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Abstract— Most results in pursuit-evasion games apply look like, and, in particular, how a triangle compares to
only to planar domains or perhaps to higher-dimensional g Euclidean triangle with the same three side lengths.
domains which must be convex. We introduce a very A simple mnemonic for acAT(0) space is that it is

general set of techniques to generalize and extend certain . L
results on simple pursuit to non-convex domains of a metric space, all of whose geodesic triangles have

arbitrary dimension which satisfy a coarse curvature an a”9|9 sum no greater thap Examples OfCAT_(O)
condition (the caT(0) condition). domains are numerous and include the following:

. PURSUIT/ EVASION 1) convex Euclidean domains;

2) simply-connected subsets Bf;

3) simply-connected Riemannian manifolds with
nonpositive sectional curvature;

smooth Euclidean domains with boundaries hav-
ing no more than one non-convex direction at
each point;

5) simply-connected piecewise-Euclidean cubical
complexes with no positive discrete curvature at
the vertices;

There is a significant literature opursuit-evasion
games, with natural motivations coming from robotics
[10], [14], [24]. Such games involve one or more )
evadersin a fixed domain being hunted by one or
more pursuerswho win the game if the appropriate
capture criteria are satisfied. Such criteria may be
physical capture (the pursuers move to where the
evaders are located) [12], [13], [20] or visual capture

(there is a line-of-sight between a pursuer and an 6) Euclidean rectangular prisms with certain cylin-
evader) [10], [23]. The types of pursuit games are drical sets removed:

s et o e ) Sp-connected rions of conve st v
. ' . X have no triple intersections.
acceleration, energy expenditure, strategy, and sensing.
For a quick introduction to the literature on pursuit Our goal in this paper is to motivate the adoption of
games, see, e.g., [15], [10]. CcAT(0) technigues in this and other areas of robotics
This paper focuses on one particular variable iff which the generalization of results from 2-d to
pursuit games: the geometry and topology of thieigher dimensions is problematic. Decades of work
domain on which the game is played. The vast majorif§y geometers irtAT(0) and more general Alexandrov
of the known results on pursuit-evasion are dependegometry (geometry of spaces of bounded curvature)
on having domains which are two-dimensional or, iforms a powerful set of tools which are not very
higher-dimensional, then convex. There has of latgsible outside of mathematics departments (see [4],
been a limited number of results for pursuit gamel®] and §lll below.). The proofs of pursuit/evasion
on surfaces of revolution [11], cones [18], and rountesults in this paper are all very simple and very short,
spheres [16]. Our results are complementary to thegyen the appropriate standard results from comparison
in the sense that we work with domains having digeometry. We extend results AT(0) spaces in a
mension higher than two, without constraints on beindimension-independent manner, and, often, examples
smooth or a manifold. which are of high dimension are no more difficult than
The principal contribution of this work is a signif- those with dimension two: the same proofs cover all
icant extension of known results on convex or plan&ases.
domains to domains of arbitrary dimension which sat- After giving a motivational example of a simple
isfy a type of curvature constraint known as ther(0)  pursuit problem in the plangl(-B), we motivate the
condition. Roughly speaking, theat(0) condition is notion of comparison triangles, total curvature bounds,
a measure of what triangles in a metric spad& d) and their utility in simple pursuit problems. We then



present a brief primer orAT(0) geometry in§lll, It may be argued that pursuit problems are not
followed by a more technical result on growth ratephysically relevant on domains of dimension higher
of total curvature in§lV. These tools are used iV than two. We disagree. Pursuit in three-dimensional
to solve problems involving simple pursuit curves. Welomains finds some justification in the fact that the
conclude this note with results on escape critéfid), physical world has more than two spatial dimensions.
contrasts with the positive curvature ca§¥I(), and Better still, as robotics researchers well know, config-

a series of remarks and open directiof¥gI{l). uration spaces of realistic robotic systems are rarely
low-dimensional. It is not hard to imagine the follow-

[I. A QUICK SUMMARY OF PURSUIT ing scenario. Consider a robot arm (or similar system)
A. Definitions which a user controls by trying to “chase” a moving

