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Abstract— This article presents an approach to person tracking
that combines camera images and laser range data. The method
uses probabilistic exemplar models, which represent typical
appearances of persons in the sensor data by metric mixture
distributions. Our approach learns such models from laser and
from camera data and applies a Rao-Blackwellized particle filter
in order to track a person’s appearance in the data. The filter
samples joint exemplar states and tracks the person’s position
conditioned on the exemplar states using a Kalman filter. We
describe an implementation of the approach based on contours in
images and laser point set features. Additionally, we describe how
the models can be learned from training data using clustering
and EM. Our experimental results show that the appearance
of persons in camera image scan be tracked reliably using this
approach and that it also allows to distinguish between persons
during tracking.

I. I NTRODUCTION

The ability to keep track of the motions of people is of
general importance for mobile robots operating in populated
environments. Over the last decade, several mobile robots
have been deployed in populated environments like office
buildings [1], [2], [3], supermarkets [4], hospitals [5], and
museums [6], [7]. The requirements on the quality of the
motion tracking differs largely from task to task. For example,
if one wants to adapt the robot’s velocity to the walking
speed of the people in its surrounding [8], or if one just
wants to distinguish between static and dynamic parts of the
environment [9], it is generally not important to keep trackof
individual persons. However, if the robot is intended to interact
with a particular person over a longer period of time, like
carrying loads for individual persons or guiding individuals, it
becomes essential that the robot does not interchange its client
with someone else.

For the first kind of application several tracking approaches
have been developed over the last year. Most of these ap-
proaches rely on laser range sensors [10], [11], [12]. The
main advantage of this sensor is the accuracy of its distance
measurements. However, the sensor does not directly pro-
vide information that allows to distinguish between persons.
Cameras provide this information, but vision-based tracking is
very difficult from a mobile robot for several reasons. Small
movements of the robot can lead to very large shifts in the
image plane, lighting conditions can change, and, as the whole

image content is non-stationary, it can be hard to distinguish
the person being tracked from the background.

In this article we present a tracking approach that combines
laser range data with camera images to overcome some of
these problems. The approach employs two exemplar models
of a walking person for this purpose. One model for the
appearance of a walking person in laser range data and a
second model for the appearance of a walking person in the
robot’s camera images. The general idea is that the laser beams
which are reflected from a person provide information about
the person’s motion state, for example if the laser scanner
measures several points on the surface of the person’s legs.The
laser data forms patterns which correlate with the appearance
of the person in the image at the same point in time. By
taking both kinds of features into account, a particle filter
can be derived that requires only a small number of particles
to track a person’s position in the robot’s surrounding and
the position and shape of the person in the robot’s camera
images simultaneously. This is achieved by applying a Rao-
Blackwellized particle filter that maintains a posterior over
the person’s position, its image exemplar state, and its laser
exemplar state. The algorithm samples joint image and laser
exemplar states and maintains a Kalman filter for each particle,
whose updates are conditioned on the exemplar states, in order
to track the person’s position.

Additionally to the tracking algorithm, we describe an
approach to learn the joint exemplar models from training data.
This involves a clustering the training data into distinctive sets
and an EM approach to learn the temporal transitions between
the joint exemplar states. The remainder of this article is
organized as follows. After discussing related work in the next
section, we introduce the joint exemplar Rao-Blackwellized
particle filter in Section III. In Section IV we describe the
actual exemplar models used in our implementation in more
detail and we explain how they are learned from training data.
Before we conclude in Section VI, we give some experimental
results obtained using the approach in Section V.

II. RELATED WORK

Over the last years, several approaches for tracking moving
people with mobile robots have been developed. Most of these



approaches use 2D laser scanners to observe and track people
in the surrounding of the robot.

