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Abstract— This paper considers prediction of slip fr om a
distance for wheeledground robots using visual information as
input. Lar ge amounts of slippage which can occur on certain
surfaces,such as sandy slopes,will negatively affect rover mobil-
ity. Therefore, obtaining information about slip before entering
a particular terrain can be very useful for better planning and
avoiding terrains with large slip.

The proposedmethod is based on learning fr om experience
and consistsof terrain type recognition and nonlinear regression
modeling. After learning, slip prediction is done remotely using
only the visual information as input. The method has been
implemented and tested of�ine on several off-r oad terrains
including: soil, sand, gravel, and woodchips.The slip prediction
error is about 20% of the step size.

I . INTRODUCTION

Slip is ameasureof thelackof progressof awheeledground
robot while driving. High levels of slip can be observed on
certain terrains,which can lead to signi�cant slow down of
the vehicle, inability to reachits prede�ned goals,or, in the
worst case,getting stuck without the possibility of recovery.
Similar problemswere experiencedin the Mars Exploration
Rover (MER) missionin which one of its rovers got trapped
in a sanddune,experiencinga 100% slip (Figure1). In future
missionsit will be important to avoid such terrains,which
necessitatesthe capability of slip predictionfrom a distance,
sothatadequateplanningcouldbeperformed.This researchis
relevantto bothMarsroversandto Earth-basedgroundrobots.

While someeffort hasbeendonein mechanicalmodeling
of slip for wheeledgroundrobots[2], [8], [14], no work, to
our best knowledge,hasconsideredpredictingslip, or other
propertiesof the vehicle-terraininteraction,remotely. In this
paperwe usevision information to enablethat.

We proposeto learn a mappingbetweenvisual informa-
tion (i.e. geometryand appearancecoming from the stereo
imagery) and the measuredslip, using the experiencefrom
previous traversals.Thus,after learning,the expectedslip can
be predictedfrom a distanceusing only stereoimagery as
input. The methodconsistsof: 1) recognizingthe terraintype
from visual appearanceand then, after the terrain type is
known, 2) predicting slip from the terrain's geometry. Both
componentsare basedon learning.In our previous work we
have shown that the dependenceof slip on terrain slopes
when the terrain type is known (termed`slip behavior') can
be learnedand predictedsuccessfully[1]. In this paperwe
describethe whole systemfor slip learning and prediction,

Fig. 1. TheMarsExplorationRover `Opportunity' trappedin the`Purgatory'
duneon sol 447. A similar 100% slip conditioncan lead to missionfailure.

Fig. 2. TheMarsExplorationRover `Spirit' in theJPLSpacecraftAssembly
Facility (left). The LAGR vehicleon off-road terrain (right).

including the texture recognitionand the full slip prediction
from stereoimagery.

The output of the slip predictionalgorithm is intendedto
be incorporatedinto a traversability cost to be handeddown
to an improvedpathplannerwhich, for example,canconsider
regionsof 100% slip asnon-traversableor cangive highercost
to regionswheremoretime is neededfor traversaldueto large
slip. Secondto tip-over hazards,slip is the most important
factor in traversingslopes.Automatic learningandprediction
of slip behavior could replacemanualmeasurementof slip, as
the oneperformedby Lindemannet al. [17], which hasbeen
usedsuccessfullyto teleoperatethe`Opportunity' rover out of
EagleCrater. Oneadditionalproblemwhich occurredin [17],
andwhich learningcouldeasilysolve, is thatslip modelswere
availableonly for anglesof attackof 0� , 45� , 90� away from
the gradientof the terrainslope[7], [17].

A. Testbed

This researchis targetedfor planetaryrovers,suchasMER
(Figure2). For our experiments,however, we usedan experi-
mentalLAGR1 testbed(Figure2), as it is a more convenient

1LAGR standsfor LearningApplied to GroundRobots



data collection platform. It has two front differential drive
wheelsandtwo rearcastorwheels.It is equippedwith a pair
of stereocameras,wheelencoders,IMU, and GPS(the IMU
and GPSare postprocessedinto a `global pose'). It can run
in autonomousmodeor be manuallyjoysticked usinga radio
controller. The vehiclecanachieve speedsof up to 1.2 m/s. It
is about1m tall, 0.75mwide and1m long.

