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Abstract— Most results in pursuit-evasion games apply
only to planar domains or perhaps to higher-dimensional
domains which must be convex. We introduce a very
general set of techniques to generalize and extend certain
results on simple pursuit to non-convex domains of
arbitrary dimension which satisfy a coarse curvature
condition (the CAT(0) condition).

I. PURSUIT / EVASION

There is a significant literature onpursuit-evasion
games, with natural motivations coming from robotics
[10], [14], [24]. Such games involve one or more
evadersin a fixed domain being hunted by one or
more pursuerswho win the game if the appropriate
capture criteria are satisfied. Such criteria may be
physical capture (the pursuers move to where the
evaders are located) [12], [13], [20] or visual capture
(there is a line-of-sight between a pursuer and an
evader) [10], [23]. The types of pursuit games are
many and varied: continuous or discrete time, bounded
or unbounded speed, and constraints on admissible
acceleration, energy expenditure, strategy, and sensing.
For a quick introduction to the literature on pursuit
games, see, e.g., [15], [10].

This paper focuses on one particular variable in
pursuit games: the geometry and topology of the
domain on which the game is played. The vast majority
of the known results on pursuit-evasion are dependent
on having domains which are two-dimensional or, if
higher-dimensional, then convex. There has of late
been a limited number of results for pursuit games
on surfaces of revolution [11], cones [18], and round
spheres [16]. Our results are complementary to these,
in the sense that we work with domains having di-
mension higher than two, without constraints on being
smooth or a manifold.

The principal contribution of this work is a signif-
icant extension of known results on convex or planar
domains to domains of arbitrary dimension which sat-
isfy a type of curvature constraint known as theCAT(0)
condition. Roughly speaking, theCAT(0) condition is
a measure of what triangles in a metric space(X, d)

look like, and, in particular, how a triangle compares to
a Euclidean triangle with the same three side lengths.
A simple mnemonic for aCAT(0) space is that it is
a metric space, all of whose geodesic triangles have
an angle sum no greater thanπ. Examples ofCAT(0)
domains are numerous and include the following:

1) convex Euclidean domains;
2) simply-connected subsets ofE

2;
3) simply-connected Riemannian manifolds with

nonpositive sectional curvature;
4) smooth Euclidean domains with boundaries hav-

ing no more than one non-convex direction at
each point;

5) simply-connected piecewise-Euclidean cubical
complexes with no positive discrete curvature at
the vertices;

6) Euclidean rectangular prisms with certain cylin-
drical sets removed;

7) simply-connected unions of convex sets which
have no triple intersections.

Our goal in this paper is to motivate the adoption of
CAT(0) techniques in this and other areas of robotics
in which the generalization of results from 2-d to
higher dimensions is problematic. Decades of work
by geometers inCAT(0) and more general Alexandrov
geometry (geometry of spaces of bounded curvature)
forms a powerful set of tools which are not very
visible outside of mathematics departments (see [4],
[5] and §III below.). The proofs of pursuit/evasion
results in this paper are all very simple and very short,
given the appropriate standard results from comparison
geometry. We extend results toCAT(0) spaces in a
dimension-independent manner, and, often, examples
which are of high dimension are no more difficult than
those with dimension two: the same proofs cover all
cases.

After giving a motivational example of a simple
pursuit problem in the plane (§II-B), we motivate the
notion of comparison triangles, total curvature bounds,
and their utility in simple pursuit problems. We then



present a brief primer onCAT(0) geometry in§III,
followed by a more technical result on growth rates
of total curvature in§IV. These tools are used in§V
to solve problems involving simple pursuit curves. We
conclude this note with results on escape criteria (§VI),
contrasts with the positive curvature case (§VII), and
a series of remarks and open directions (§VIII).

