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Abstract— This article presents an approach to person tracking image content is non-stationary, it can be hard to dististyui
that combine.s.cz.imera images and laser range data. The me.thod the person being tracked from the background.
uses probabilistic exemplar models, which represent typa In this article we present a tracking approach that combines
appearances of persons in the sensor data by metric mixture . )
distributions. Our approach learns such models from laser ad 12Ser range data with camera images to overcome some of
from camera data and applies a Rao-Blackwellized particle fier ~these problems. The approach employs two exemplar models
in order to track a person’s appearance in the data. The filter of a walking person for this purpose. One model for the
samples joint exemplar states and tracks the person’s pogin appearance of a walking person in laser range data and a
gondmoned on the exemplar states using a Kalman filter. We o004 model for the appearance of a walking person in the
escribe an implementation of the approach based on contoarin , . . .
images and laser point set features. Additionally, we desire how ~0POt's cameraimages. The general idea is that the laserea
the models can be learned from training data using clusterig Which are reflected from a person provide information about
and EM. Our experimental results show that the appearance the person’s motion state, for example if the laser scanner
of persons in camera image scan be tracked reliably using ti measures several points on the surface of the person'sTlegs.
approach and that it also allows to distinguish between pexns 5501 gata forms patterns which correlate with the appearan
during tracking. of the person in the image at the same point in time. By
taking both kinds of features into account, a particle filter
can be derived that requires only a small number of particles
The ability to keep track of the motions of people is ofo track a person’s position in the robot's surrounding and
general importance for mobile robots operating in popdlatéhe position and shape of the person in the robot's camera
environments. Over the last decade, several mobile robgtages simultaneously. This is achieved by applying a Rao-
have been deployed in populated environments like offigtackwellized particle filter that maintains a posterioreov
buildings [1], [2], [3], supermarkets [4], hospitals [S]n@ the person’s position, its image exemplar state, and i&r las
museums [6], [7]. The requirements on the quality of thexemplar state. The algorithm samples joint image and laser
motion tracking differs largely from task to task. For exdenp exemplar states and maintains a Kalman filter for each prtic
if one wants to adapt the robot's velocity to the walkingvhose updates are conditioned on the exemplar states, én ord
speed of the people in its surrounding [8], or if one jusb track the person’s position.
wants to distinguish between static and dynamic parts of theAdditionaIIy to the tracking algorithm, we describe an
environment [9], it is generally not important to keep tratk approach to learn the joint exemplar models from trainirtg.da
individual persons. However, if the robot is intended t@matt This involves a clustering the training data into distinetsets
with a particular person over a longer period of time, likgnd an EM approach to learn the temporal transitions between
carrying loads for individual persons or guiding individsidt  the joint exemplar states. The remainder of this article is
becomes essential that the robot does not interchangéeite clorganized as follows. After discussing related work in tetn
with someone else. section, we introduce the joint exemplar Rao-Blackwetlize
For the first kind of application several tracking approachgarticle filter in Section Ill. In Section IV we describe the
have been developed over the last year. Most of these aptual exemplar models used in our implementation in more
proaches rely on laser range sensors [10], [11], [12]. Thtail and we explain how they are learned from training data
main advantage of this sensor is the accuracy of its distarB€fore we conclude in Section VI, we give some experimental

measurements. However, the sensor does not directly présults obtained using the approach in Section V.
vide information that allows to distinguish between pesson

Cameras provide this information, but vision-based tnaghs Il. RELATED WORK

very difficult from a mobile robot for several reasons. Small

movements of the robot can lead to very large shifts in the Over the last years, several approaches for tracking moving
image plane, lighting conditions can change, and, as théewhpeople with mobile robots have been developed. Most of these

I. INTRODUCTION



approaches use 2D laser scanners to observe and track people

in the surrounding of the robot. |/ N /. -
For example, Kluge et al. [13] describe an approach to

estimate moving obstacles with an autonomous wheelchair. \
Their approach does not apply a motion-model to the objects
so that they cannot reliably keep track of individual obgect

over time. Montemerlo et al. [14] addresses the problem of

simultaneous localization and people tracking using raaege ™ | (,, N\ | o (4 L ___|___ -
sors. The authors use conditional particle filters to inocaje

the robot’s uncertainty about its own position into the kiag \
process, where each particle maintains Kalman filters fer th
objects being tracked. Fod et al. [15] present an approach

to track multiple moving people within a workspace using
statically mounted laser range-finders. They use Kalmaardilt
to keep track of objects during temporary occlusions. Schtl Fig. 1. The generic exemplar model according to Toyama aa#eB|20]. iy,
al. [12] propose a variant of Joint probabilistic data aisn denotes the active mixture component at tiknewhilg £, denotes the mixture
. . . . model. Thea;, are the geometrical transformations, amg the observed
filters [16] that replaces Kalman filters by particle filters timages.

track multiple moving objects in laser range data.