For example, Kluge et al. [13] describe an approach to
estimate moving obstacles with an autonomous wheelchair.
Their approach does not apply a motion-model to the objects
so that they cannot reliably keep track of individual objects
over time. Montemerlo et al. [14] addresses the problem of
simultaneous localization and people tracking using rangesen-
sors. The authors use conditional particle filters to incorporate
the robot’s uncertainty about its own position into the tracking
process, where each particle maintains Kalman filters for the
objects being tracked. Fod et al. [15] present an approach
to track multiple moving people within a workspace using
statically mounted laser range-finders. They use Kalman filters
to keep track of objects during temporary occlusions. Schulz et
al. [12] propose a variant of Joint probabilistic data association
filters [16] that replaces Kalman filters by particle filters to
track multiple moving objects in laser range data.

These approaches have in common that they only keep
track of the spatial motion of the objects. They do not try
to distinguish between different appearances of the object
within the laser data. To our knowledge, the only approach
that distinguishes between different motion states in the laser
data is by Taylor and Kleeman [17]. Their laser-based method
tracks the repetitive motion pattern of a walking person’s
legs. For this purpose, the individual legs are tracked using
a switching state Kalman filter.

As laser range scanners only provide proximity information,
they can not be used to reliably identify or distinguish between
persons during tracking. Several authors propose to combine
a laser-based approach with vision in order to overcome this
limitation. For example, in the context of learning motion
patterns for individual persons, Bennewitz et al. [18] use color
histograms to distinguish between persons, where the image
region to consider for computing the histogram is selected
based on the position of a person in the laser scan. Brooks
and Williams [19] use skin colored blobs as image features
indicating persons. Again, this approaches do not track the
change of appearance of persons in the camera images. In
contrast to this, our approach tracks the appearance of a
person’s legs in laser scans and the shape of the person in
camera images during the tracking process. The appearance
models for this purpose are learned from training data. Our
method is largely inspired by the metric mixture approach
introduced by Toyama and Blake [20]. However, there are
some differences. First, we combine two sensor modalities and
therefore two mixture models in one algorithm by tracking the
joint exemplar states. Second, we do not learn exemplar trans-
formations [21]. In purely vision-based exemplar approaches,
these transformations describe the dynamic change of a person
in the image. In our joint laser and vision-based approach,
we learn the transition model for the exemplars only. Motion
within the image is predicted based on the position prediction
of the Kalman filter and a mapping of the person’s location
relative to the robot to its location within the image. This
mapping is also learned during training.
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Fig. 1. The generic exemplar model according to Toyama and Blake [20].ik
denotes the active mixture component at timek, while ξk denotes the mixture
model. Theak are the geometrical transformations, andzk the observed
images.

Other particle filter-based tracking approaches in the com-
puter vision community aim at actually tracking the articulated
human motions based on many degrees of freedom models of
the human body, for example [22], [23]. However, most of
these techniques are only intended for static cameras and have
not yet been applied on mobile robots.

III. T HE JOINT EXEMPLAR RAO-BLACKWELLIZED

PARTICLE FILTER

In this section we explain the inference part of our joint
laser and vision tracking approach. Basically the approach
builds on a Rao-Blackwellized particle filter, which maintains
a joint probability distribution over the position of a person
and its current appearance in laser scans and camera images.
This particle filters samples appearances from two mixture
distributions of possible appearances, and updates the position
part of the distribution analytically using a Kalman filter
for each sample. Our current implementation uses typical
silhouettes of persons in camera images as prototypes in the
vision-based model and typical 2D point sets representing laser
measurements of a person’s legs as prototypes for the laser-
based model. Details on these particular models and how they
are learned are given in Section IV. Here, we will briefly
introduce the joint exemplar-based tracking approach using
metric mixture distributions and we will explain how a person
can be efficiently tracked based on these models using a Rao-
Blackwellized particle filter. In the following mathematical
derivations, time is indexed by subscripts, where the current
time is denoted byk. The superscriptl is used for laser-
related random variables and the superscriptc for camera-
related random variables.