II. A QUICK SUMMARY OF PURSUIT

A. Definitions

In this paper, we focus on pursuit-evasion problems
involving capture, in which the pursuer wins if the
distance to the evader limits to within some fixed
threshold. We do not at this time considervisibility
gamesfor which the capture criterion is a line-of-sight
between pursuer and evader, though we believe that
our techniques are applicable to such. Time can be
discrete or continuous: we will present proofs in both
cases as examples ofCAT(0) techniques. All pursuit in
this paper assumes unit speed: generalizations to equal
non-unit speeds is immediate.

The paper [15] gives an excellent introduction to
various types of pursuit and evasion, with a particular
emphasis on the allowable types of communication
and coordination between multiple pursuers. A pursuit
algorithm is said to be

• successfulif the pursuer gets sufficiently close
to the evader in finite time, independent of the
evader’s strategy;

• local if the pursuers are not permitted to exchange
information after the initial time step;

• oblivious if the pursuers never exchange any
information;

• memoryless if the algorithm depends solely on
the instantaneous data of all pursuer and evader
locations.

• simple if the algorithm has the pursuer travel at
maximal speed toward the instantaneous position
of the evader.

The primary contributions of this paper are as
follows. (1) On any compactCAT(0) domain, we
show that simple pursuit is always successful; (2) On
compact domains which are notCAT(0), we observe
that simple pursuit is not always successful; and (3)
On an arbitraryCAT(0) domain, we give a necessary
evasion criterion in terms oftotal curvature of a
putative escape path with respect to simple pursuit.

With the possible exception of (3), none of these
results is surprising when applied to the Euclidean
plane. The principal contribution of this paper is the
extension of these results to higher-dimensional non-
convexCAT(0) domains and the development of total-
curvature techniques for analyzing such problems.

It may be argued that pursuit problems are not
physically relevant on domains of dimension higher
than two. We disagree. Pursuit in three-dimensional
domains finds some justification in the fact that the
physical world has more than two spatial dimensions.
Better still, as robotics researchers well know, config-
uration spaces of realistic robotic systems are rarely
low-dimensional. It is not hard to imagine the follow-
ing scenario. Consider a robot arm (or similar system)
which a user controls by trying to “chase” a moving
goal configuration. To make it interesting, assume the
controller has no knowledge of the future goal states.
Does the algorithm of “simple pursuit” (move towards
the goal in C-space) always eventually converge to the
moving goal configuration? The present paper answers
this question when the configuration space isCAT(0).

B. A motivational example

We begin with a simple pursuit problem in a convex
EuclideanD, and use this to motivate certain core
ideas in comparison geometry. Assume that there is a
single pursuer and a single evader starting at locations
P0 and E0 respectively. The evader moves fromEt

to Et+1, a point at distance1. The pursuer moves to
Pt+1, the point along a straight line fromPt to Et

of distance1 from Pt. This is well-defined sinceD
is convex. For discrete-time simple pursuit, we always
assumed(P0, E0) > 1; given P0 and the sequence
{Et}, we say thatP wins if for every C > 1,
‖Pt − Et‖ < C for somet; otherwise,E wins.

The following result is well-known and easy to
prove.

Theorem 1:Discrete-time simple pursuit on any
compact convex Euclidean domainD is always suc-
cessful.

We sketch a proof which will generalize to certain
non-convex domains. Consider the situation illustrated
in Fig. 1. The three points,Pt+1, Et, andEt+1 form
a triangle with side lengthsLt − 1, 1 and Lt+1,
whereLt = ‖Pt − Et‖ for eacht ∈ N. The triangle
inequality states that any side is no longer than the sum
of the other two: thus,Lt+1 ≤ (Lt − 1) + 1 = Lt. By
this monotonicity,limt→∞ Lt exists, and both sides of
our triangle inequality have the same limitC. Suppose
E wins. ThenC > 1, from which it follows that the
angleαt = ∠EtPt+1Et+1 approaches zero, and both
E and P travel on an almost-straight line segment
in D. In particular, the distance‖Es − Es+t‖ grows
linearly in t for s sufficiently large. This contradicts the
compactness ofD and implies that the pursuer always
wins.