) . ) goal configuration. To make it interesting, assume the
_In this paper, we focus on pursuit-evasion problens, i gjier has no knowledge of the future goal states.
involving capture in which the pursuer wins if the p,eq the aigorithm of “simple pursuit” (move towards
distance to the evader limits to within some fixeds 40| in C-space) always eventually converge to the
threshold. We do not at this time considesibility 4\ing goal configuration? The present paper answers

gamedor which the capture criterion is a Iine-of-sightthiS question when the configuration spaceig (0).
between pursuer and evader, though we believe that

our techniques are applicable to such. Time can I® A motivational example
discrete or continuous: we will present proofs in both
cases as examples oAT(0) techniques. All pursuit in
this paper assumes unit speed: generalizations to eq
non-unit speeds is immediate.

The paper [15] gives an excellent introduction t
various types of pursuit and evasion, with a particul%OEtH a point at distance. The pursuer moves to
emphasis on the allowable types of communicatio - '[I’,le point along a straight line from, to E,
and coordination between multiple pursuers. A pursu(stf di:stancel from P,. This is well-defined since

algorithm is said to be is convex. For discrete-time simple pursuit, we always
« successfulif the pursuer gets sufficiently C|Oseassumed(H),EO) > 1; given P, and the sequence
to the evader in finite time, independent of thg ,}, we say thatP wins if for every C > 1,
evader’s strategy; | P, — Ei|| < C for somet; otherwise,E wins.
« local if the pursuers are not permitted to exchange The following result is well-known and easy to
information after the initial time step; prove.
« oblivious if the pursuers never exchange any Theorem 1:Discrete-time simple pursuit on any
information; compact convex Euclidean domain is always suc-
« memorylessif the algorithm depends solely oncessfyl.
the instantaneous data of all pursuer and evadenye sketch a proof which will generalize to certain
locations. non-convex domains. Consider the situation illustrated
« simple if the algorithm has the pursuer travel aj, Fig. 1. The three pointsP,.;, E;, and E,,; form
maximal speed toward the instantaneous positig triangle with side lengthd, — 1, 1 and L.,
of the evader. where L, = ||P, — Ey|| for eacht € N. The triangle
The primary contributions of this paper are aiequality states that any side is no longer than the sum
follows. (1) On any compactcAT(0) domain, we of the other two: thusL;; < (L; —1)+1= L;. By
show that simple pursuit is always successful; (2) Othis monotonicitylim; .., L; exists, and both sides of
compact domains which are notT(0), we observe our triangle inequality have the same limit Suppose
that simple pursuit is not always successful; and (3 wins. ThenC > 1, from which it follows that the
On an arbitrarycaT(0) domain, we give a necessaryanglea; = £ZE;P;,1F:+1 approaches zero, and both
evasion criterion in terms ofotal curvature of a F and P travel on an almost-straight line segment
putative escape path with respect to simple pursuit.in D. In particular, the distancBE, — E;|| grows
With the possible exception of (3), none of thesénearly int for s sufficiently large. This contradicts the
results is surprising when applied to the Euclideacompactness dP and implies that the pursuer always
plane. The principal contribution of this paper is thavins.
extension of these results to higher-dimensional non- There are two ingredients of this proof that general-
convexcAT(0) domains and the development of totalize to certain nonconvex domains. The first is the use
curvature techniques for analyzing such problems. of the Euclidean geometry of the triangle of Fig. 1 to

We begin with a simple pursuit problem in a convex
EuFIideanD, and use this to motivate certain core
i{Ras in comparison geometry. Assume that there is a
single pursuer and a single evader starting at locations
and E, respectively. The evader moves frol}



Py Piy1 if the limit exists.
CAT(0): The key definition for this paper is the
Eit following. A complete geodesic metric spac¥, d) is
cAT(0) if no triangle has a chord longer than that in
E, its Euclidean comparison triangle. As explained above,
this condition encodes nonpositive curvature. For such
Fig. 1. Discrete time simple pursuit in a convex Euclidean domaia space, there is a unique geodesic joining any two
points, angles are always well-defined, and the angles
of a triangle are no larger than their corresponding
show thatZL;,, < L;. The second is the argument thagingles in the comparison triangle. This last fact yields
the maxim thatcAaT(0) means‘No fat triangles,” or,
equivalently, that the angle sum is no greater than
imply thatD contains an arbitrarily long line segment. This implies a number of global properties. For
example, in anyxAT(0) space, any closed curve can be
shrunk to a point within the space: otherwise said, the
A. Definitions space must bsimply-connectedn addition, geodesics
This subsection serves as the briefest possible sufi-2 CAT(0) space between two points are unique and
mary of the basic definitions behirzhT(0) geometry. Vary continuously with endpoints. See [4] for a very
The idea of acaT(0) space begins with a completethorough introduction.
metric spacd X, d) which is ageodesic spacen the
sense that between any two points there is a geodeBic Examples
— a path inX for which path length agrees with