A. The Joint Exemplar Model

Following [21] an exemplar model consists of a set of
“exemplars”,Ξ = {ξ1, . . . , ξM}, which contain representatives
of training data, and a distance functionρ, which measures the
distance of any two points in exemplar space. It is assumed
that an observationzk at time k is drawn from a mixture



distribution, such thatzk ≈ Tαξ(k), whereTα is a geometric
transformation andξ(k) ∈ Ξ is the exemplar at timek. The
dynamics is usually modeled as a first order Markov chain
p(ξk, αk | ξk−1, αk−1), where the transition probabilities as
well as the mixture centersΞ and their associated distribution
parameters are learned from the training data. The graphical
model for this generic exemplar technique is depicted in
Figure 1.

The graphical model of our approach is depicted in Figure 2.
Here, the variablexl

k
denotes the position and the velocity

vector of the person in the robot’s vicinity at timek, while xc

k

is the person’s position within the camera image taken at time
k. Laser scans and images are denoted byzl

k
andzc

k
and the

index of the active exemplar states byE l

k
andEc

k
, while ξl

k
and

ξc

k
denote the exemplars themselves. For the sake of brevity we

also writeEk for (E l

k
, Ec

k
), zk for (zl

k
, zc

k
), and complete time

sequences of random variables upto timek are abbreviated by
the subscript1 : k, e.g.z1:k denotes the sequence of all laser
and camera measurements upto timek.

Our model differs from the generic one in two respects: (1)
We keep track of laser exemplarsξl

k
and vision exemplarξc

k

simultaneously, and (2) we do not learn and keep track of the
geometrical transformationsαk. Instead, we rely on a Kalman
filter that estimates the position of a person in laser scans for
this purpose. Additional random variablesxc

k
are introduced

to account for the uncertainty of mapping a spatial positionto
the position and scale of the person in the image. The main
reason for not learning the geometrical transformations isthat
they are highly affected by the robot’s own motion.

We follow the metric mixture approach proposed in [20]
to evaluate the observation likelihoods. In this approach,it
is assumed, that the observations are drawn from a metric
mixture distribution, where a transformed exemplarξ̃ serves
as a center in a mixture component:

p(z | ξ̃) ∝
1

Z
exp(−λρ(ξ̃, z)). (1)

We use truncated quadratic chamfer distance for the exem-
plar distanceρ, which has two nice properties:

1) It can be computed fast both for images and for laser
data. For this purpose, images are transformed to binary
edge images and a distance transformation is applied.
For laser scans, we average over the distances of the
closest point of the scan to each point of the exemplar.

2) For quadratic chamfer distance, the metric distribution
Equation 1 is approximately Gaussian, and the parameter
λ and the partition functionZ can be estimated from
training data [20].

B. The Rao-Blackwellized Particle Filter

During tracking, it is our goal to determine the position of
a person based on a sequence of laser range scans and camera
images. Note, that the exemplar setsξl

k
,ξc

k
, their associated

mixture distributions, and the mapping uncertaintyxc

k
are

learned during training and remain fixed during tracking. We
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Fig. 2. Graphical model of the joint exemplar person tracking algorithm.xk

is the position of the person at timek. At each time step we receive a camera
imagezc

k
and a laser scanzl

k
. The shapes of the person’s legs in the laser

data and the silhouette of the person in the camera image are assumed to be
drawn from the metric mixture distributionsξl

k
and ξc

k
respectively, where

the hidden statesEl

k
and Ec

k
determine the active components. Finally, the

random variablexc

k
accounts for the uncertainty of mapping spatial positions

to image coordinates.

therefore treat them as background knowledge during the
derivation of the filter.

However, the exemplar statesEk are hidden, we therefore
need to estimate the joint posterior over positionsxl

k
and

sequences of exemplar statesE1:k. This joint posterior can be
factorized by conditioning the positionsxl

k
on the exemplar

statesE1:k:

p(xl

k, E1:k | z1:k) = p(xl

k | E1:k, z1:k)p(E1:k | z1:k) (2)

The key idea of Rao-Blackwellized particle filters (RBPF)
is to compute Equation 2 bysamplingexemplar states from
p(E1:k | z1:k) and then to update the positionsxl

k
conditioned

on the exemplar state of each sample. This way, the position
estimates can be updated analytically using one Kalman filter
for each sample.