There are two ingredients of this proof that general-
ize to certain nonconvex domains. The first is the use
of the Euclidean geometry of the triangle of Fig. 1 to
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Fig. 1. Discrete time simple pursuit in a convex Euclidean domain.

show thatLt+1 ≤ Lt. The second is the argument that

lim
t→∞

Lt > 1 and lim
t→∞

αt = 0,

imply thatD contains an arbitrarily long line segment.

III. A CAT(0) PRIMER

A. Definitions

This subsection serves as the briefest possible sum-
mary of the basic definitions behindCAT(0) geometry.
The idea of aCAT(0) space begins with a complete
metric space(X, d) which is ageodesic space, in the
sense that between any two points there is a geodesic
— a path in X for which path length agrees with
metric distance inX. With this structure alone, one
can discuss angles, curvatures, and other geometric
features one normally associates with Riemannian
geometry.

Triangles: Given a triple of points(p, q, r) in X, a
triangle is a triple of geodesicspq, qr, andpr. Thus
a “triangle” consists of three sides (but no ‘interior’).

Curvature: The key to discussing curvature for
metric spaces is to examine triangles. Given a triangle
4pqr, construct acomparison triangle4p̃q̃r̃ in the
Euclidean planeE2 whose side lengths are the same
as those inX. If X were itself a Euclidean space,
then4pqr and4p̃q̃r̃ would be indistinguishable: any
two points of4pqr would have metric distance equal
to the Euclidean distance of the comparable points
of 4p̃q̃r̃. On the other hand, ifX were a round 2-
sphere — the model of positive curvature — then
the geodesic triangle inX would be “fatter” than
its Euclidean counterpart. Such girth is detectable by
comparing the distance between points of4pqr in
X with the comparison points of4p̃q̃r̃. Thesechord
lengthsdetect the presence of positive curvature (when
chords inX are longer than those inE2) or of negative
curvature (when chords inX are shorter than those in
E

2).
Angles: Fix a pointp ∈ X and a pair of geodesics,

σ1(s) andσ2(t), which emanate fromp. One can use
comparison toE2, fixing a point p̃ and choosing for
any s andt a comparison triangle4σ̃1(s)p̃σ̃2(t). The
angle∠σ1σ2 is defined to be

∠σ1σ2 = lim
s,t→0

∠σ̃1(s)p̃σ̃2(t), (1)

if the limit exists.
CAT(0): The key definition for this paper is the

following. A complete geodesic metric space(X, d) is
CAT(0) if no triangle has a chord longer than that in
its Euclidean comparison triangle. As explained above,
this condition encodes nonpositive curvature. For such
a space, there is a unique geodesic joining any two
points, angles are always well-defined, and the angles
of a triangle are no larger than their corresponding
angles in the comparison triangle. This last fact yields
the maxim thatCAT(0) means“No fat triangles,” or,
equivalently, that the angle sum is no greater thanπ.

This implies a number of global properties. For
example, in anyCAT(0) space, any closed curve can be
shrunk to a point within the space: otherwise said, the
space must besimply-connected. In addition, geodesics
of a CAT(0) space between two points are unique and
vary continuously with endpoints. See [4] for a very
thorough introduction.

B. Examples

The following are a few concrete examples of
CAT(0) spaces. Some of these are illustrated in Fig.
2.

Example 2:Any convex Euclidean domain is
CAT(0), since any geodesic triangle in such a space
lies within a Euclidean plane and thus is isometric to
its planar comparison. Such spaces are everywhere flat.

Example 3:Consider the subset ofE2 obtained by
deleting the interior of a quadrant. The metric in this
example is thepath metric. In this space, triangles
are the same as their planar counterparts, unless the
origin happens to lie in the interior of the convex
hull (in the full Euclidean plane) of the vertices. In
this case, one or two edges of the geodesic triangle
“bends” around the origin, yielding a triangle which
is definitely “skinny.” This example can be thought of
as having negative curvature concentrated at the origin.