These approaches have in common that they only keepOther particle filter-
track of the spatial motion of the objects. They do not tr
to distinguish between different appearances of the obj
within the laser data. To our knowledge, the only approag
that (j|st|ngmshes between different mot_lon states in aiser these techniques are only intended for static cameras ared ha
data is by Taylor_gnd Klegman [17]. Their Iaser-b_ased methﬂ t yet been applied on mobile robots.
tracks the repetitive motion pattern of a walking person’s
legs. For this purpose, the individual legs are trackedgusin  lll. THE JOINT EXEMPLAR RAO-BLACKWELLIZED
a switching state Kalman filter. PARTICLE FILTER

As laser range scanners only provide proximity information | this section we explain the inference part of our joint
they can not be used to reliably identify or distinguish be#w |aser and vision tracking approach. Basically the approach
persons during tracking. Several authors propose to cambfiilds on a Rao-Blackwellized particle filter, which maing
a laser-based approach with vision in order to overcome thjSoint probability distribution over the position of a pems
limitation. For example, in the context of learning motiomng its current appearance in laser scans and camera images.
patterns for individual persons, Bennewitz et al. [18] uslc This particle filters samples appearances from two mixture
histograms to distinguish between persons, where the imag&iributions of possible appearances, and updates ttigopos
region to consider for computing the histogram is selectgfirt of the distribution analytically using a Kalman filter
based on the position of a person in the laser scan. Brogk$ each sample. Our current implementation uses typical
and Williams [19] use skin colored blobs as image featur@ghouettes of persons in camera images as prototypes in the
indicating persons. Again, this approaches do not track thgjon-based model and typical 2D point sets representise|
change of appearance of persons in the camera imagesmasurements of a person’s legs as prototypes for the laser-
contrast to this, our approach tracks the appearance ohased model. Details on these particular models and how they
person’s legs in laser scans and the shape of the persoryi8 |earned are given in Section IV. Here, we will briefly
camera images during the tracking process. The appearapg@duce the joint exemplar-based tracking approachgusin
models for this purpose are learned from training data. Ogffetric mixture distributions and we will explain how a petso
method is largely inspired by the metric mixture approacan be efficiently tracked based on these models using a Rao-
introduced by Toyama and Blake [20]. However, there aggiackwellized particle filter. In the following mathematic
some differences. First, we combine two sensor modalitiels aderivations, time is indexed by subscripts, where the airre
therefore two mixture models in one algorithm by tracking thtime is denoted byk. The superscripf is used for laser-

joint exemplar states. Second, we do not learn exemplas-trage|ated random variables and the supersceiffor camera-
formations [21]. In purely vision-based exemplar appr@sch related random variables.

these transformations describe the dynamic change of arpers _

in the image. In our joint laser and vision-based approach; The Joint Exemplar Model

we learn the transition model for the exemplars only. Motion Following [21] an exemplar model consists of a set of
within the image is predicted based on the position preaticti “exemplars”= = {1, ..., £}, which contain representatives
of the Kalman filter and a mapping of the person’s locatioof training data, and a distance functippwhich measures the
relative to the robot to its location within the image. Thiglistance of any two points in exemplar space. It is assumed
mapping is also learned during training. that an observation; at time k£ is drawn from a mixture

based tracking approaches in the com-
uter vision community aim at actually tracking the artated

man motions based on many degrees of freedom models of
e human body, for example [22], [23]. However, most of



distribution, such that, ~ T,,£(k), whereT,, is a geometric
transformation and (k) € = is the exemplar at timé&. The
dynamics is usually modeled as a first order Markov chai
p(&k, o | €k—1,ax—1), where the transition probabilities as
well as the mixture centerS and their associated distribution
parameters are learned from the training data. The graphic
model for this generic exemplar technique is depicted in
Figure 1.