More specifically our RBPF maintains a set of weighted
samples,Sk = {〈s

(ι)
k

, w
(ι)
k
〉 | 1 ≤ ι ≤ N}, where each sample

s
(ι)
k

= 〈θ
(ι)
k

, E
(ι)
k

〉 of the sample set at timek consists of a
Kalman filter θ

(ι)
k

= 〈µ
(ι)
k

, Σ
(ι)
k
〉 and the current exemplar

statesE(ι)
k

.
The generic RBPF algorithm generates a setSk from the

previous sample setSk−1 based on a new laser scanzl

k
and

camera imagezc

k
by first generating new exemplar statesEk

distributed according to the posteriorp(E1:k | z1:k). After
that, the position partθ(ι)

k
of each sample is maintained by

applying Kalman filter updates on each sample. In our case,
the position measurements to be integrated into the Kalman



filter are obtained by locally matching the exemplar prototype
corresponding toE l(ι)

k
of each sample against the current laser

scan.

C. Sampling Exemplars

The efficiency of RBPFs strongly depends on the number of
samples needed to represent the posteriorp(E1:k | z1:k). Due
to the sequential nature of the estimation process, samples
must be generated from the exemplar states of the previous
time step. The posterior at timek can be written as

p(E1:k|z1:k)

=
p(zk|E1:k, z1:k−1)p(Ek|E1:k−1, z1:k−1)

p(zk|z1:k−1)
p(E1:k−1|z1:k−1)

(3)

=
p(zk|Ek, θk−1)p(Ek|Ek−1, θk−1)

p(zk|z1:k−1)
p(E1:k−1|z1:k−1). (4)

Here, Equation 3 follows from Bayes rule and the replace-
ment of p(E1:k | z1:k−1) by p(Ek | E1:k−1, z1:k−1)p(E1:k−1 |
z1:k−1). Equation 4 follows from Equation 3 by the fact, that
the Kalman filter stateθk−1 and the latest exemplar statesEk−1

are sufficient statistics for the previous observationsz1:k−1 and
exemplar state sequenceE1:k−1.

In most cases it is impossible to sample directly from
Equation 4. The approach most commonly used in particle
filters is to evaluate Equation 4 from right to left in a three
stage process [24]: First, draw sampless

(ι)
k

from the previous
sample set using the importance weights, then draw for each
such sample a new sample from the predictive distribution
p(Ek | E

(ι)
k−1, θ

(ι)
k−1), and finally weight these samples propor-

tional to the observation likelihoodp(zk | E
(ι)
k

, θ
(ι)
k−1). The last

step, importance sampling, adjusts for the fact that samples are
not drawn from the actual target distribution. This approach
has the disadvantage, that the most recent observationszk

are not taken into account during sampling, which can lead
to sample depletion, if the predicted distribution is a poor
approximation of the true posterior [25].

Fortunately, in our case, we are able to take the latest
observation into account. From Equation 4 follows that the
optimal sampling distribution is

p(zk | Ek, θk−1)p(Ek | Ek−1, θk−1)

p(zk | z1:k−1)
. (5)

and the importance weights are then computed according to
∑

Ek

p(zk | Ek, θk−1)p(Ek | Ek−1, θk−1), (6)

where the summation goes over all possible joint exemplar
states. If the number of joint exemplars is relatively small, we
can compute this distributions analytically. Additionally, this
sampling distribution allows forlook-aheadweighting [26].
Since Equation 6 does not depend on the sample’s current
state, all new samples generated from the same samples

(ι)
k−1

obtain the same importance weights. For this reason, the

importance weight can be incorporated already into the im-
portance weightw(ι)

k−1 of the parent sample. This way, more
samples are drawn from “fitter” parent samples in the next
time step, which additionally mitigates the sample depletion
problem.