Example 4:Any finite tree (a graph without cycles)
outfitted with a metric isCAT(0). Here, any triangle in
the tree has angle sum eitherπ (if the vertices all lie
on a single arc) or zero (if the vertices span a ‘Y’ in
the tree). Such trees can be thought of as being flat on
the edges and having negative curvature at the vertices
with degree greater than two.

Example 5:A Euclidean domain with smooth
boundary can beCAT(0) depending on how much the
boundary bends away from the interior, according to
a more general theorem in [1]. Specifically, a closed,
simply-connected3-dimensional Euclidean domainD
with smooth boundary isCAT(0) if and only if the
tangent plane at each boundary pointp contains points
arbitrarily close top that are not in the interior ofD.



Fig. 2. Examples of solid 3-dimensionalCAT(0) subsets ofE3:
[top] a cylindrically deleted cube; [bottom] a union of convex sets
glued along convex subsets.

For example, a hyperboloid of one sheet is the inter-
section of two domains inE3 (the “internal” and the
“external” pieces). The internal component isCAT(0).
(For n-dimensional Euclidean domains,n > 2, the
CAT(0) condition can be expressed by saying that at
most one principal direction at each boundary point is
tangent to a curve in the boundary which bends away
from the interior.)

Example 6:Consider a space which is anN -
dimensional cube[0, 1]N with axis-aligned “cylindri-
cal” sets drilled out. Specifically, consider a space of
the form:

[0, 1]N −
⋃

i<j

{
(xk)N

1 : (xi, xj) ∈ ∆i,j

}
, (2)

where for eachi < j, ∆i,j is the interior of a piece-
wise real-analytic subset of[0, 1] × [0, 1]. Any such
cylindrically deleted cube which is simply-connected
is CAT(0): see Fig. 2[top] for an example.

Example 7:One can combineCAT(0) spaces to
generate new examples. Cross products ofCAT(0)
spaces are clearlyCAT(0) in the product metric. A
more significant class of examples comes from gluing

CAT(0) spaces along convex subsets. A subsetA of
a geodesic metric space is said to beconvexif every
geodesic between any two points inA is contained in
A. It follows from a more general gluing theorem [4,
Theorem II.11.1] that gluing twoCAT(0) spaces along
isometric convex subsets yields aCAT(0) space. For
example, consider any simply-connected subset ofE

n

of the form
X =

⋃

α

Cα, (3)

where Cα is convex and there are no triple-
intersections:Cα ∩ Cβ ∩ Cγ = ∅ for α 6= β 6= γ.
ThenX is CAT(0). See Fig. 2[bottom].

C. Tools

Many of the basic concepts and tools available in
Euclidean and Riemannian geometry apply naturally
to CAT(0) spaces, even though these need be neither
smooth nor manifolds. We use the following in later
proofs.

1) The First Variation Theorem::Let γ be a curve
in a CAT(0) space. Thespeed of γ at γ(0) is
d
dt

∣∣
t=0

d(γ(0), γ(t)). The following result is a gen-
eralization of theFirst Variation Formula from Rie-
mannian geometry:

Theorem 8 ([5], [4]): Let X be a CAT(0) space,
andγ1 andγ2 be unit speed curves inX parametrized
by t. Let αi, i = 1, 2 be the angle betweenγi and the
geodesic connectingγ1(0) to γ2(0). Then

d

dt

∣∣∣∣
t=0

d(γ1(t), γ2(t)) = − cos α1 − cos α2. (4)

2) Reshetnyak Majorization::Reshetnyak proved a
far-reaching generalization of the defining property
of a CAT(0) space. It says in particular that any
triangle can be filled in by the image of a distance-
nonincreasing map from the inside of a model triangle,
but more than that, there is no need to restrict attention
to triangular closed curves. One can construct such a
majorizing mapfor any closed curve:

Theorem 9 ([21]): Let γ be a closed curve in a
CAT(0) spaceX. Then there is a closed curvẽγ which
is the boundary of a convex regionD in E

2 and a
distance-nonincreasing mapϕ : D → X such that the
restriction of ϕ to γ̃ is an arclength-preserving map
onto γ.