B. De�nition of slip

Slip s is de�ned asthedifferencebetweenthevelocity mea-
suredby thewheel(wr ) andtheactualvelocityv: s = wr � v,
wherew is angularwheelvelocity andr is the wheel radius.
It canalsobe normalized:s = wr � v

wr (thus the resultscanbe
reportedin percent).Similarly, the slip for the whole rover is
de�ned as the differencebetweenthe actualvehicle velocity
andthe velocity estimatedfrom the kinematicmodelfor each
DOF of therover perstep(i.e. betweentwo consecutive stereo
pairs)[10]. We will useinterchangeablythechangein position
andvelocity per step,normalizingso that eachsteptakes the
sametime.A differentialdrive modelis usedfor thekinematic
estimateof the LAGR vehicle. The actual position (ground
truth) canbeestimatedby visually trackingfeatures,a method
called Visual Odometry (VO) [19], [20], or measuredwith
someglobal position estimationdevice. VO is the preferred
methodfor groundtruth estimationbecauseit is a convenient
self-containedsensoron the vehicle, so data collection for
training could be doneautomaticallyand the whole learning
could be done online onboardthe vehicle, which coincides
with thegoalsof planetaryexplorationmissions.Furthermore,
globalpositioningdevicesarenot alwaysavailable,especially
regarding planetarymissions.VO position estimationerror
is less than 2.5% of the distancetraveled for runs of 10-30
meters[1], [10], but stepwise,larger errorscould occur [1].
Randomeffects from the terrain could result in signi�cant
additionalnoisein the slip measurements,see[1] for details.

We have adopteda macro-level (of the whole rover) mod-
eling of slip, in the spirit of [10], [17]. This modeling is
justi�ed, as the slip predictionwill be usedin a �rst, quick
evaluationof terraintraversability. We considerthe slip in the
previous rover frame (correspondingto the beginning of the
step)which is de�ned as follows: the X coordinateis along
the direction of forward motion, Y is along the wheel axis,
andZ is pointing down. As the LAGR vehiclehasonly three
kinematicallyobservable DOFs,we de�ne slip in X and slip
in Y as the componentsof slip along the X and the Y axes,
respectively. Slip in Yaw is the rotation angle aroundthe Z
axis.In this paper, we focuson predictingslip in X. Prediction
of alsoslip in Y andYaw hasbeenconsideredin [1].

C. Previouswork

Mechanicalmodelingandestimationof slip hasbeendone
at various levels of complexity [2], [4], [8], [14], [15], [26]
and for various vehicle architectures.These methods are
rathercomplicatedandneedto be performedat the particular
traversed location, as they require detailed knowledge of
the wheel-soil interactions.Additional estimationof terrain

Fig. 3. Slip learningandpredictionalgorithmframework.

parameters(such as cohesionand friction angle) [12], [15],
andsoil behavior modeling[2], [4], [23] areneeded.Regarding
planetaryexploration, in-situ soil parameterestimationhas
beendone for the Mars Sojournerrover [18] and MER [3].
Thesemethodsarenot predictive either.

Several authorsconsideredcounteractingslip for improv-
ing vehicle mobility: e.g. the slip compensationalgorithm
of Helmick et al. [10], [11], or improving traction control,
proposedby Iagnemmaet al. [12]. Those methods,again,
work at the traversedrover location. The only approachwe
areawareof which hasbeenusedto evaluateslip at a not yet
traversedlocation is the one of Lindemann[17]. However, it
is limited to evaluating the behavior of the rover for several
isolatedterrainslopes,requiresmanualmeasurements,and,in
general,needscarefulselectionof the soil type on which the
testsareperformedto matchthe target Mars soil.

D. Outline

In SectionII weproposeageneralframework for learningof
slip from stereoimagery, in which the problemis subdivided
into 1) visual recognition of terrain type (Section III) and
2) learning/predictionof slip behavior, once the terrain type
is known (Section IV). Final experimental results of slip
predictionaregiven in SectionV.

I I . SLIP LEARNING AND PREDICTION

In this sectionwe give a generalframework to learn the
functional relationship betweenvisual information and the
measuredslip using training examples.