D. Computing the Observation Likelihoods

It remains to be shown, how the actual observation likeli-
hoods for the most recent camera imagezc

k
and laser scanzl

k

can be determined. According to Equation 4 the observation
likelihood is

p(zk | Ek, θk−1) = p(zc

k, zl

k | Ec

k, E l

k, θk−1) (7)

= p(zc

k
| zl

k
, Ec

k
, E l

k
, θk−1)p(zl

k
| E l

k
, θk−1) (8)

Here, Equation 8 follows from Equation 7 by applying the
chain rule and the second factor of Equation 8 follows from
the fact thatzl

k
is conditionally independent fromEc

k
according

to our model,see Figure 2.
Now, the individual observation likelihood forzl

k
can in

principle be computed by marginalizing over the laser position
predicted by the Kalman filter at timek, θk|k−1, i.e.

p(zl

k | E l

k, θk−1) (9)

=

∫
p(zl

k
| E l

k
,xl

k
= x)p(xl

k
= x | θk|k−1) dx.

However, computing this integral is intractable in practice,
since it would require to match the exemplarξl

k
associated

to E l

k
at all locations. Instead, we use an approximative

approach, which is also quite popular in scan-based mapping,
and determine the best positionẑl

k
(ξl

k
), for the exemplarξl

k
by

matching the exemplar against the current scan starting from
the predicted position. We assume a fixed covariance for the
matching position, and approximatep(zl

k
| E l

k
, θk−1) as

p(zl

k
| E l

k
, θk−1) ≈ p(zl

k
| ξl

k
, ẑl

k
(ξl

k
))p(ẑl

k
(ξl

k
) | θk|k−1). (10)

Note, that in the Kalman filter frameworkp(ẑl

k
(ξl

k
) | θk|k−1)

amounts to compute the likelihood of the innovation, while
p(zl

k
| ξl

k
, ẑk(ξl

k
)) can be determined from the mixture distri-

bution of the exemplar model.
The observation likelihood of the latest imagezc

k
can be

determined almost in the same way. The main difference is,
that it is additionally conditioned on the laser scanzl

k
and

exemplar stateE l

k
at time k. For this reason, we have to

marginalize over the updated Kalman filter state at timek, θk.
Again, we approximate the likelihood by first computing the
best matching position of the exemplarξc

k
in the image. This is

carried out by first computing the expected pixel coordinates
of the exemplar based on the estimated laser position, i.e. the
Kalman filter meanµk. Then the best matching position in
the imageẑc

k
(ξc

k
) is computed by direct ascent. Finally, the

likelihood is approximated as

p(zc

k | Ec

k, θk) (11)

≈ p(zc

k | ξc

k, ẑc

k(ξc

k))

∫
p(ẑc

k(ξc

k) | xc

k)p(xc

k | θk) dxc

k.



1. Inputs: Sk−1 = {〈s(ι)
k−1, w

(ι)
k−1〉 | ι = 1, . . . , N}, laser scanzl

k and imagezc

k

2. Sk := ∅ // Initialize
3. for ι := 1, . . . , N do // Compute Kalman prediction for each sample

4. θ
(ι)

k|k−1
= 〈µ(ι)

k|k−1
, Σ

(ι)

k|k−1
〉

5. for ι := 1, . . . , N do // Update importance weights by matching possible joint exemplars to the next observation

6. ŵ
(ι)
k−1 ∝ w

(ι)
k−1

∑
Ek

p(zk | Ek, θ
(ι)
k−1)p(Ek | E

(ι)
k−1θ

(ι)
k−1)

7. for ι := 1, . . . , N do // Sample s
(ι)
k−1 using updated weights and draw s

(ι)
k

from corresponding set

8. Samples(ι)
k−1 = 〈θ(ι)

k−1, E
(ι)
k−1〉 from Sk−1 with probability proportional to the updated importance weights ŵ

(ι)
k−1.