Thus, any closed curve inX can be “filled in”
by the image of a convex planar Euclidean set in a
way that either preserves or reduces distances between
points: see Fig. 3. This is a core idea inCAT(0)
geometry: instead of worrying how a closed curve is
situated inX, one pulls it back toE2 and works in
the plane, knowing that distances, if distorted in this
representation, are not increased.
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Fig. 3. Reshetnyak Majorization compares a closed curve in a
CAT(0) spaceX [left] to the boundary of a convex Euclidean planar
domain [right], with all “chords” inX being no longer than those
of E

2.

IV. TOTAL CURVATURE

The notion of aCAT(0) space generalizes the trian-
gle arising in the simple pursuit problems on convex
domains (Fig. 1 ). The second main ingredient of our
extension of simple pursuit requires a new set of tech-
niques which flow naturally fromCAT(0) geometric
principles.

A. Definition

In this section we work in aCAT(0) domainD.
The total curvature τσ of a piecewise-geodesic (or
polygonal) curveσ is

∑

j

(π − αj), (5)

where theαj ≥ 0 are the angles at the interior vertices.
It follows from CAT(0) triangle comparisons that ifσ
is inscribed in a polygonal curveγ, then τσ ≤ τγ

[2]. Thus the total curvatureτγ of any curveγ may
be defined as the supremum ofτσ over all polygonal
σ inscribed inγ. Curves of finite total curvature in
CAT(0) spaces are well-behaved, in the sense that they
have unit-speed parametrizations, which have left and
right unit velocity vectors at every point.

If D is a convex domain inEn, andγ is a curve with
unit speed, thenτγ equals the length of the curveγ

′+

of righthand unit tangent vectors in the unit sphere,
with jump discontinuities replaced by great circular
arcs [3]. In particular, ifγ is smooth inE

2, so that
γ′(t) = (cos θ(t), sin θ(t)), thenτγ =

∫
κ, whereκ =

|γ′′| = |θ′|.
In following section, we show that conditions for

capture or escape in aCAT(0) domain can be expressed
in terms of the asymptotics of thetotal curvature
function τ(t) := τγ|[0,t], whereγ is the path of the
evader andt is its unit-speed parameter.

B. Sublinear total curvature and growth

The growth of a curveγ may be measured by its
circumradius functionc, wherec(t) is the circumradius
up to time t: the smallest numberc(t) such that the
pathγ|[0, t] lies in the ball of radiusc(t) aboutγ(0).
We show how restrictions on total curvature control
this circumradius. The following theorem and its proof
parallel a theorem of Dekster in the Riemannian setting
[7], but uses Reshetnyak majorization to obtain a
simple argument that moreover holds for anyCAT(0)
domain. The theorem is stated for the continuous case,
but may be applied equally well to the discrete case
(t ∈ N, d(γ(t), γ(t + 1)) = 1) by joining the vertices
by geodesic segments of length1 to obtain a polygonal
curve.

Theorem 10:For any curveγ in a CAT(0) domain:

(a) If lim inft→∞ τ(t)/t = 0, thenγ is unbounded.
(b) If τ(t)/ta is bounded, for somea ∈ (0, 1), then

t1−a/c(t) is bounded.
As an illustration, consider the spiralγ(u) =

(u cos 2πu, u sin 2πu) in E
2. The total curvature func-

tion is linear inu, as is the circumradius, while the
arclengtht grows quadratically. This is the casea = 1

2
in part (b), witht/c(t)2 bounded.