A. General framework

The amount of slip for a particular terrain is a highly
nonlinearfunction of the terrainslopes[17]. This dependence
(called earlier slip behavior) changeson different terrains,
so we can cast the probleminto a framework similar to the
Mixture of Experts(MoE) framework [13] in which the input
spaceis partitionedinto subregions(correspondingto different
terrain types) and then different functions (correspondingto
different slip behaviors), are learnedfor eachsubregion. Our
inputs will be terrain geometry(G) (capturedby slopes)and



Fig. 4. Exampleimagesfrom someof the terrainscollectedby the LAGR vehicle:sand,soil, gravel, woodchips,asphalt.

terrain type (describedby its appearance(A), suchas texture
andcolor); the outputwill be the slip in X (the slip alongthe
directionof forward motion).

More formally, let I be all the information available
from stereo pair images, I = (A; G). Let f (SjI ) be the
regressionfunction of slip S on the input variablesA; G.
Now consideringthat we have several options for a terrain
type T, each one occurring with probability P(T jA; G)
(given the information from the imagein questionA; G), we
canwrite f (SjI ) as follows:

f (SjI ) = f (SjA; G) =
P

T P(TjA; G)f (SjT; A; G),

where
P

T P(TjA; G) = 1. This type of modeling admits
one exclusive terrain type to be selectedper image, or a
soft partitioning of the space,which allows for uncertainty
in terrain classi�cation. We assumethat the terrain type is
independentof terrain geometryP(TjA; G) = P(TjA) and
that, given the terrain type, slip is independentof appearance
f (SjT; A; G) = f (SjT; G). Assuming independenceof
appearanceand geometry is quite reasonablebecause,for
example,a sandyterrain in front of the rover, would appear
approximatelythe same,no matterif the rover is traversinga
level or tilted surface.So we get:

f (SjI ) =
P

T P(TjA)f (SjT; G).

In summary, we divide the slip learning problem into a
terrain recognition part (P(T jA), i.e. the probability of a
terrain type, given someappearanceinformation) and a slip
prediction part (f (SjT; G), i.e. the dependenceof slip on
terrain geometry, given a �x ed terrain type T). The mixing
coef�cients P(TjA) will be learnedand predictedby a ter-
rain texture classi�er (SectionIII). The regressionfunctions
f (SjT; G) for different terrain types will be learned and
predictedby a nonlinearregressionmethod(SectionIV).

B. Architecture

In this sectionwe brie�y describethe architectureof our
system,summarizedin Figure3. We will be using the stereo
imageryas input, as well as the IMU of the vehicle and its
wheelencoders(the latter is neededonly for training).Stereo
imagery is usedto createa 2D cell map of the environment
from its rangedata. It also provides appearanceinformation
which can be associatedto certain locations (cells) in the
map. The 2D map can give us geometryinformation about

the terrain G and,as we are interestedin terrain slopeswith
respectto gravity, we use the vehicle's IMU to retrieve an
initial gravity leveled pose(in fact a global pose, which is
thepostprocessedIMU andGPSsignals,is usedinstead).The
appearanceinformationA will beusedto decidewhich terrain
type correspondsto a cell or a neighborhoodof cells. This is
all the necessaryinformation to perform slip predictionwith
our algorithm.

In order to learn slip we have addeda slip feedback.The
mechanismto measureslip is as follows. The actualmotion
(relative position)betweentwo framesis estimatedby Visual
Odometry[19] which only needstwo consecutive stereopairs
asinput.Themotionwhich thevehiclethinksit hasperformed
is given by the vehicle's forward kinematics.As the LAGR
vehiclehasa differentialdrive model the wheelencodersare
suf�cient to compute its full kinematics.A more complex
kinematicmodelis neededfor a MER typeof vehicle[22], but
it is well understoodhow to computeit [10], [22]. Differencing
the actualmotion and the motion estimatedby the kinematic
modelgivesa measurementof slip for a particularstep[10].
This feedbackis usedfor collectingtrainingexamplesto learn
slip from stereoimagery.

The slip predictioncoming from appearanceandgeometry
information is basedon frames which observe a particular
location from a distance,i.e. thosestereoframeswill come
much earlier in time than the frameswhich measurethe slip
feedback(using VO). Both types of information come from
a single stereoimagery sensor, as shown in Figure 3. The
advantageof such a systemis that it can sensethe terrain
remotely and that it needs only passive, cheap and self-
containedsensorson the vehicle,suchasstereovision. Now,
the main challengeis understandingthis visual information.