9. Draw new exemplarsE (ι)
k

proportional top(zk | E
(ι)
k

, θ
(ι)
k−1)p(E

(ι)
k

| E
(ι)
k−1, θ

(ι)
k−1)

10. Update the position estimatesθ
(ι)
k

using Kalman filter updates witĥzl(ι)
k

, andθ
(ι)

k|k−1

11. s
(ι)
k

:= 〈θ(ι)
k

, E (ι)
k

〉; Sk := Sk ∪ {〈s(ι)
k

, 1
N
〉}

12. return Sk

Table 1: The Joint Exemplar RBPF algorithm.

Here, the integral is required to marginalize over the un-
certainty of mapping laser positions to pixel coordinates.
We assume that the random variablexc

k
is constant and

Gaussian. The integral can then be solved analytically. The
actual mapping and its covariance matrix is learned during
training.

E. The Joint Exemplar RBPF Algorithm

The algorithm is summarized in Table 1. First, the Kalman
filters are predicted in step 4. Most of the work is then
carried out in step 6. Here, sampling distributions for sam-
pling exemplars are computed for each sample, according to
Equation 5. This involves matching all the exemplars against
the current laser scan and image. The normalizers of the
sampling distributions are used as the lookahead weights of
the previous samples. In step 8, samples are drawn from
the previous sample setSk−1. For each of these samples,
a new pair of exemplar statesEk is drawn proportional to
the corresponding sampling distribution computed in step 6.
In step 10, the Kalman filter update is applied to each new
sample making use of the best matching positionẑl

k
(ξ

(ι)
k

)
of the new exemplar in the current laser scan. Actually, this
Kalman update has already been computed in step 6 prior to
computing the observation likelihood of the image, and can
be re-used here.

IV. L EARNING THE JOINT EXEMPLAR MODEL

Before a person can be tracked with the joint exemplar
approach, the model needs to be learned from training data.
This involves learning the exemplar setsΞl, Ξk, their associ-
ated distribution parameters, and the transition modelp(Ek |
Ek−1, θk−1). Additionally, we learn the mapping of positions
in laser scans to the pixel coordinates and its uncertainty
p(xc

k
| θk).

A. Generating and aligning training data

The training data is obtained by recording a sequence of
laser scans and images of a person walking in front of a
stationary robot. In this situation we can obtain silhouettes of

α

r

(0,0)

Fig. 3. The normalization of laser features: The laser scanner is in the (0,0)
position. If we observe a laser feature in directionα at distancer, we first
rotate the feature points by−α and then shift the result by−r.

Fig. 4. Examples of silhouettes and laser features recordedduring training.
The contours are here scaled to the same height. The laser feature shown in
the second row correspond to the respective silhouettes in the first row, but
are normalized as shown in Figure 3

persons in the images using background subtraction. Similarly,
we obtain laser features by considering only end points of
beams, which do not hit static obstacles. Figure 4 presents
characteristic examples of the silhouettes and laser features
extracted this way.

For computing the exemplar sets the pairwise similarity of
the extracted training examples needs to be determined. For
this purpose, the silhouettes and the laser features need tobe
aligned. To align two silhouettes we minimize the chamfer
distance of the first silhouette based on the distance trans-
formed image of the second silhouette using hill-climbing.
The chamfer distance is the sum of the minimum squared
distances of each edge pixels of the first silhouette to an edge



Fig. 5. A distance transformed edge image used for chamfer matching during
contour tracking. To obtain this image, a canny edge detector is applied to
the original image and a distance transform is applied.

pixel of the second silhouette. The distance transform basically
computes for each pixel of a binary image the Euclidean
distance to the closest edge pixel, which allows to compute the
chamfer distance fast. Figure 5 gives an example of a distance
transformed image, where distance is encoded as gray-scale.

For aligning laser features, we make use of the fact that in a
given stance the appearance of a person’s legs in a laser scan
only depend on the walking direction relative to the sensing
direction. This is illustrated in Figure3. Here, the coordinate
system is robot centered. We then account for the invariance
by normalizing bearing and range to zero. This normalization
process is illustrated in Figure 3. After normalization, the
chamfer distance between two laser features is minimized
based by computing the optimal displacement of one feature
with respect to the other feature using an iterative least squares
approach similar to ICP [27]. The only difference is that the
orientation of the feature remains fixed. The result of the
aligning process are two pairwise dissimilarity matrices,one
for the silhouettes and one for the laser features.

