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Abstract— In this paper, we construct smooth feedback plans
over cylindrical algebraic decompositions. Given a cylindrical
algebraic decomposition on Rn, a goal state xg , and a connectivity
graph of cells reachable from the goal cell, we construct a vector
field that is smooth everywhere except on a set of measure zero
and the integral curves of which are smooth (i.e., C

∞) and arrive
at a neighborhood of the goal state in finite time. We call a
vector field with these properties a smooth feedback plan. The
smoothness of the integral curves guarantees that they can be
followed by a system with finite acceleration inputs: ẍ = u. We
accomplish this by defining vector fields for each cylindrical cell
and face and smoothly interpolating between them. Schwartz and
Sharir showed that cylindrical algebraic decompositions can be
used to solve the generalized piano movers’ problem, in which
multiple (possibly linked) robots described as semi-algebraic sets
must travel from their initial to goal configurations without
intersecting each other or a set of semi-algebraic obstacles. Since
we build a vector field over the decomposition, this implies that
we can obtain smooth feedback plans for the generalized piano
movers’ problem.

I. INTRODUCTION

Feedback motion planning is a fundamental problem in

control and robotics. If the state space is a smooth manifold

X ⊆ Rn, and the system satisfies the state transition ẋ =
f(x, u), a feedback strategy (also called a control law) is a map

π : X → U , in which U is the input space. A feedback strategy

can also be seen as a vector field on X , since the choice of u at

any point x ∈ X determines the tangent vector of the system

trajectory at that point. For a feedback strategy to be useful,

the behavior of the system under the strategy must have some

desirable properties. For example, stability is an important

consideration; the control law should prevent the system from

being unbounded as time goes to infinity. Another important

property is convergence to a given goal point or region. For this

to be satisfied, the system should be guaranteed to converge to

the goal region under application of the feedback control. In

this paper, we consider feedback motion planning on the cells

of a cylindrical algebraic decomposition of a bounded subset

of Rn. The system we consider is of the form ẍ = u. If our

cylindrical algebraic decomposition arises from a generalized

piano movers’ problem as in Schwartz and Sharir [1], with

some cells of the decomposition removed because of the

configuration space obstacles, then the feedback plan (vector

field) we construct is guaranteed to take any initial state to

the goal state while avoiding the obstacle cells, and to do so

xg

Fig. 1. The resulting cylindrical algebraic decomposition and several flows
of a smooth feedback plan on the cell decomposition. The shaded regions are
obstacles bounded by polynomials.

smoothly. Hence, our method computes a smooth feedback

plan for the generalized piano movers’ problem.

Traditional feedback control is well studied [2], but can-

not be applied in many cases due to nonconvex obstacles

in the environment. This is difficult enough when we are

considering nonconvex obstacles in the plane; it is far more

challenging when the obstacles are the semi-algebraic sets in

a high-dimensional configuration space corresponding to the

generalized piano movers’ problem. In the algorithmic motion

planning community, the solution to this has been to compute

open loop trajectories linking initial and goal configurations

but ignoring feedback considerations. This work is very impor-

tant because it provides a way to compute trajectories for very

complex, high-dimensional problems; however, it is important

to think not only in terms not only of open loop trajectories,

but also about feedback control.

Some have tried to make feedback more central through

the construction of potential fields that have no local minima

other than the goal state [3], [4]. If such a potential field can

be found, the gradient of the field can be used as the velocity

command for the robot. However, there are a number of



difficulties associated with computing such potential fields. We

will bypass these difficulties by directly constructing a vector

field with the desired properties, rather than constructing a real

valued function and using the gradient as the vector field. In

our case, we take a cylindrical algebraic decomposition of the

configuration space (which is known to be able to solve the

generalized piano movers’ problem [1]) and construct vector

fields for each of the cells in the decomposition. We do this

by inductively defining vector fields on cells of dimension

one and then iteratively lifting them into more dimensions,

in the same way as the decomposition itself is constructed.

Different locally defined vector fields are smoothly combined

using bump functions. The result is a globally defined vector

field the integral curves of which are smooth and converge to

a goal state. An illustration of a vector field produced by our

algorithm is given in Figure 1. Our vector fields can be used

directly for kinematic systems, or they can be used to develop

dynamic control policies. For example, if the computed vector

field is V (x), a control policy

u = K(V (x) − ẋ) + V̇ (x)

for some feedback gain K can be used [5]. Under certain

conditions, it can be shown that the system will converge to

the integral curves of the constructed vector field [5], [6].

In the following section, we will review related work,

focusing on how the feedback motion problem has been

addressed within the robotics community and describing in

detail the method of upon which ours is based. We will

then briefly describe cylindrical algebraic decomposition, and

our algorithm in detail. We will demonstrate that the integral

curves of our vector field converge to the goal state.