The graphical model of our approach is depicted in Figure 2.
Here, the variabler} denotes the position and the velocity
vector of the person in the robot’s vicinity at tinke while x5,
is the person’s position within the camera image taken at tim
k. Laser scans and images are denotedpwand z; and the
index of the active exemplar states 8yandé&g, while ¢! and
&5, denote the exemplars themselves. For the sake of brevity we
also write&;, for (£, &¢), z, for (2L, 25), and complete time
sequences of random variables upto tiknare abbreviated by
the subscriptl : &, e.g.z;., denotes the sequence of all laser
and camera measurements upto tilne

Our model differs from the generic one in two respects: (1
We keep track of laser exemplags and vision exemplag;  Fig 2. Graphical model of the joint exemplar person tragkiigorithm.
simultaneously, and (2) we do not learn and keep track of tlsghe position of the person at tinke At each time step we receive a camera
geometrical transformations,. Instead, we rer on a Kalman image z; and a laser scaa}c. The sha_pes of the per_son‘s legs in the laser

. . . : ata and the silhouette of the person in the camera imagesavenad to be
filter that estimates the position of a person in laser scans frawn from the metric mixture distributions, and ¢¢ respectively, where
this purpose. Additional random variable§ are introduced the hidden states! and £¢ determine the active components. Finally, the
to account for the uncertainty of mapping a spatial positamn random variablery accounts for the uncertainty of mapping spatial positions

. . . to image coordinates.
the position and scale of the person in the image. The main

reason for not learning the geometrical transformatioribas
they are highly affected by the robot's own motion. therefore treat them as background knowledge during the

We follow the metric mixture approach proposed in [20ferivation of the filter.
to evaluate the observation likelihoods. In this approach, However, the exemplar statés are hidden, we therefore
is assumed, that the observations are drawn from a mefmieed to estimate the joint posterior over positiarjs and
mixture distribution, where a transformed exempiaserves sequences of exemplar stat&s;,. This joint posterior can be

Laser scan

Laser exemplar

Laser exemplar inde

Position of person

Image exemplar index

Position in image

Image exemplar

Camera images

as a center in a mixture component: factorized by conditioning the positiong, on the exemplar
R 1 R states&;..:
z x = exp(—=Ap(&, 2)). 1
Pz [¢) Z p(=Aelt,2)) @) p(ah, Ev | 21k) = p(ah, | Evsz1)P(Ere | 210)  (2)

We use truncated quadratic chamfer distance for the exeMyhg yey jdea of Rao-Blackwellized particle filters (RBPF)
plar distancep, which has two nice properties: is to compute Equation 2 byamplingexemplar states from

1) It can be computed fast both for images and for lasp(&; . | 21.x) and then to update the position§ conditioned
data. For this purpose, images are transformed to binaw the exemplar state of each sample. This way, the position
edge images and a distance transformation is appliggtimates can be updated analytically using one Kalman filte
For laser scans, we average over the distances of fbe each sample.
closest point of the scan to each point of the exemplar. More specifically our RBPF maintains a set of weighted

2) For quadratic chamfer distance, the metric distributiocshmpless;, = {(s,(:),w,i”) | 1 << N}, where each sample

Equation 1 is approximately Gaussian, and the parameg%r) — <9}(€L)’5]§L)> of the sample set at timé consists of a

A qn_d the partition functiorZ can be estimated from Kalman filter 91(;) _ <M}(€L)7E](:)> and the current exemplar
training data [20].

statese”.
The generic RBPF algorithm generates a Sgtfrom the
previous sample sef;_; based on a new laser sca}g and
During tracking, it is our goal to determine the position ofamera image, by first generating new exemplar stags
a person based on a sequence of laser range scans and cadigiributed according to the posteripf&y., | z1.x). After
images. Note, that the exemplar séfs¢¢, their associated that, the position parﬂ,(j) of each sample is maintained by
mixture distributions, and the mapping uncertainty are applying Kalman filter updates on each sample. In our case,
learned during training and remain fixed during tracking. Wkhe position measurements to be integrated into the Kalman

B. The Rao-Blackwellized Particle Filter



filter are obtained by locally matching the exemplar prgpety importance weight can be incorporated already into the im-
corresponding tef,i(‘) of each sample against the current lasgrortance Weigh1w,(€‘21 of the parent sample. This way, more

scan. samples are drawn from “fitter” parent samples in the next
. time step, which additionally mitigates the sample depteti
C. Sampling Exemplars problem.