B. Computing exemplar sets

Based on the dissimilarity matrices, exemplar sets can be
computed using some pairwise clustering approach [28], [29].
We cluster the training examples into a pre-specified numberof
clusters. To determine the exemplar representing each cluster,
we then follow the approach in [20] and choose the training
example, whose maximum dissimilarity to any other example
within the cluster is minimal. Finally, the parameters of the
mixture components are estimated also using the approach
proposed in [20], i.e. by assuming that the dissimilaritiesof
each example in the cluster to its cluster center are drawn from
a scaledχ2-distribution.

C. Computing transition probabilities

Once the exemplar mixture distributions have been deter-
mined, the transition probabilitiesp(Ek | Ek−1) are learned.
This is carried out using the EM algorithm, but keeping the
mixture distribution fixed. Because the computation of the
α and β values of the standard Baum-Welsh algorithm [30]
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Fig. 6. y-coordinates of the topmost and bottommost point of the person in
the training image as a function of the distance in the laser scan at the same
point in time. The training data allows to estimate the projection function
quite accurately.
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Fig. 7. x-coordinates of the topmost point of the person in the training image
as a function of the direction in the laser scan at the same point in time. In
the relevant range, the function is linear.

becomes prohibitively expensive for larger state spaces, our
current implementation adopts a technique known from fac-
torial HMMs [31] and evaluates the E-step approximately
based on Gibbs-sampling of exemplar state sequencesE1:k.
The maximization is then carried out using the transition
frequencies counted during sampling. This has the additional
advantage, that the transition probabilities can directlybe
learned in conditional form, i.e.

p(Ek|Ek−1, θk−1) = p(Ec

k|E
l

k, Ec

k−1, θk−1)p(E l

k|E
l

k−1, θk−1),

which reduces the size of the model.

D. Computing the laser to image mapping

To compute the mapping of positions provided by the laser
scanner to pixel coordinates in the image, we determine the
topmost and bottommost image coordinates for the silhouettes
in each training image. In Figure 6 they-coordinates of these
points in the image are plotted as a function of the distance to



Fig. 8. Outtake of the first experiment. The two persons are crossing their paths. The time gap between two images is one second. The matched contour based
on the particle with the maximum a posterior weight are overlayed in pink and purple.The robot was moving at a speed of 60 cm/s during this experiment

the person measured by the laser scanner. We obtain a nonlin-
ear relation, which results from the projection of the person to
the image plane. Based on these training examples we compute
least squares estimates of the projection functions. The relation
between thex-coordinate in the image and the direction of the
laser measurement is estimated independently, see Figure 7; in
the relevant range for our tracking experiments, between 4 and
12 meters in front of the robot, this relation is almost linear.
We then assume that the uncertainties inx and y directions
are independent and follow Gaussian distributions.

V. EXPERIMENTAL RESULTS

We evaluated our approach using a RWI B21 robot equipped
with a SICK laser range scanner and a progressive scan
VGA camera. The laser scanner is mounted at a height of
approximately 40cm, such that it measures the distance to
the legs of persons, while the camera is mounted at a height
of 1.5m. The camera captures 30 frames per second with an
image resolution of 320x240 pixel, while the laser scanner
produces 37.5 scans per second and measures with an angular
resolution of0.5◦.

In order to test the performance of the approach on a
moving mobile robot, we first learned exemplar models for
two different persons. For this purpose, two sequences of
4000 camera images and laser scans were recorded for each
person, where the persons had to perform straight line walks
with different headings in front of the stationary robot. From
the extracted sets of contours and laser features we learned
exemplar models using 20 laser exemplars and 80 contour
exemplars for both models.