II. FEEDBACK MOTION PLANNING

A. Background

The problem of finding a global motion plan in com-

plex environments is difficult. Motion planning problems in

robotics typically involve non-convex constraints resulting

from obstacles in the environment. This presents a significant

problem for traditional feedback control methods. One solution

might be to use state space sampling along with dynamic

programming to achieve not only feedback, but approximately

optimal trajectories [7]–[9]. This may be feasible for low-

dimensional spaces, but both the time- and space-complexity is

exponential in the dimension of the state space, assuming that

the sampling resolution remains fixed. The difficulty of feed-

back control for these problems motivates the development of

open loop motion planning algorithms, which can at least find

feasible paths through obstacle-cluttered environments. Such

algorithms have been extensively studied [10], [11]. Many

motion planning algorithms have been developed for kinematic

systems; several, such as RRTs [12] and PDST-EXPLORE

[13] are specifically designed for systems with dynamics.

Kinematic motion planning algorithms find paths which need

post-processing (e.g., time-scaling [14], [15], steering [16],

[17], or other transformations [18], [19]) to be transformed

into trajectories for dynamical systems. In contrast, RRTs and

similar planners find such trajectories directly. In either case,

an open loop trajectory for the system is found. This trajectory

can then be tracked using feedback.

This approach has several disadvantages, however. First,

paths generated by motion planning algorithms often appear

to be of poor quality, having unnecessary turns and bends in

them. This may result in them being difficult to follow for

a dynamical system. Second, this approach does not produce

a global feedback plan, but only a local feedback plan in a

neighborhood of the nominal trajectory. It would be better to

solve the feedback problem once for the entire space.

Another approach, made plausible through tremendous ad-

vances in computational power, is to use motion planning

algorithms themselves as the feedback mechanism. In such

a model, any time the system deviated from the prescribed

trajectory, the trajectory would be re-planned (probably from

scratch) based on the new state of the system. This approach

is extremely problematic as well. First, it has a very high

computational cost, and may not be suitable for real-time

applications. Second, this approach is not even guaranteed to

bring the system to the goal state, although in practice it might

be expected to.

These approaches, which add feedback almost as an af-

terthought to open loop trajectories, have significant problems,

as we have seen. Consequently, there have been some attempts

within the robotics community to incorporate feedback more

directly. For example, the sampling-based neighborhood graph

(SNG) covers the free space with balls, each of which is

equipped with a local navigation function which is guaranteed

to convey the robot into a ball nearer to the goal state.

Other approaches to feedback motion planning in the presence

of obstacles are often based on potential fields. Khatib [3]

developed a method which utilized a potential field over the

operational space to guide a manipulator or mobile robot to

the goal. His approach suffers from local minima, however,

as do many potential field methods. Waydo and Murray give

a stream function method for navigation in two-dimensional

environments [20]. A highly influential potential field method

is that of Rimon and Koditschek [4], who show how to

develop navigation functions (potential functions with a unique

minimum at the goal and meeting certain other criteria) using

potential functions in a generalized sphere world. Rimon and

Koditschek have presented the most general feedback planning

technique up to now; their method applies to any problem

whose configuration space is topologically equivalent to a

generalized sphere world. Our method is more general in

that it applies to any configuration space with a well-defined

cylindrical algebraic decomposition.

Finally, work by Conner et al. [6] computes feedback plans

over cell decompositions, as does our work [21], [22]. Conner

et al. consider an cell complex environment in d-dimensional

Euclidean space. They then impose a potential field over each

individual cell, taking as the field the pullback of a potential

function on a disk, which has a closed form solution. They

require that the gradients of the potential fields be perpendic-

ular to the cell boundaries, so that adjoining potential fields can



be easily pieced together. Putting the individual “component

control policies” together guarantees that the global control

policy brings the robot to the goal. In addition to specifying

a control policy for kinematic systems, they develop control

policies for systems with dynamical constraints. Similarly,

Lindemann and LaValle take a cell complex environment and

define vector fields over the individual cells, which can also

be see as component control policies. Since this work is the

primary inspiration for the current work, we describe it in

detail below. Both [6] and [21] can be seen in the context

of the sequential composition of funnels approach [23], in

which a collection of controllers is developed, each of which

converges to a goal set which is either the actual goal state

or in the domain of another controller. Following a sequence

of these controllers will cause the system to arrive at the goal

state. This idea was further developed in [5], [24].

B. Smooth Feedback Plans on Convex Polytopes

This work is based on our earlier work on constructing

feedback plans on convex polytopes [21]. It will be useful

to describe this work in some detail. The problem considered

is that of smooth feedback motion planning for a point robot

whose environment is a d-dimensional cell complex, each cell

being a bounded d-dimensional convex polytope. Such a cell

complex might be generated from a convex decomposition

of a d-dimensional polygonal environment. There is a goal

state xg , and consequently a goal cell Cg containing xg. The

connectivity of the convex cells is used to construct a graph

(actually, the graph is the dual of the cell complex) and a graph

search algorithm such as Dijkstra’s algorithm or breadth first

search is used to determine a path from each cell to Cg . Then,

each cell other than Cg has a “successor” cell which is the next

cell on the path to the goal cell.