The efficiency of RBPFs strongly depends on the number Bf
samples needed to represent the posteri6i.; | z1.;). Due '
to the sequential nature of the estimation process, sample4 remains to be shown, how the actual observation likeli-
must be generated from the exemplar states of the previdl9ds for the most recent camera imageand laser scan;,

Computing the Observation Likelihoods

time step. The posterior at timecan be written as can be determined. According to Equation 4 the observation
likelihood is
p(E1k|z1k) p(zi | EkyOuor1) = P25, 21, | €L ELy Op—1) (7
— p(zk|51:k7Zl:kil)p(gdgl:kil’ Zl:kil)p(gl;kfﬂzl;kfl) = p(Z;é | Zé, 51?1 5}@7 ek—l)p(zllc | gllw ek—l) (8)

p(2zk|Z1:6-1) . . .
(3) Here, Equation 8 follows from Equation 7 by applying the

P(zk|Eky Ok—1)D(Ex|Er—1, Ok—1) chain rule and the second factor of Equation 8 follows from
- (21| Z1:5-1) pEuralzin-1) ) the fact that:! is conditionally independent frod§ according
to our model,see Figure 2.
Here, Equation 3 follows from Bayes rule and the replace- Now; the individual observation likelihood for], can in
ment of p(Ex.k | z1:k—1) BY p(Ex | Ercko1s Z1k—1)D(Erip—1 | prmqple be computed by r_narglnal_mng overth_e laser porsit
z1..—1). Equation 4 follows from Equation 3 by the fact, thaPredicted by the Kalman filter at time, 61, i.e.

the Kalman filter staté,_; and the latest exemplar statgs ; p(zl |51 Oe1) @)
are sufficient statistics for the previous observations ; and kol The TR
exemplar state sequenfg;_ . = /p(zfC | &, X = 2)p(x}, = @ | Ogp—1) d.

In most cases it is impossible to sample directly from
Equation 4. The approach most commonly used in partidiéowever, computing this integral is intractable in praetic
filters is to evaluate Equation 4 from right to left in a thre§ince it would require to match the exemplgr associated
stage process [24]: First, draw samp];é%l from the previous 0 &, at all locations. Instead, we use an approximative
sample set using the importance weights, then draw for eg@dpProach, which is also quite popular in scan-based mapping
such sample a new sample from the predictive distributiGfd determine the best positiofi(;,), for the exemplag;, by
p(Er | 5}2:)1’91(21)’ and finally weight these samples prOpor[natchlng the exemplar against the cur_rent scan _startmg fro
tional to the observation likelihogelz | EIEL)’GI(cLll)‘ The last the predicted position. We assume a fixed covariance for the

step, importance sampling, adjusts for the fact that sasraie matching position, and approximagéz; | £, 1) as

not drawn from the actual target distribution. This apptoacp(z;, | &, 0k—1) ~ p(z}, | &, 21,(61))P(2k (&) | Okji—1). (10)
has the disadvantage, that the most recent observatipns . . el
are not taken into account during sampling, which can lediPte: that in the Kaiman filter framework(2, (¢;) | Oxjs—1)

to sample depletion, if the predicted distribution is a po(ﬂm?untls EO clompute the Iikelihpod of the innoyation, \.Nhi.le
approximation of the true posterior [25]. (2, | &y 26(€,)) can be determined from the mixture distri-

Fortunately, in our case, we are able to take the latdd{tion of the exemplar model.

observation into account. From Equation 4 follows that thg The pbsder\1at|on !'kelr:hOOd of the IatESt m_ag%l](c:fan be
optimal sampling distribution is etermined almost in the same way. The main difference is,

that it is additionally conditioned on the laser scégnand
P(2k | Ek, Ok—1)P(Ek | Ek—1,0k—1) (5) exemplar state! at time k. For this reason, we have to
p(zk | Z21:5—1) ' marginalize over the updated Kalman filter state at tkne.
gain, we approximate the likelihood by first computing the
est matching position of the exempéirin the image. This is
Zp(zk | €y 06— 1)P(Ek | Ex—1,01-1), (6) carried out by first computing the expected pixel coordisate
£ of the exemplar based on the estimated laser positionhiee. t

and the importance weights are then computed according

where the summation goes over all possible joint exempIK‘?‘Iman filter meary,;.. Then the best matching position in

states. If the number of joint exemplars is relatively smak Itikililrzrcl) %%e;kfsgrfxiﬁ)gggtaeg by direct ascent. Finally, the
can compute this distributions analytically. Additioryalthis

sampling distribution allows fotook-aheadweighting [26].