metric distance inX. With this structure alone, one The following are a few concre'Fe exampl_es (.)f
g@T(O) spaces. Some of these are illustrated in Fig.

lim Ly >1 and lim a; =0,
t—o0 t—o0

[1l. A caT(0) PRIMER

can discuss angles, curvatures, and other geome
features one normally associates with Riemanni
geometry.

Triangles: Given a triple of pointgp, ¢,r) in X, a

Example 2: Any convex Euclidean domain is
cAT(0), since any geodesic triangle in such a space
triangle is a triple of geodesicgq, ¢r, andpr. Thus !ies within a Euclidean plane and thus is isometric to
a “triangle” consists of three sides (but no ‘interior’).ItS Planar comparison. Such spaces are everywhere flat.

Curvature: The key to discussing curvature for Example 3:Consider the subset &" obtained by
metric spaces is to examine triangles. Given a triangfi$!€ting the interior of a quadrant. The metric in this
Apqr, construct acomparison triangleAjGF in the €xample is thepath metric In this space, triangles
Euclidean planéi? whose side lengths are the sam@'® the same as their planar counterparts, unless the
as those inX. If X were itself a Euclidean space 0"gin happens to I|§ in the interior of the'convex
then Apgr and Apgi would be indistinguishable: any hull (in the full Euclidean plane) of the vertices. In
two points of Apgr would have metric distance equaltNis case, one or two edges of the geodesic triangle
to the Euclidean distance of the comparable poin{g€Nds” around the origin, yielding a triangle which
of Ajgr. On the other hand, ifY were a round 2- IS definitely “skinny.” This example can be thought of
sphere — the model of positive curvature — the@S having negative curvature concentrated at the origin.
the geodesic triangle in¥ would be “fatter” than  Example 4:Any finite tree (a graph without cycles)
its Euclidean counterpart. Such girth is detectable ptfitted with a metric iscAT(0). Here, any triangle in
comparing the distance between points &pgr in the tree has angle sum either(if the vertices all lie
X with the comparison points of\jG7. Thesechord ©n a single arc) or zero (if the vertices span a 'Y in
lengthsdetect the presence of positive curvature (whelf€ tree). Such trees can be thought of as being flat on
chords inX are longer than those i) or of negative the edges and having negative curvature at the vertices
curvature (when chords i are shorter than those inWith degree greater than two.

E?). Example 5:A Euclidean domain with smooth

Angles: Fix a pointp € X and a pair of geodesics, boundary can beAT(0) depending on how much the
o1(s) andoo(t), which emanate fronp. One can use boundary bends away from the interior, according to
comparison taE?, fixing a pointj and choosing for a more general theorem in [1]. Specifically, a closed,
any s andt a comparison trianglé\s, (s)pc(t). The simply-connected-dimensional Euclidean domain
angle Lo, 05 is defined to be with smooth boundary i<AT(0) if and only if the

. RS tangent plane at each boundary pgirgdontains points
Lorog = lim £01(s)p2(t), () arbitrarily close top that are not in the interior ob.



CAT(0) spaces along convex subsets. A subsebf

a geodesic metric space is said to dmnvexif every
geodesic between any two points_nis contained in
A. It follows from a more general gluing theorem [4,
Theorem 11.11.1] that gluing twaAT(0) spaces along
isometric convex subsets yieldsaT(0) space. For
example, consider any simply-connected subséi’of
of the form

X:UCOU (3)

where C, is convex and there are no triple-
intersections:C, N Cs N C, = 0 for o # ( # 7.
Then X is cAT(0). See Fig. 2[bottom].