Once the cell graph has been computed, we construct a

vector field on each cell which has the following properties:

1) The vector field is smooth except for a set of measure

zero and all integral curves of the vector field are

smooth.

2) All integral curves leave the cell via the exit face,

entering the designated successor of that cell.

3) Smoothness of the integral curves is preserved when cell

boundaries are crossed.

These properties guarantee that the vector field can be used

for smooth feedback motion planning for the system ẍ = u.

An important element of the method is the use of the fact

that smooth feedback plans can be constructed using two types

of simple vector fields, one per d-dimensional cell and one

per (d − 1)-dimensional face, blended together using bump

functions. Since bump functions smoothly interpolate between

two functions (more generally, partitions of unity are capable

of smoothly blending arbitrarily many functions together),

the system can transition from following one component

vector field to another without any loss of smoothness. Bump

functions are defined as follows:

Definition 1 Let X be a smooth manifold, and let K be a
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Fig. 2. A bump function: if λ(s) = (1/s)e−1/s, then b(s) = 0 for s ≤ 0,

b(s) = 1 for s ≤ 1, and b(s) =
λ(s)

λ(s)+λ(1−s)
for 0 < s < 1.

closed set and U an open set, K ⊂ U ⊆ X . A bump function

over U is a smooth, real valued function ρ : X → [0, 1] such

that:

1) ρ has support contained in U .

2) ρ(x) = 1 for every x ∈ K.

Bump functions are in general difficult to find, even though

their existance is guaranteed. However, it is simple to construct

a bump function on the real line; an illustration of this

bump function is given in Figure 2. The bump function has

the important property that all derivatives equal zero at the

endpoints of the unit interval.

In order for the approach to work, one more piece must be

put in place. Within each cell, the vector fields must be blended

in such a way so that on each face, the resulting vector field

is identically equal to the face vector field. In the interior of

each cell, all face vector fields must be smoothly interpolated

between. We use the cell vector field (also called the attractor

vector field) as an intermediary between the different face

vector fields, interpolating between them. This is done using

the interior generalized Voronoi diagram (GVD) of the cell.

The GVD partitions the cell into regions corresponding to

each face; in each region, bump functions are used to blend

between the face vector field and the attractor vector field.

On the GVD itself, the vector field is identically equal to the

attractor vector field, guaranteeing that all face vector fields

are smoothly blended together in the interior of the cell. In

order to use the bump function to blend between the face

vector field and the attractor vector field, the parameter of the

bump function must be constructed in such a way that it will

be equal to one on any of the faces of the GVD and zero on

the face of the cell. We use a product of analytic switches to

do this. Formally, for any point p it is defined as

s(p) = 1 −
∏

j 6=i

d(p, fj) − d(p, fi)

d(p, fj)
. (1)



Fig. 3. A smooth feedback plan in a two-dimensional environment.

in which {fi}
n
1 are the faces of the GVD and d(p, fi) is the

distance from p to face fi. This function is smooth (except at

the vertices of the cell), and has the desired property of being

identically equal to one on the exit face and zero on all other

boundaries.

Since the bump function smoothly blends the face and

attractor vector fields together, a vector field is obtained which

is smooth over the entire cell. With small modifications, the

above approach can be used in the goal cell as well. Piecing

the individual cells together results in a vector field which

is smooth over the entire free space. Normalize the vector

field at every point, the global vector field V (p) is defined

as V (p) = norm(b(p)Vf (p) + (1 − b(p))Va(p)), in which

Vf is the face vector field for that point, Va the attractor

vector field, b(p) = b(s(p)) is the bump function, and norm
is the normalization function. An example of the trajectories

produced by the method is given in Figure 3.

III. CYLINDRICAL ALGEBRAIC DECOMPOSITION

Cylindrical algebraic decomposition was used to solve the

piano movers’ problem first by Schwartz and Sharir [1]. They

used the Collins decomposition [25] to partition the configura-

tion space into free and obstacle cells and demonstrated how

to find a path from a point in one free cell to a point in any

other connected free cell. Cylindrical algebraic decomposition

(abbreviated CAD) is extremely powerful; in fact, it can be

used to solve the first-order theory of the reals [26]. Given

this, it is not surprising that it can solve the generalized piano

movers’ problem as well.

A cylindrical algebraic decomposition (CAD) of Rn is

defined in the following inductive way (see [27] for a more

formal definition):

Definition 2

1) A cylindrical algebraic cell C1 in dimension one is either

an interval (a, b) or a point a.