Proof: Recall thatlim inft→∞ τ(t)/t is defined
as limt→∞(infu≥t τ(u)/u). For part (a), we may
suppose by approximation that any fixed initial seg-
mentγ|[0, t] is polygonal. Subdivide[0, t] into at most
τ(t)
π/2 + 1 subintervals so that the restrictionγi of γ

to each subinterval has total curvature at mostπ/2.
(If any angles are less thanπ/2, we first refine the
polygon by cutting across each such angle with a short
segment to obtain two angles of at leastπ/2. ) Let ρi

be the closed polygon consisting ofγi and its chordσi.
By Reshetnyak majorization, there is a closed convex
curve ρ̃i in E

2 that majorizesρi. Since a majorizing
map preserves geodesics and does not increase angles,
ρ̃i is a closed polygon with the same sidelengths as
ρi, consisting of a polygonal curvẽγi and its chord
σ̃i, where the total curvature of̃γi is at mostπ/2.

Since γ̃i is a convex curve inE
2 having total

curvature at mostπ/2, the ratio of its length to that of
its chord is at most

√
2 (the ratio of two sides of an

isosceles right triangle to its hypotenuse). Therefore

t ≤
(

τ(t)

π/2
+ 1

)√
2 sup |σi|, (6)

so
τ(t)

t
≥ π

2

(
1√

2 sup |σi|
− 1

t

)
.

But if γ is bounded, so thatsup |σi| < ∞, it follows
that τ(t)/t is bounded away from0 for t sufficiently
large. This proves Part (a).



For Part (b), if one substitutesτ(t) ≤ Ata

and sup |σi| ≤ 2c(t) in (6), it is immediate that
t/c(t)1/(1−a) is bounded.

V. SIMPLE PURSUIT ON CAT(0) DOMAINS

Having developed the appropriate tools, we gener-
alize our motivational example toCAT(0) domains.
We consider simple pursuit, in which the sole pursuer
adopts the instantaneous strategy of moving toward
the sole evader’s current position, with the pursuer
and evader moving at unit speed. LetP0 and E0

denote initial positions of the respective agents, where
d(P0, E0) > 1. We break the problem into discrete-
time and continuous-time versions for expository rea-
sons, to illustrate the types of tools available inCAT(0)
geometry.

A. Discrete time capture

Theorem 11:In the discrete time case, simple pur-
suit is successful on any compactCAT(0) domainD.

Proof: Consider the situation illustrated in Fig.
4. Four points, Pt, Et, Et+1 and Pt+1, form a
degenerate geodesic quadrangle with side lengths
Lt, 1, Lt+1, and 1, whereLt = d(Pt, Et) for each
integer t. By drawing a comparison triangle inE2,
one observes thatLt+1 ≤ Lt. By monotonicity,
limt→∞ Lt exists and the evader wins if and only if
this limit is greater than1. In this case, the angleαt

between the geodesics joiningPt+1 to Et and Et+1

vanishes in the limit, because the same is true for the
comparison triangles. Hence, the total curvature of
the P curve is sublinear and this curve is unbounded,
contradicting the fact that the domain is compact.�

Et

Et+1

Pt
Pt+1

Fig. 4. A comparison triangle arising from a discrete time capture
problem. This illustrates the naturality of theCAT(0) definition in
the context of pursuit problems.

B. Continuous time capture

In this setting of simple pursuit, the pursuer and
evader move along parameterized curvesPt and Et

(resp.) at constant unit speed. For eacht, the velocity
vectorP ′

t points along the geodesic fromPt to Et. As
follows from equation (7) below,Lt is nonincreasing,
whereLt = d(Pt, Et). The evader wins if and only if
limt→∞ Lt = C > 0.

Theorem 12:In the continuous time case, simple
pursuit is successful on any compactCAT(0) domain
D.

