenbn terraingeometryalso needsto be investigated.
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