C. Tools

] Many of the basic concepts and tools available in

Euclidean and Riemannian geometry apply naturally
CD\\ to cAT(0) spaces, even though these need be neither

smooth nor manifolds. We use the following in later

proofs.
1) The First Variation Theorem:Let ~ be a curve

j in a caAT(0) space. Thespeedof ~ at ~(0) is
%|t=0 d(v(0),~(t)). The following result is a gen-
eralization of theFirst Variation Formulafrom Rie-
mannian geometry:

Theorem 8 ([5], [4]): Let X be acAT(0) space,
Fig. 2. Examples of solid 3-dimensionakt(0) subsets of2®; ~@nd~y1 and~y, be unit speed curves i parametrized
[top] a cylindrically deleted cube; [bottom] a union of corveets by ¢. Let a;, i = 1,2 be the angle between and the
glued along convex subsets. geodesic connecting; (0) to v»(0). Then

_ _ _ % d(71(t),12(t)) = —cosa; —cosag.  (4)

For example, a hyperboloid of one sheet is the inter- t=0

section of two domains ifii? (the “internal” and the ~ 2) Reshetnyak Majorization:Reshetnyak proved a
“external” pieces). The internal componentdsT(0). far-reaching generalization of the defining property
(For n-dimensional Euclidean domains, > 2, the Of @ CAT(0) space. It says in particular that any
cAT(0) condition can be expressed by saying that Hiangle can be filled in by the image of a distance-
most one principal direction at each boundary point 8onincreasing map from the inside of a model triangle,
tangent to a curve in the boundary which bends awdt more than that, there is no need to restrict attention

from the interior.) to triangular closed curves. One can construct such a
Example 6:Consider a space which is aw- Majorizing mapfor any closed curve: _

dimensional cubdo, 1]V with axis-aligned “cylindri- ~ Theorem 9 ([21]):Let ~ be a closed curve in a

cal” sets drilled out. Specifically, consider a space ¢#AT(0) spaceX. Then there is a closed curgewhich

the form: is the boundary of a convex regioR in E* and a

distance-nonincreasing magp: D — X such that the
0,1V — U {(3%){\7 (@, @) € Am‘} (2 restriction of ¢ to ¥ is an arclength-preserving map
i<j onto 7.

where for each < j, A, ; is the interior of a piece- Thus, any closed curve itX can be “filled in”
wise real-analytic subset df), 1] x [0,1]. Any such by the image of a convex planar Euclidean set in a
cylindrically deleted cube which is simply-connectedvay that either preserves or reduces distances between
is cAT(0): see Fig. 2[top] for an example. points: see Fig. 3. This is a core idea @nT(0)

Example 7:0ne can combinecAT(0) spaces to geometry: instead of worrying how a closed curve is
generate new examples. Cross productsceff(0) situated inX, one pulls it back tdE? and works in
spaces are clearlgAT(0) in the product metric. A the plane, knowing that distances, if distorted in this
more significant class of examples comes from gluingpresentation, are not increased.



E2 B. Sublinear total curvature and growth

The growth of a curvey may be measured by its
circumradius functior, wherec(¢) is the circumradius
up to timet: the smallest numbet(t) such that the
path~|[0,¢] lies in the ball of radius:(¢) about~(0).

We show how restrictions on total curvature control
this circumradius. The following theorem and its proof
X parallel a theorem of Dekster in the Riemannian setting
[7], but uses Reshetnyak majorization to obtain a
simple argument that moreover holds for aoyt(0)
o 3 Reshetnvak Maiorizati osed ~domain. The theorem is stated for the continuous case,
T cpreaneysk afozatin compares = coser crve "t may be applied equaly il 1o the discrete case
domain [right], with all “chords” inX being no longer than those (t € N, d(v(¢),v(¢ + 1)) = 1) by joining the vertices
of EZ. by geodesic segments of lengtho obtain a polygonal
curve.
Theorem 10:For any curvey in a cAT(0) domain:

IV. TOTAL CURVATURE (@) If liminf; . 7(t)/t =0, theny is unbounded.

. , . b) If 7(¢)/t* is bounded, for some € (0,1), then
The notion of acAT(0) space generalizes the trian- ®) tlj"(/)c/(t) is bounded 0,1)
gle ar_lsmgF!n t;]e s_lrnr:ple pursctlut pr_ob_lemsdpn tco?vex As an Iillustration, consider the spiraj(u) =
omains ( '9-. ). The second main ingredient ot ouyf, . 2mu, wsin 2u) in E2. The total curvature func-
extension of simple pursuit requires a new set of tec

. hich fl wrally f 0 i on is linear inu, as is the circumradius, while the
;Ir?rl\Jc?;Ievl ich flow naturally froncaT(0) geometric arclengtht grows quadratically. This is the cage= %

in part (b), witht/c(t)? bounded.
Proof: Recall thatliminf; ., 7(¢)/t is defined
as lim; oo (infu>¢ 7(w)/u). For part (a), we may
In this section we work in ecAT(0) domainD. suppose by approximation that any fixed initial seg-
The total curvaturer, of a piecewise-geodesic (orment~|[0,¢] is polygonal. Subdividé, ¢] into at most

A. Definition

polygona) curveos is ;(—;2) + 1 subintervals so that the restriction of ~
to each subinterval has total curvature at mog?.
Y (r—ay), () (if any angles are less than/2, we first refine the
Y polygon by cutting across each such angle with a short

where then; > 0 are the angles at the interior verticesS€gment to obtain two angles of at leagt. ) Let p;
It follows from CAT(0) triangle comparisons that# € the closed polygon consisting-pfand its chordy;.
is inscribed in a polygonal curve, thenr, < 7, By Reshetnyak majorization, there is a closed convex

[2]. Thus the total curvature, of any curvey may CUrve pi in E* that majorizesp;. Since a majorizing
be defined as the supremum ©of over all polygonal Map preserves geodesics and does not increase angles,

o inscribed in~y. Curves of finite total curvature in 7i IS @ closed polygon with the same sidelengths as
cAT(0) spaces are well-behaved, in the sense that théy consisting of a polygonal curvg; and its chord
have unit-speed parametrizations, which have left afd: Where the total curvature of; is a2t mostr /2.
right unit velocity vectors at every point. Since 7; is a convex curve inE” having total

If D is a convex domain ifi”, and~ is a curve with curvature at most /2, the ratio Qf its Iength to that of
unit speed, them, equals the length of the curve™ ItS chord is at most/2 (the ratio of two sides of an
of righthand unit tangent vectors in the unit Spheré§osceles right triangle to its hypotenuse). Therefore

with jump discontinuities replaced by great circular 7(t)
arcs [3]. In particular, ify is smooth inE?, so that t< <7T/2 + 1> V2sup [oy], (6)
v'(t) = (cosf(t),sinb(t)), thent, = [k, wherex =
' =16'). _ B () 1 1
In following section, we show that conditions for t =2\ Vasup o -7 )

capture or escape in@T(0) domain can be expressed
in terms of the asymptotics of thotal curvature But if v is bounded, so thatup |o;| < oo, it follows
function 7(t) := 7,104, Where is the path of the thatr(¢)/t is bounded away frond for ¢ sufficiently
evader and is its unit-speed parameter. large. This proves Part (a).



For Part (b), if one substitutes(t) < At* Theorem 12:In the continuous time case, simple
and sup |o;| < 2¢(t) in (6), it is immediate that pursuit is successful on any compat(0) domain
t/c(t)*/1=9) is bounded. m D

Proof: Denote bya!” andaf the angles between
the (respective) velocity unit vector8/ and E; and

Having developed the appropriate tools, we genethe geodesic segment frof to P;. According to the
alize our motivational example tacAT(0) domains. First Variation Theorem,

We consider simple pursuit, in which the sole pursuer dL

adopts the instantaneous strategy of moving toward —
. " . dt

the sole evader’s current position, with the pursuer

and evader moving at unit speed. L& and E, Since this is a pursuit curvepl = 0. To avoid

denote initial positions of the respective agents, whegapture, it must be the case thaf — 7, meaning

d(Py, Eg) > 1. We break the problem into discretethat the total curvature is sublinear and the pursuit

V. SIMPLE PURSUIT ON CAT(0) DOMAINS

= —cosal —cosal. @)

time and continuous-time versions for expository reaurve is unbounded: contradiction. o
sons, to illustrate the types of tools availableciar (0)
geometry.