C. Dataset

For our slip prediction experiments we have collected
datasetson off-roadterrains.Thereare� ve major terraintypes
which the rover hastraversed:soil, sand,gravel, asphaltand
woodchips(Figure 4). In addition to that, there are several
other terrain types which appearin the sequences,such as
green or dry grass.We consideredthose as one additional
`grass' class in the terrain classi�cation. Although we have
good variability in the terrain relief in our dataset(level,
upslopeand down-slopeareason soil, asphaltand woodchip
terrains,transverseslopeon gravelly terrain,�at sandyterrain,
etc.), not all possibleslip behaviors could be observed in the
area of data collection. For example: there was no sloped



Sand Soil Grass

Gravel Asphalt Woodchip

Fig. 6. Exampletexture classi�cation resultsfrom eachof the datasets.Patchesfrom the six terrain typesconsideredin the texture classi�cation and the
correspondingcolor codingassignedareshown at top left. Eachcompositeimagecontainsthe original image(top left), the groundtruth terrainclassi�cation
(bottom left) and the resultsof the terrainclassi�cation algorithmrepresentedin two differentways (top right andbottomright). Ambiguousterrain type in
the groundtruth is marked with white (thoseregionsarenot requiredto be classi�ed correctly).

Fig. 5. Schematicof the terrainclassi�cation algorithm[16], [24].

terrain covered with sand, besides,the rover showed poor
mobility on �at sand(about80%slip [1]); thegravelly terrain
availablewasonly possibleto betraversedsidewaysfor safety
reasons;therewasno transverseslopefor the soil dataset.

I I I . TERRAIN CLASSIFICATION

This sectiondescribesthe terrainclassi�cationusingvision
information,which is the �rst stepof our algorithm.For the
purposesof slip prediction,we consideronly the part of the
imageplanewhich correspondsto the robot's 2D mapof the
environment.That is, for now, we arenot interestedin regions
beyond the distancewhere rangedata is available, because
we simply cannotretrieve any reliableslopeinformationand
thereforecannotpredictslip. A reasonablemapfor theLAGR
vehicle is of size 12x12mor 15x15m,centeredon the robot.

Note that the MER panoramiccamerahas a considerably
higherresolutionandlook-ahead[5]. Our goal is to determine
the terrain type in eachcell of the map (the cell is of size
0.4m).In fact,wewill beclassifyingthepatchescorresponding
to the back-projectionsof mapcells to the imageplane.

Note that the patchesat closerangeand at far rangehave
considerablydifferent appearances,so a single texture based
classi�er could not be usedfor both. This is due to the fact
that the spatial resolutiondecreasesrapidly with range.This
couldalsobeclari�ed by looking at theamountof information
in the imageplanewhich correspondsto differentareasin the
2D map.For the LAGR vehicle the estimatesare:about70%
of the imageplaneis mappedto rangesbelow 10m,about7%
- to rangesbetween10m and50m, andabout2% - to ranges
between50mandthehorizon[27]. So,for our experimentswe
build � ve independentclassi�ers which areactive at different
ranges(rangesup to 2m, 2-3m, 3-4m, 4-5m, and 6m and
above).

A. Terrain classi�cation algorithm

As we are interestedin classifying patches,the approach
we useconsidersthe commonoccurrenceof texture elements
(called`textons') in someregion (a patch).This representation
is moreappropriatebecausea textureis de�ned not by a single
pixel neighborhood,but ratherby the co-occurrenceof visual
patternsin larger areas.The idea follows the texton-based
texturerecognitionmethodsproposedby Leunget al. [16] and
Varmaet al. [24]. The approachis summarizedin Figure5.