Proof: Denote byαP
t andαE

t the angles between
the (respective) velocity unit vectorsP ′

t and E′
t and

the geodesic segment fromEt to Pt. According to the
First Variation Theorem,

dL

dt
= − cos αE

t − cos αP
t . (7)

Since this is a pursuit curve,αP
t = 0. To avoid

capture, it must be the case thatαE
t → π, meaning

that the total curvature is sublinear and the pursuit
curve is unbounded: contradiction. �

VI. ESCAPE

On a noncompact domain, the relevant question
is whether the evader can escape when the pursuer
adopts the simple pursuit-curve strategy, and, if so,
what initial conditions lead to escape. Here we show
that the pursuer still always wins if the circumradius of
the evader does not grow fast enough, or, equivalently
via Theorem 10, if the evader makes its path curve too
much.

Theorem 13:On any CAT(0) domain D, if the
evader wins a simple pursuit game, then

√
t/c(t) is

bounded, wherec(t) is the evader’s circumradius up
to time t.

Proof: We present a proof for the case of discrete
time. It suffices to show thatτ(t)/

√
t is bounded,

where τ(t) is the total curvature function of the
pursuer, as is seen by takinga = 1/2 in Part (b) of
Theorem 10.

Consider the configuration illustrated in Figure 4
with angleαi = ∠EiPi+1Ei+1 and comparison angle
α̃i, where anglẽαi ≥ αi. We start with the notation of
Theorem 10, and assume again that the evader escapes,
so lim Lt = C > 1. Also lim αt = 0 and the total
curvature function of the pursuer isτ(t) =

∑t
i=1 αi.

We may assume thatαi ≤ 1 for all i. By the Law of
Cosines applied to the comparison triangle,

1 = L2
i + (Li−1 − 1)2 − 2Li(Li−1 − 1) cos α̃i. (8)

Sinceαi ≤ 1, Taylor’s Theorem implies,

cos α̃i ≤ 1 − α̃2
i

2
+

α̃4
i

24
≤ 1 − 11

24
α̃2

i . (9)

It follows that

0 ≥L2
i + L2

i−1 − 2Li−1 − 2LiLi−1 + 2Li+

+
11

12
Li(Li−1 − 1)α̃2

i ,
(10)



and therefore

α2
i ≤ α̃2

i

≤ 12

11

−(Li−1 − Li)
2 + 2(Li−1 − Li)

Li(Li−1 − 1)

≤ 24

11C(C − 1)
(Li−1 − Li).

(11)

Summing from i = 1 to t and using the Cauchy-
Schwarz inequality (in the form(v·w)2 ≤ (v·v)(w·w),
where the entries ofv are all1’s) gives the curvature
bound:

τ(t)2

t
=

1

t

(
t∑

i=1

αi

)2

≤
t∑

i=1

α2
i

≤ 24

11C(C − 1)
(L0 − Lt)

≤ 24(L0 − C)

11C(C − 1)
.

(12)

Thusτ(t)/
√

t is bounded as required. �

VII. D OMAINS WITH POSITIVE CURVATURE

For non-convex domains in Euclideann-space for
n ≥ 3, it is not necessarily the case that the pursuer
always wins, even if the space is compact.

Example 14:Consider a flat annular stripA =
{(r, θ, z) ∈ E

3 : r = 1, z ∈ [0, 1]}. The evader wins
by moving away from the pursuer along a geodesic
circle of constantz in A (this being equivalent to
running off to infinity in the locally isometric universal
cover). The domainA is not simply-connected. How-
ever, we can attach a disc{z = 0, r ≤ 1} to A and
obtain a simply-connected (even contractible) spaceB
on which evasion is always possible.

This perfectly highlights the topological and geo-
metric obstructions to capture. The domainA is flat,
but capture is prevented by topological reasons: the
fundamental group is the obstruction. The domainB
is contractible, but, even though it is built from flat
pieces, there is positive curvature concentrated at the
rim {z = 0, r = 1}. This example may easily be
generalized to a 3-dimensional contractible domain in
E

3 by thickeningB to a thin shell, the boundary of
which possesses regions of positive curvature. Higher-
dimensional examples are likewise easily constructed.