VI. ESCAPE

A. Discrete time capture : .
On a noncompact domain, the relevant question

Theorem 11:In the discrete time case, simple puris whether the evader can escape when the pursuer

suit is successful on any compazaT(0) domainD.  adopts the simple pursuit-curve strategy, and, if so,
Proof: Consider the situation illustrated in Fig.what initial conditions lead to escape. Here we show

4. Four points, P, Ey, E;y1 and Py, form a  that the pursuer still always wins if the circumradius of
degenerate geodesic quadrangle with side lengifie evader does not grow fast enough, or, equivalently
Ly, 1, Ly, and 1, where Ly = d(F, Ey) for each yia Theorem 10, if the evader makes its path curve too
integer t. By drawing a comparison triangle if?, much.
one observes that;;; < L;. By monotonicity,  Theorem 13:0n any cat(0) domain D, if the
lim; .o, L; exists and the evader wins if and only ifeyader wins a simple pursuit game, theft/c(t) is
this limit is greater thari. In this case, the angle; poynded, where(t) is the evader's circumradius up
between the geodesics joining ; to £; and Ey 1 g time £
vanishes in the limit, because the same is true for the p/qqf We present a proof for the case of discrete

comparison triangles. Hence, the total curvature @fhe |t suffices to show that(t)/v/ is bounded
the P curve is sublinear and this curve is unboundeg,here 7(t) is the total curvature function of the

contradicting the fact that the domain is compacs. pursuer, as is seen by taking= 1/2 in Part (b) of

Theorem 10.
Consider the configuration illustrated in Figure 4
with anglea; = ZFE; P, 1 F;+1 and comparison angle
@;, where angley; > «;. We start with the notation of
Ein Theorem 10, and assume again that the evader escapes,
solimL; = C > 1. Also lima; = 0 and the total
E, curvature function of the pursuer igt) = >2'_, a,.
We may assume that; < 1 for all i. By the Law of
Cosines applied to the comparison triangle,

P, Piy1

Fig. 4. A comparison triangle arising from a discrete time oegpt
problem. This illustrates the naturality of tleaT(0) definition in
the context of pursuit problems.

1=L2+(Li_y —1)> =2Li(L;_1 —1)cosa;. (8)

B. Continuous time capture Sinceq; < 1, Taylor's Theorem implies,
In this setting of simple pursuit, the pursuer and ) a2 a4 1,
evader move along parameterized cun/gsand E; cosa; <1— é + i <1- ﬂ%- )

(resp.) at constant unit speed. For eacthe velocity
vector P/ points along the geodesic frof} to F;. As
follows from equation (7) below; is nonincreasing, 0 sz + Lf_l — 2L,y —2L;L;_1 +2L;+
whereL; = d(P;, E;). The evader wins if and only if 11 Y (10)
hmt_,oo Lt =C>0. + ELi(L’i—l - 1)0{17

It follows that



and therefore can always win. Assume without a loss of generality
a? < &2 tha’:c Polis at tltlehnolrth p_0|§¢ :fO.hThe pdursuer car;]
e L perfectly track the longitudé of the evader at eac
< 12 —(Lioy = Li)” + 2(Liy — Li) step. The latitude of the pursuer is always less than

1 Li(Li—1 — 1) (11) that of the evader, but can be increased by an amount
< L(L,_l — L. at leastcos ¢ times the jump size. In the limit, the
- 1oe -1y ' latitude of the pursuer approaches that of the evader
Summing fromi = 1 to ¢ and using the Cauchy- and capture occurs.
Schwarz inequality (in the forrtv-w)? < (v-v)(w-w), This domainH is of course notcAT(0); the round
where the entries of are all1’s) gives the curvature Sphere is a model of positive curvature. Note, however,
bound: that the argument breaks down for a slightly larger
portion of a sphere that dips below the equator. In this
2 case, evasion may occur.
0?1y ~
P Do) <X VIIl. ON CAT(0) GEOMETRY
122 = (12) We have demonstrated tha&tat(0) geometry is
S m(LO — L) efficacious in the context of pursuit-evasion games.
24(Lo — C) In particular, we have demonstrated generalizations of

< m knowr) results in pIana_r Euclﬁdean convex domains to
domains of arbitrary dimension which are not neces-

Thus7(t)/v/t is bounded as required. o sarily either smooth or locally Euclidean or convex.