Five different texture classi�ers are trained,eachone spe-
cialized at different range.For eachclassi�er and for each
terraintypeclass(we have six terrainclasses),a setof patches
in the image plane (correspondingto the map cells at the
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Fig. 7. Terrainclassi�cation resultsfor differentmapsizes(left). Different
ways of representingthe classi�cation rate by counting correctly classi�ed
patchesor pixels are shown. Confusionmatrix for the 12x12mmap (right).
The classi�cation rate for eachclassis displayedon the diagonal.

appropriateranges)arecollected.All the training patchesbe-
longingto somerangeareprocessedby extractinga setof 5x5
RGB regions forming a 75 dimensionalvector representation
of a local pixel neighborhood.Those vectors are clustered
with k-meansand the cluster centersare de�ned to be the
textons for this class.We extractedk=30 textons per class.
As a result,a total of 180 textons(called`texton dictionary')
arecollectedfor the whole training set.Working in a feature
spacecomposedof local neighborhoodsallows for building
statisticsof dependenciesamong neighboringpixels, which
is a very viable approach,as shown by Varma et al. [24].
Now that the dictionaryfor the datasethasbeende�ned, each
texture patchis representedasthe frequenciesof occurrences
of eachtexton within it, i.e. a histogram(insteadof searching
for eachtexton within a patchindividually, eachpixel location
of the patch is assignedto the closestin Euclideandistance
sensetexton). In otherwords,thepatchesfrom thetrainingset
aretransformedinto 180dimensionalvectors(eachdimension
giving thefrequency of occurrenceof thecorrespondingtexton
in this patch). All vectors are stored in a databaseto be
used later for classi�cation. Similarly, during classi�cation,
a query image is transformedinto a 180 dimensionalvector
(i.e. a texton occurrencehistogram) and comparedto the
histogramrepresentationsof the examples in the database,
using a NearestNeighbor method and a � 2-baseddistance
measure[24]. Themajority vote of N=7 neighborsis taken as
the predictedterrain type classof the querypatch.The result
of the classi�er will be one single class.To determinethe
terraintypein theregion therobotwill traverse(SectionV) we
selectthewinner-take-all patchclasslabel in theregion (a 4x4
cell neighborhood).In bothdecisions,a probabilisticresponse,
rather than choosinga single class,would be more robust.
Addressingmore advancedprobabilistic inferencewithin a
patchandamongneighboringpatchesis a subjectof our future
work.

B. Terrain classi�cation results

In this sectionwe report resultsof the terrainclassi�cation
algorithm.As mentionedearlier, weconsiderthepatchesin the
original color image,which correspondto differentcellsof the
map.Eachpatchis classi�ed into a particularterraintypeand
all the pixels which belongto this patchare labeledwith the

labelof thepatch(Figure6). Theclassi�cationperformanceis
measuredasthepercentcorrectlyclassi�edpixelsin theimage
plane. This is more meaningful than counting the correctly
classi�ed patches,asthepatchesat far rangearecomposedof
very small imageareaandcannotbe expectedto be classi�ed
correctlywith this approach(Figure7). Moreover, an error in
the terrainclassi�cationat closerangeaffectsmuchmorethe
slip prediction,so thosepatchesshouldbe given moreweight
in measuringthe classi�cation performance.

Our datasetis composedof � ve different imagesequences
which arecalledsoil, sand,gravel, asphaltandwoodchipafter
the prevailing terrain type in them (Figure 4). Each of the
following six terrainclasses:gravel, soil, sand,asphalt,wood-
chip andgrass,canappearin thosesequences.To measuretest
performancewe take a total of � 30 framesin eachsequence,
which areseparatedby at least10 frameswithin thesequence,
soasnot to besimilar to oneanother. So, the testsetcontains
about150 frameswhich includesabout104 patchesand 107

pixels.Thegroundtruth terraintype in the testsetis givenby
a humanoperator. Exampleclassi�cationresultsareshown in
Figure 6. Note that most terrain classi�cation errorsoccur at
far range.Summaryresultsof the terrainclassi�er for the � ve
sequencesfor differentlook-aheadmapsaregivenin Figure7.
Naturally, a largermapis preferred,asit allows therobotto see
farther, but thepatchesat this rangearevery small (with little
information content) and thereforemuch more likely to be
misclassi�ed.So, for the bene�ts of slip prediction,a tradeoff
betweenaccuracy of classi�cation and seeingfarther should
be made.To be concrete,in our further experimentswe �x
the map size at 12x12m. The confusion matrix for terrain
classi�cation for the 12x12mmap is shown in Figure7.