Since Equation 6 does not depend on the sample’s current(z; | £F, 6y) (11)
state, all new samples generated from the same sasﬁﬂlle e e e e . . .
obtain the same importance weights. For this reason, the ~ p( | 5kvzk(5k))/p(zk(5k) |z )p(@y | Ok) da.



Inputs: S_1 = {<s§;11,ngl> |.=1,...,N}, laser scart} and imagez{
S =10 /I Initialize
for .:=1,...,N do /I Compute Kalman prediction for each sample
L) _ L) (¢
ez(e\kﬂ = <N’I(»c\k7172k\)kfl>
for .:=1,...,N do /I Update importance weights by matching possible joint exemplars to the next observation

131?31 x wliLzl &, p(zk | Ex, glibll)p(gk | 51&191&21)
for .:=1,...,N do /I Sample sé@l using updated weights and draw si") from corresponding set

Samplesgl1 = (0,@178,5‘21) from Sj_, with probability proportional to the updated importanceigins 13,?21.

© © N o aM bR

Draw new exemplarg” proportional top(zy, | £, 6% )p( | £,,6%)

10. Update the position estimatég) using Kalman filter updates Witﬁff”, and 91(;\271
11, s =0 gy, Sk =S, U{(s!), 1)}

12. return Sk

Table 1: The Joint Exemplar RBPF algorithm.

Here, the integral is required to marginalize over the un-
certainty of mapping laser positions to pixel coordinates.
We assume that the random variabi¢ is constant and
Gaussian. The integral can then be solved analytically. The
actual mapping and its covariance matrix is learned during
training.

E. The Joint Exemplar RBPF Algorithm

The algorithm is summarized in Table 1. First, the Kalman
filters are predicted in step 4. Most of the work is then
carried out in step 6. Here, sampling distributions for sanig. 3. The normalization of laser features: The laser seaimin the (0,0)
pling exemplars are computed for each sample, accordingpggition. If we observe a laser feature in directionat distancer, we first
Equation 5. This involves matching all the exemplars agaif§2te the feature points bya and then shift the result by.r.
the current laser scan and image. The normalizers of the
sampling distributions are used as the lookahead weights of
the previous samples. In step 8, samples are drawn from
the previous sample sei;_,. For each of these samples,

a new pair of exemplar state%, is drawn proportional to

the corresponding sampling distribution computed in step 6 .
In step 10, the Kalman filter update is applied to each new ® o w -~ W -
sample making use of the best matching positﬁélﬁgg))

of the new exemplar in the current laser scan. Actually, this . . -
Fjg. 4. Examples of silhouettes and laser features recaddeidg training.

Kalman_ update has alre_ady _bee_n computed _'n step 6 PO contours are here scaled to the same height. The lagerefeshown in
computing the observation likelihood of the image, and caife second row correspond to the respective silhouettekeirfinst row, but
be re-used here. are normalized as shown in Figure 3

IV. LEARNING THE JOINT EXEMPLAR MODEL persons in the images using background subtraction. Sigila

Before a person can be tracked with the joint exemplare obtain laser features by considering only end points of
approach, the model needs to be learned from training dadteams, which do not hit static obstacles. Figure 4 presents
This involves learning the exemplar s&§ =*, their associ- characteristic examples of the silhouettes and laser restu
ated distribution parameters, and the transition modé). | extracted this way.

Er—1,0;-1). Additionally, we learn the mapping of positions For computing the exemplar sets the pairwise similarity of
in laser scans to the pixel coordinates and its uncertainthe extracted training examples needs to be determined. For

p(xf | Ok). this purpose, the silhouettes and the laser features neleel to
] o o aligned. To align two silhouettes we minimize the chamfer
A. Generating and aligning training data distance of the first silhouette based on the distance trans-