To evaluate the performance of these models, the same two
persons then walked in front of the moving robot for more
then a minute, sometimes moving side by side, sometimes in
opposite directions and also crossing their paths some time.
The robot moved at a speed of 60 cm/s. The exemplar ap-
proach was then evaluated off-line based on the data recorded
during this experiment.

In the first experiment, we tracked the two persons using
independent exemplar trackers for both persons. Figure 8
shows example images from this experiment, where the pink
and purple colored outlines indicate the contour exemplar of
the sample with the maximum weight at the corresponding
point in time. The two particle filters were able to track the
persons reliably over the whole sequence of 2400 frames.
Each particle filter used 100 particles during this experiment.
The current C++ implementation achieves a frame rate of 17

frames per seconds for tracking a single person, when using
this setting.

In a second experiment we tested, if the approach is capable
of distinguishing between the two persons based on their
exemplar models. For this purpose, we repeated the previous
experiment, but this time using four independent particle
filters, where each person is tracked with two filters using
both learned exemplar models.

For each of the four particle filters, we recorded the
sum of the sample weights after each time step, i.e.
the sample normalizer, which corresponds to the like-
lihood p(zk|z1:k−1), which describes how well the fil-
ter explains the data observed so far. We then evalu-
ated how well the approach is able to determine the cor-
rect assignment of filters to persons. Let us denote the
four different likelihoods aspaa(zk|z1:k−1),pab(zk|z1:k−1),
pba(zk|z1:k−1),pbb(zk|z1:k−1), whereaa stands for the parti-
cle filter tracking persona using the exemplar model learned
from data of persona and ab stands for the filter tracking
persona using the model learned from data of personb.
Based on these values, we compute after each image the
posterior probability of the two joint assignments of filters to
persons. These assignments areH1, both persons are correctly
identified, andH0, the ids are erroneously swapped. We
compute the posteriorp(H1(k)) starting with an initial prior
p(H0(0)) = p(H1(0)) = 0.5,

p(H0(k)) = αk ∗ pab(zk |z1:k−1) ∗ pba(zk |z1:k−1) ∗ p(H0(k−1))

p(H1(k)) = αk ∗ paa(zk |z1:k−1) ∗ pbb(zk |z1:k−1) ∗ p(H1(k−1)),

where the αk are normalizers that ensures that the two
probabilities sum up to one.

Figure 9 shows the result of this process obtained on 5
different parts of the data sequence. In all 5 cases our approach
identified the correct hypothesis within 11 seconds, which
indicates that the method is able to distinguish between known
persons during tracking.

VI. CONCLUSION

In this article we introduced a joint exemplar Rao-
Blackwellized particle filter for tracking a person in laserrange
data and camera images. The Rao-Blackwellized particle filter
tracks the appearance of a person by sampling characteristic
contours and laser features and it tracks the person’s motion
conditioned on the sampled appearance using a Kalman filter
for each particle. The approach uses metric mixture models
of the contours of a person in video images and of features
of a person’s legs in laser data to compute the observation
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Fig. 9. Learning the correct id assignment during the tracking of two
persons. Within 11 seconds the approach was able to figure outthe correct id
assignment to the persons being tracked in Figure 8 based in their different
exemplar models; see text for details.

likelihood of different prototypical shapes in the data. These
exemplar models can be learned from training sequences using
clustering for obtaining the mixture models, and EM for
obtaining the exemplar transition probabilities. Finally, we
presented tracking results achieved with the approach, which
show that it is able to reliably track two persons with a mobile
robot that moves at a speed of 60 cm/s. The technique is also
able to simultaneously figure out the identity of the persons
during tracking based on their exemplar models.

However, there is still room for future work. Currently,
the motion model of the person is based on a single linear
Kalman filter only. In the future we want to extend the RBPF
to take possible maneuvers into account by using a model
switching approach, where parameters of the Kalman filter and
the switching probabilities could also be learned from training
data. We also want to additionally take color histograms into
account and adapt the appearance models during tracking.
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