C. Discussion

The texton-basedmethodfor terrainclassi�cationhasbeen
selectedfor its potential to be fast and robust to intra-class
variability, often observed in natural terrains.Slip prediction
also requiresa �ne discrimination betweenvisually similar
terrains(suchas soil, sand,and gravel), which hasnot been
consideredin thepreviousapproachesfor terrainclassi�cation
in the context of autonomousnavigation [6] (for example,
thosethreeterrain typesfall into one `soil/rock' classwhich
needsto bediscriminatedfrom `grass'and`sky' classesin [6]).
Naturally, a normalizedcolor space(insteadof the full RGB
we are currently using) would make the algorithm robust to
certain illumination variations.The approachcan be easily
extendedto considerthat, aswell.

IV. LEARNING SLIP BEHAVIOR ON A FIXED TERRAIN

In thissectionwedescribethemethodfor learningto predict
slip asa function of terraingeometrywhenthe terraintype is
known (i.e. the slip behavior). The work in this sectionhas
beenconsideredin more detail in a previous contribution of
ours [1]; we include it herefor completeness.

A. Learningalgorithm

Slip S (i.e. f (SjT; G)) is approximatedby a nonlinear
functionof terraingeometryG, becausepreviousexperimental



evidenceshows that slip behavior is a nonlinearfunction of
terrain slopes[17]. We use a model basedon the receptive
�eld regressionmethod[21], [25]. Locally linear functionsare
learnedin small neighborhoods,which gives a good tradeoff
between memory based nonlinear regression methods [9]
and global function approximationmethods,such as Neural
Networks. Ŝ(x) = f (SjG = x) is estimatedas:

Ŝ(x) =
P C

c K (x; x c)(bc
0 +

P r
i =1 bc

i hpc
i ; x i ),

where x are the 2-dimensional input slopes, K (x; y ) =
exp(�k x � yk2=� ) is a smoothingkernel, x c is a training
examplewhich serves as a receptive �eld center, and pc

i are
several local projectionsin each receptive �eld c, r is the
numberof local projections(herer = 2), and� is a parameter
which controlsthereceptive �eld size(� > 0). In otherwords,
the slip S, correspondingto a query point x, is computed
as a linear combinationof C linear functions (one per each
receptive �eld), wherethe weightsarecomputedaccordingto
the distancefrom x to the centersof the receptive �elds.

We brie�y describebelow how to estimatethe unknown
parametersof the nonlinear regression.The centersx c are
allocatedwherever neededin the input spaceasthedataarrive
in an online fashion[21]. To estimatethe parametersbc

i , pc
i

in eachreceptive �eld, a Partial Least Squares(PLS) linear
�t [9] is performed,in which the training pointsareweighted
accordingto their distanceto the receptive �eld center[25].
In our caseof only 2-dimensionalinputs,onecanalsousethe
WeightedLinear Regression[21] or someother locally linear
projection.However, by usingPLS,thealgorithmcanbeeasily
extendedto working with higherdimensionalinputs,because
of the dimensionalityreductioncapabilitiesof PLS [25]. The
parameter� is selectedusinga validationset.

The input for slip prediction, i.e. the terrain geometryG,
is representedby the longitudinalandlateralslopeswhich are
the terrainslopesdecomposedalongthe X andY axesof the
currentpositionof therobot,respectively. They arenamedroll
andpitch angles,as they correspondto the vehicle's roll and
pitch. The terrainslopesareestimatedby performinga linear
�t to the averageelevation of the neighboringcells [1].

B. Results

In this section we give experimental results of learning
and prediction of slip in X from terrain slopes (estimated
from visual information) when the traversedterrain type is
known. Our datasetis composedof long stereosequences
(1000-2000frames) which were taken on one terrain type
at a time. The sequenceis split consecutively: the �rst part
is usedfor training, the secondpart for testing.Somesmall
portion of the data(betweenthe training and testingsets)is
held out for validation. We report below both training and
test error. The training dataare usedto learn the regression
function. After learning, the function is testedon the same
data(trainingerror)andalsoon datanot usedin training (test
error).Naturally the trainingerror will be smaller, but the test
error is a criterion for the learning method's generalization
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Fig. 8. Exampleresultsof predictionof slip in X on soil (top) andon gravel
(bottom). Training mode(left), test mode(right). Note the signi�cant noise
in the measuredslip signal (see[1] for discussion).

abilities, i.e. how well it will perform on new, unseendata.
To be able to measurethe test error, we predict slip only
on locations traversedby the rover. Slip prediction error is
measuredby theRMS,RMS=

p P n
i =1 (Pi � Ti )2=n, wherePi

is the predictedandTi is the target slip at a particularstepi .
Experimentalresults for slip prediction for the soil and

gravel datasetsare given in Figure 8. The RMS test error
achievedonall thedatasets(see[1] for moreresults)is � 15%.
Thegravel dataset(RMS=27%) is anexceptionasthetraining
datadid not have combinationsof roll andpitch slopeangles
which wereseenlater in the testset.Still, it could generalize
quite well from the available training data(Figure8).