The training data is obtained by recording a sequence fofrmed image of the second silhouette using hill-climbing.
laser scans and images of a person walking in front of The chamfer distance is the sum of the minimum squared
stationary robot. In this situation we can obtain silhce®f distances of each edge pixels of the first silhouette to ae edg
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Fig. 5. A distance transformed edge image used for chamfesting during

contour tracking. To obtain this image, a canny edge detéstapplied to ) ) )

the original image and a distance transform is applied. Fig. 6. y-coordinates of the topmost and bottommost point of theqreiis
the training image as a function of the distance in the lasen st the same
point in time. The training data allows to estimate the potigm function

pixel of the second silhouette. The distance transfornchlgi duite accurately.
computes for each pixel of a binary image the Euclidean
distance to the closest edge pixel, which allows to comphee t 300
chamfer distance fast. Figure 5 gives an example of a distanc
transformed image, where distance is encoded as gray-scale 250 f
For aligning laser features, we make use of the fact that in a_
given stance the appearance of a person’s legs in a laser scgh 200 X
only depend on the walking direction relative to the sensing ©
direction. This is illustrated in Figure3. Here, the cooate g 10p
system is robot centered. We then account for the invariancég
by normalizing bearing and range to zero. This normalizatio £
process is illustrated in Figure 3. After normalizationg th

" x-coordinate o'ftopmoét contour pixel e

t

100 f

chamfer distance between two laser features is minimized [ 1
based by computing the optimal displacement of one feature . . . . . . )
with respect to the other feature using an iterative leashszs 90_4 03 02 -01 0 01 02 03 04
approach similar to ICP [27]. The only difference is that the laser bearing [ras]

orientation of the feature remains fixed. The result of the

aligning process are two pairwise dissimilarity matricese Fig. 7. z-coordinates of the topmost point of the person in the tngininage

for the silhouettes and one for the laser features. as a function of the direction in the laser scan at the samat ioitime. In
the relevant range, the function is linear.

B. Computing exemplar sets becomes prohibitively expensive for larger state spaces, o
Based on the dissimilarity matrices, exemplar sets can b@rrent implementation adopts a technique known from fac-

computed using some pairwise clustering approach [28], [2%rial HMMs [31] and evaluates the E-step approximately

We cluster the training examples into a pre-specified numberbased on Gibbs-sampling of exemplar state sequeficgs

clusters. To determine the exemplar representing eackeclusThe maximization is then carried out using the transition

we then follow the approach in [20] and choose the trainirfgequencies counted during sampling. This has the addition

example, whose maximum dissimilarity to any other exampégivantage, that the transition probabilities can diredity

within the cluster is minimal. Finally, the parameters oé thlearned in conditional form, i.e.

mixture components are estimated also using the approach ol e L

proposed in [20], i.e. by assuming that the dissimilarités P(ExlEk—1,0k-1) = P(Ek[Ek, Ek 1. Or—1)P(E|ER -1, Orr),

each example in the cluster to its cluster center are draewm fr

a scaledy?-distribution.

C. Computing transition probabilities D. Computing the laser to image mapping

Once the exemplar mixture distributions have been deter-To compute the mapping of positions provided by the laser
mined, the transition probabilities(&;, | £x—1) are learned. scanner to pixel coordinates in the image, we determine the
This is carried out using the EM algorithm, but keeping thespmost and bottommost image coordinates for the silhesett
mixture distribution fixed. Because the computation of thia each training image. In Figure 6 thecoordinates of these
« and g values of the standard Baum-Welsh algorithm [3Qoints in the image are plotted as a function of the distaace t

which reduces the size of the model.



Fig. 8. Outtake of the first experiment. The two persons asesing their paths. The time gap between two images is ommdetThe matched contour based
on the particle with the maximum a posterior weight are @yestl in pink and purple.The robot was moving at a speed of 68 doring this experiment

the person measured by the laser scanner. We obtain a norfliames per seconds for tracking a single person, when using
ear relation, which results from the projection of the pargo this setting.

the image plane. Based on these training examples we computi a second experiment we tested, if the approach is capable
least squares estimates of the projection functions. Tlhéae of distinguishing between the two persons based on their
between ther-coordinate in the image and the direction of thexemplar models. For this purpose, we repeated the previous
laser measurement is estimated independently, see Figire &xperiment, but this time using four independent particle
the relevant range for our tracking experiments, betweemi4 &ilters, where each person is tracked with two filters using
12 meters in front of the robot, this relation is almost lineaboth learned exemplar models.