Positive curvature is not necessarily an obstruction
to capture in the way that the fundamental group is.

Example 15:Consider the round 2-dimensional
sphereS2 ⊂ E

3 and let H denote the upper hemi-
sphereH = {(x, y, z) ∈ S2 : z ≥ 0} with spherical
coordinates(θ, φ). The standard argument for pursuit
in a Euclidean disc works here to show that the pursuer

can always win. Assume without a loss of generality
that P0 is at the north pole,φ = 0. The pursuer can
perfectly track the longitudeθ of the evader at each
step. The latitudeφ of the pursuer is always less than
that of the evader, but can be increased by an amount
at leastcos φ times the jump size. In the limit, the
latitude of the pursuer approaches that of the evader
and capture occurs.

This domainH is of course notCAT(0); the round
sphere is a model of positive curvature. Note, however,
that the argument breaks down for a slightly larger
portion of a sphere that dips below the equator. In this
case, evasion may occur.

VIII. O N CAT(0) GEOMETRY

We have demonstrated thatCAT(0) geometry is
efficacious in the context of pursuit-evasion games.
In particular, we have demonstrated generalizations of
known results in planar Euclidean convex domains to
domains of arbitrary dimension which are not neces-
sarily either smooth or locally Euclidean or convex.
The proofs, though in a language which is perhaps
unfamiliar to researchers in robotics or differential
games, are essentially “two dimensional” proofs. The
genius of theCAT(0) condition is that two-dimensional
intuitions and techniques regulate all. The existing
literature on pursuit-evasion games on non-planar and
non-convex domains has as its focus the work of
Melikyan [18] on differential (Hamilton-Jacobi-Isaacs)
equations for Riemannian surfaces. Our approach us-
ing CAT(0) geometry is a significant departure, adapt-
ing well to a large variety of domains.

In a more general context, the progression from
results about two-dimensional domains to domains of
dimension three and higher is both challenging and
vital in a number of problems across computational
disciplines. These include optimal path-planning in ro-
botics, ray tracing and visibility in computer graphics,
and chattering phenomena in control theory. We do
not find it a coincidence that in many of these related
fields, those domains which serve as counterexamples
to the simple “planar” models are those with an excess
of positive curvature. See, for example, the paper of
Canny and Reif [6], which demonstrates that finding
shortest paths in a three dimensional PL Euclidean
domain is NP hard, whereas in certain 3-d spaces
which areCAT(0), it is of polynomial complexity [19].
The Canny-Reif construction secretly exploits positive
curvature.

It is a theme forcefully demonstrated in the math-
ematics literature onCAT(0) geometry that a gen-
eral propertyX which holds on both planar simply-
connected domains and on higher dimensional convex
sets should also hold on arbitraryCAT(0) domains.



What is more, the proof that propertyX holds should
be the same as that of the planar case. This is a genuine
hope against thecurse of dimensionalitywhich plagues
many robotics motion planning problems. The present
paper demonstrates a type of ‘phase transition’ for
pursuit-evasion games in which the change is from
impossible to possible as you move from general
domains to those which areCAT(0).

More specific to the goals of this note, there are
a number of future directions for inquiry. We have
generalized many of the results on strategic pursuit
from [22], [15]: many of the proofs lift directly from
convex Euclidean toCAT(0) domains. We have not yet
explored optimal evader strategies or analyzed optimal
capture times (see, e.g., [22]). Based on the success of
generalizing simple pursuit games toCAT(0) domains,
an exploration of line-of-sight visibility games is in
order. Likewise, a more physically realistic setting
involving dynamic and/or kinematic constraints on the
pursuer and evader pose interesting geometric ques-
tions: e.g., the case of dynamic constraints naturally
leads to a discussion of curves with bounded curvature
(cf. Dubins-type problems [8]). Such objects are likely
amenable to techniques fromCAT(0) geometry.
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