V. EXPERIMENTAL RESULTS

In the previous sectionswe saw that terrain type (which
entailsthe intrinsic mechanicalpropertiesof the soil) can be
predictedfrom visual featuresand that slip can be estimated
satisfactorily, giventheterraintype.Thisgivesusexperimental
evidence that we can predict slip from visual information
only. In this section we perform full slip prediction from
stereoimagery for various off-road terrains,as describedin
SectionII, usingthealreadylearnedterraintypeclassi�er from
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SectionIII, and the learnedslip behavior predictorsfor each
terraintype from SectionIV. Thealgorithmworksasfollows:
�rst the terraintype is estimatedfrom appearanceinformation
and then the learnedslip model for that terrain is activated
to produceslip results,given the measuredterrainslopes.For
theseexperimentswe perform a winner-take-all among the
terraintypesin neighboringcellsi.e. theterraintypewith most
votes is selected.We presentthe �nal quantitative resultsby
comparingthe actualmeasuredslip to the predictedslip.

A. Testprocedure

We brie�y summarizethe test procedure.A 2D cell map
of the environmentis built using rangeinformation from the
stereopair images(the cell sizeis 0.4x0.4m).Eachcell keeps
informationaboutits extents,averageelevation,anda pointer
to an image(or images)which have observed this cell. At a
remote(future rover) location, we perform a plane�t to the
neighborhoodof thecell andretrieve the roll andpitch angles
of the terrain[1]. We alsopredictthe terraintypeby applying
the terrain classi�cation algorithm in the neighboringcells.
The terraintypewhich hascollectedmostvotesis selected.A
4x4 cell neighborhoodis usedfor both terrain classi�cation
and plane �t. All those operationsare performedremotely
usingvisual informationonly. Here,again, to beableto report
a testerror, we predict slip only on the pathwhich was later
traversedby the rover, but, in principle, slip predictioncould
be doneon the whole visible map.

Vehicle localization is very important for this method to
succeedandlocalizationis still not a completelysolved prob-
lem in robotics.VO [19] is usedfor thevehicle's localization.
It is appropriateto beusedhere,aswe arenot interestedin an
accurateabsoluteglobal position, but in an accuraterelative
position within short to mid-size (20m long) sequences(i.e.
to be able to map correctly the position of the location seen
from a distanceto the location traversedlater on) and VO is
an algorithmwhich canachieve that [20].

Thereis one more issueof decidingat what rangeto start
reportingthepredictedslip andaccumulatinginformationasa
particularlocation is being approached(we call it `minimum
range'). Naturally, a potential path planner would bene�t
more, the farther we can make a good slip prediction. On
the other hand, locationsobserved at a large distancemight
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Fig. 10. Resultsof slip predictionfrom stereoimagery(terraingeometryand
appearance)onthewholedataset.Top:Thepredictedandmeasuredslip for the
correspondingtestsequences.Slip prediction,assumingcorrectly recognized
terraintype,is alsoshown (naturally, it coincideswith the�nal slip prediction,
whenever the terrain type is classi�ed correctly).Bottom: The predictedand
correctterrain typesacrossthe dataset.