We then assume that the uncertaintiescimnd y directions  For each of the four particle filters, we recorded the

are independent and follow Gaussian distributions. sum of the sample weights after each time step, i.e.
the sample normalizer, which corresponds to the like-
V. EXPERIMENTAL RESULTS lihood p(Zk|Z1;k_1), which describes how well the fil-

ter explains the data observed so far. We then evalu-

We evaluated our approach using a RWI B21 robot equippgaged how well the approach is able to determine the cor-
with a SICK laser range scanner and a progressive sGa@t assignment of filters to persons. Let us denote the
VGA camera. The laser scanner is mounted at a height fg{;r different likelihoods aPaa(2k|Z1:k-1),Pab(Zk|Z1:5-1),
approximately 40cm, such that it measures the distance pig (z.|z.;_1).pw(zx|21.6—1), Whereaa stands for the parti-
the legs of persons, while the camera is mounted at a heigl¥ filter tracking persom using the exemplar model learned
of 1.5m. The camera captures 30 frames per second withfasin data of persor: and ab stands for the filter tracking
image resolution of 320x240 pixel, while the laser scanngersona using the model learned from data of perstn
produces 37.5 scans per second and measures with an an@#ged on these values, we compute after each image the
resolution of0.5°. posterior probability of the two joint assignments of fifteo

In order to test the performance of the approach onpersons. These assignments Hrg both persons are correctly
moving mobile robot, we first learned exemplar models fagentified, and Hy, the ids are erroneously swapped. We
two different persons. For this purpose, two sequences g@mpute the posterigs(H; (k)) starting with an initial prior
4000 camera images and laser scans were recorded for gagin, (0)) = p(H,(0)) = 0.5,
person, where the persons had to perform straight line walk(sH k)
with different headings in front of the stationary robotofr Ao
the extracted sets of contours and laser features we lear
exemplar models using 20 laser exemplars and 80 conteutere the ;, are normalizers that ensures that the two
exemplars for both models. probabilities sum up to one.

To evaluate the performance of these models, the same twdéigure 9 shows the result of this process obtained on 5
persons then walked in front of the moving robot for mordifferent parts of the data sequence. In all 5 cases our appro
then a minute, sometimes moving side by side, sometimesidentified the correct hypothesis within 11 seconds, which
opposite directions and also crossing their paths some. tinmedicates that the method is able to distinguish betweemvkno
The robot moved at a speed of 60 cm/s. The exemplar ggersons during tracking.
proach was then evaluated off-line based on the data retorde
during this experiment. VI. CONCLUSION

In the first experiment, we tracked the two persons usingln this article we introduced a joint exemplar Rao-
independent exemplar trackers for both persons. FigureB&ackwellized particle filter for tracking a person in lasange
shows example images from this experiment, where the pidkta and camera images. The Rao-Blackwellized particés filt
and purple colored outlines indicate the contour exempliar wacks the appearance of a person by sampling charaateristi
the sample with the maximum weight at the correspondirmgntours and laser features and it tracks the person’s motio
point in time. The two patrticle filters were able to track theonditioned on the sampled appearance using a Kalman filter
persons reliably over the whole sequence of 2400 framésr each particle. The approach uses metric mixture models
Each particle filter used 100 particles during this experime of the contours of a person in video images and of features
The current C++ implementation achieves a frame rate of d7 a person’s legs in laser data to compute the observation

= o * Pab(Zk|Z1:k—1) * Poa(Zk|Z1:k—1) * P(Ho(k—1))
ﬁé’él(k» = ok *Paal(Zk|z1:k—1) * Pob(Zk|Z1:k—1) * P(H1(k—1)),
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Fig. 9. Learning the correct id assignment during the tragkof two
persons. Within 11 seconds the approach was able to figurdheworrect id
assignment to the persons being tracked in Figure 8 basdweindifferent
exemplar models; see text for details.

likelihood of different prototypical shapes in the data.e$a

El

[10]

(11]

[12]

[13]

[14]

[15]

[16]

exemplar models can be learned from training sequenceg u%'g]i]
clustering for obtaining the mixture models, and EM for

obtaining the exemplar transition probabilities. Finallye

presented tracking results achieved with the approach;hNh[lS]

show that it is able to reliably track two persons with a mebil
robot that moves at a speed of 60 cm/s. The technique is altd

able to simultaneously figure out the identity of the persons

during tracking based on their exemplar models.

However, there is still room for future work. Currently,
the motion model of the person is based on a single lin
Kalman filter only. In the future we want to extend the RBP

[20]

1

to take possible maneuvers into account by using a model
switching approach, where parameters of the Kalman filtdr a2

the switching probabilities could also be learned fromnirag

data. We also want to additionally take color histograme int23]
account and adapt the appearance models during tracking.
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