The proofs, though in a language which is perhaps
unfamiliar to researchers in robotics or differential
VII. D OMAINS WITH POSITIVE CURVATURE games, are essentially “two dimensional” proofs. The

For non-convex domains in Euclideanspace for genius of thecAT(0) condition is that two-dimensional
n > 3, it is not necessarily the case that the pursuértuitions and techniques regulate all. The existing
always wins, even if the space is compact. literature on pursuit-evasion games on non-planar and

Example 14:Consider a flat annular stripl = non-convex domains has as its focus the work of
{(r,0,2) € E* : r =1,z € [0,1]}. The evader wins Melikyan [18] on differential (Hamilton-Jacobi-Isaacs)
by moving away from the pursuer along a geodesiquations for Riemannian surfaces. Our approach us-
circle of constantz in A (this being equivalent to ing CAT(0) geometry is a significant departure, adapt-
running off to infinity in the locally isometric universal ing well to a large variety of domains.
cover). The domaim is not simply-connected. How- In a more general context, the progression from
ever, we can attach a die = 0,7 < 1} to A and results about two-dimensional domains to domains of
obtain a simply-connected (even contractible) spce dimension three and higher is both challenging and
on which evasion is always possible. vital in a number of problems across computational

This perfectly highlights the topological and geodisciplines. These include optimal path-planning in ro-
metric obstructions to capture. The domainis flat, botics, ray tracing and visibility in computer graphics,
but capture is prevented by topological reasons: tld chattering phenomena in control theory. We do
fundamental group is the obstruction. The dom&in not find it a coincidence that in many of these related
is contractible, but, even though it is built from flatfields, those domains which serve as counterexamples
pieces, there is positive curvature concentrated at tteethe simple “planar” models are those with an excess
rim {z = 0, = 1}. This example may easily beof positive curvature. See, for example, the paper of
generalized to a 3-dimensional contractible domain @anny and Reif [6], which demonstrates that finding
E* by thickening B to a thin shell, the boundary of shortest paths in a three dimensional PL Euclidean
which possesses regions of positive curvature. Highatemain is NP hard, whereas in certain 3-d spaces
dimensional examples are likewise easily constructeghich arecat(0), it is of polynomial complexity [19].

Positive curvature is not necessarily an obstructiofhe Canny-Reif construction secretly exploits positive
to capture in the way that the fundamental group is.curvature.

Example 15:Consider the round 2-dimensional It is a theme forcefully demonstrated in the math-
sphereS? ¢ E® and let H denote the upper hemi- ematics literature orcaT(0) geometry that a gen-
sphereH = {(z,y,z) € S? : z > 0} with spherical eral propertyX which holds on both planar simply-
coordinatesd, ¢). The standard argument for pursuiconnected domains and on higher dimensional convex
in a Euclidean disc works here to show that the pursusets should also hold on arbitragaT(0) domains.



What is more, the proof that properfy holds should
be the same as that of the planar case. This is a genuine related problemsProc. 28th Ann. IEEE Symp. Found. Comp.
hope against theurse of dimensionalitwhich plagues
many robotics motion planning problems. The present
paper demonstrates a type of ‘phase transition’ fof8l
pursuit-evasion games in which the change is from
impossibleto possible as you move from general
domains to those which am@at(0).

More specific to the goals of this note, there are
a number of future directions for inquiry. We haveg10]
generalized many of the results on strategic pursuit
from [22], [15]: many of the proofs lift directly from [11]
convex Euclidean t@AT(0) domains. We have not yet
explored optimal evader strategies or analyzed optimal

generalizing simple pursuit gamesdaT(0) domains,
an exploration of line-of-sight visibility games is in
Lo . . . [14]
order. Likewise, a more physically realistic settmé
involving dynamic and/or kinematic constraints on the
pursuer and evader pose interesting geometric quésd
tions: e.g., the case of dynamic constraints naturally
leads to a discussion of curves with bounded curvatupnes]
(cf. Dubins-type problems [8]). Such objects are likely
amenable to technigues froonT(0) geometry.
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