give unreliableor noisy slopeestimates,or provide very little
information for the terrain classi�er to be correct.Resultsof
theslip predictionerror, asa functionof theminimumrangeat
which predictionhasstarted,aregiven in Figure9. Note that
a muchbetterslip predictionis received for smallerminimum
rangesand that the deteriorationin slip prediction is mainly
dueto terrainclassi�cationerrorsoccurringat far ranges(the
slope angle estimationseemsto be much more stablewith
rangefor this dataset).The slopeangleerrorsare computed
against the roll and pitch anglesreceived from the vehicle's
IMU, which are approximationsof the actual slope angles.
So, for our furtherexperimentswe will �x the rangeat which
we start reportingpredictedterrain type and slip at 3 meters
as a trade-off betweena good enoughslip prediction and a
far enoughinitial range(preferredfrom the point of view of
the planner).This meansthat if a location is seenat a closer
than3m rangewe would not useany informationwe acquire
aboutit (throughvision or othersensors)to improve our slip
prediction.Additionally, weneedto accumulateinformationas
the rover approachessomelocationbecausethis locationwill
be seenmultiple times at rangesfarther from the minimum
range.We do thatby averagingmeasurements,weightingthem
by the inverseof the rangeat which they were obtained.So,
all estimationsor predictionsaboutslopeangles,terraintype,
and slip will be accumulatedbetweenthe rangesof 3m and
possibly8.4m (8.4m is the diagonaldistancefrom the center
to the corner of a 12x12m map; in practice,very few cells
will occurat rangeslarger than6m).

B. Results

The testdatasetin this sectionis a compositeof sequences
of frames in which the terrain type is the same within a
sequencebut can change to another terrain for the next



sequence.In this way a humanoperatorcanspecifytheterrain
type of a long imagesequence,insteadof giving groundtruth
for eachimage.The terrain classi�cation algorithm doesnot
have the knowledge that the terrain is continuousfor some
numberof framesandthencanabruptlychange.Thealgorithm
which estimatesthe slopes,however is aware of that change
becausea new frame sequencehas to comewith a different
initial gravity leveled (IMU based)pose. A sequencesize
variesbetween60 and 200 framesand the whole composite
datasetcontainsabout2000testframes.The terrainsarequite
challenging,as the datasetis collectedin the �eld. We have
madesurethat the testdatasethasnot beenusedfor training.

The results of the full slip prediction experiment for
the abovementionedlarge `composite' datasetare shown in
Figure 10. The �gure shows the color coded terrain type
classi�cation results, the measuredslip, the predictedslip,
and the predictedslip if the terrain type were known. The
�nal slip prediction error for the whole datasetis 21:8%.
Whentheterraintypeis classi�edcorrectly, theslip prediction
error is 11:2%. As seenin the �gure, large slip errorscome
from misclassi�ed terrain types (usually soil and gravel are
misclassi�ed for sand).In this datasetthe error is arti�cially
increasedasthe slip measuredfor level sandyterrainis about
80%, which gives a rather large slip error due to terrain
misclassi�cation (compare to the error if the terrain type
were correct). This result also shows that some errors are
more dangerousthan others.In other words, that the terrain
classi�cationalgorithmshouldbe applyingdifferentpenalties
for differenttypesof error, i.e. terrainmisclassi�cationwhich
leadsto large slip errorsshouldbe given larger cost.

VI . CONCLUSIONS AND FUTURE WORK

In this paperwe have proposedto predictslip (a propertyof
mechanicalvehicle-terraininteraction) remotely from visual
information only. We have achieved very promising results,
given the fact that there is a large noise componentin the
measurementof slip (see[1] for discussion).The predicted
slip will be used to enhancea path planning algorithm so
that areasof large slip are avoided as potentialhazards.The
individual componentsof the slip learning and prediction
framework could have independentapplications.Learningof
slippage for a �x ed terrain type could be used insteadof
tediousmanualslip measurements[17]. Predictingterraintype
from visual information could be usedto supply information
remotelyaboutsoil parameterswhich areneededby advanced
mechanicalterrainandrover-terraininteractionmodeling[12].

For the time being, we do of�ine training of both the
terraintypeclassi�er andtheslip behavior predictorsfor each
terraintype,but our future work is targetedat slip learningin
an online fashion,which has in�uenced the selectionof the
algorithmsandmethodsin this work.

Furtherefforts are neededto develop a better terrain clas-
si�cation algorithm,to avoid erroneousslip predictiondueto
terraintype classi�cationerrors.Visual informationmight not
besuf�cient to distinguishvariousterraintypesandproperties,
especiallyconsideringMars terrains.It canbe complemented

with multispectralimaging or other sensorsto resolve some
inherentvisual ambiguitiesand improve on the classi�cation
results.A more advancedalgorithm to considerspatial con-
tinuity of terrain classi�cation over neighboringpatchesor
dependenton terraingeometryalsoneedsto be investigated.
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