2) A cell Cn in dimension n has one of the two forms: it is

either the set of pairs {(x, y) : x ∈ Cn−1, f(x) < y <
g(x)} or the set of pairs {(x, y) : x ∈ Cn−1, y = f(x)},

in which f, g : Rn−1 → R.

The cells’ cylindrical structure is apparent from the def-

inition. For a set of polynomials P taken from the set

Q[x1, . . . , xn] (polynomials over the field of rational numbers

Q), a CAD adapted to P is one in which each cell in the

decomposition is sign-invariant under P . The number of cells

in the decomposition is doubly exponential in the dimension

of the space [25].

In addition to proposing the decomposition, Collins gave an

algorithm to compute it. This algorithm (which we will refer

to as the CAD algorithm) has two phases. In the first phase,

the polynomials of P are projected down one dimension at

a time, using the canonical projection. Once the polynomials

have been projected into R1, the critical points are located;

these points, and the corresponding open intervals, become the

cells of L1. Then in the second phase, the cells of L1 are lifted

into R2, becoming cylinders partitioned based on the critical

points of the polynomials which are now in Q[x1, x2]. This

is repeated, each time lifting up and partitioning the resulting

cylinders, until Rn is reached. At that point, a sign-invariant

partition of Rn has been obtained. As noted in [1], [27], the

unbounded cells can be treated as the others by considering

the set of polynomials to include xi = ±∞, for i = 1, . . . , n.

More details can be found in [11], [26], [27]. A (very) simple

illustration can be seen in Figure 4.

Schwartz and Sharir show how to use the CAD algorithm to

solve the generalized piano movers’ problem. If the collision

constraints on the robot are semi-algebraic in the configuration

space, then each cell in the resulting CAD of the configuration

space is either completely in collision or completely collision-

free. If a graph representing the connectivity of the CAD cells

is constructed, then it can be searched to find a collision-free

cell path from the cell containing the initial state to the one

containing the goal state, if one exists. The only remaining step

is to specify a continuous path from the initial to the goal state

which goes from cell to cell in the solution cell path without

entering any other cells. Schwartz and Sharir show how this

can be done. Note that using the standard convention that the

free configuration space is open, the robot is guaranteed to

move from one full-dimensional cell to another, through a

connecting cell of one dimension lower. Hence only these cells

need to be considered to determine connectivity. In order to

determine the connectivity relations efficiently, Schwartz and

Sharir make a stronger assumption on the set of polynomials

P than is required for the basic CAD algorithm. The assump-

tion of ”well-basedness” eliminates local pathology, but local

connectivity can still be quite complicated. See [1] for more

details.

IV. SMOOTH FEEDBACK PLANS ON CYLINDRICAL CELLS

Now we will proceed to describe our algorithm for gener-

ating smooth feedback plans over CADs. We will construct

smooth feedback over individual cells and then guarantee that

smoothness is preserved across boundaries crossed by the

resulting integral curves. We assume that the input to our

algorithm is the entire cylindrical algebraic decomposition,

consisting of all cells of level n and their corresponding
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Fig. 4. The polynomials corresponding to the obstacles from Figure 1, and
the steps of the CAD algorithm.

algebraic descriptions, and a connectivity graph corresponding

to the connectivity of the n-dimensional cells in the decompo-

sition. In the construction of a CAD, it is possible to generate

a point in each cell; these are called algebraic points, and

we assume that we are given these as well (note that it is

trivial to compute algebraic points given the full algebraic

descriptions of each cell). The connectivity graph can be

searched to determine the cell path to the goal cell from any

cell in the connected component of the goal; this determines

the successor of each cell. We will construct a vector field

over the closure of each cell such that all integral curves are

guaranteed to reach the face between the cell and its successor,

without reaching any other face. We require all integral curves

to be smooth, and smoothness must be preserved across the

faces separating a cell from its successor. We will discuss our

algorithm in terms of an n-dimensional cell C (and its closure

C̄) and its successor S, both full-dimensional cells of level n.

There is an (n−1)-dimensional face FS which connects them.

We know that C is bounded by upper and lower bounding

polynomials in each dimension; let ui and li be these polyno-

mials in dimension i. It is intuitive that C should have as many

faces as bounding polynomials, but this is not actually true.

This is the case because when adjacent cells in i dimensions

are lifted into Ri+1, a full-dimensional cell of level i + 1

can have multiple neighboring cells in the adjacent cylinder

(arbitrarily many, in fact). On the other end of the spectrum, a

cell may have no faces corresponding to a particular dimension

because of certain polynomial intersections. Denote by F̄+
i

the union of all upper bounding faces of C corresponding to

dimension i, and by F̄−
i the union of all lower bounding faces

of C corresponding to dimension i. Note that F̄+
i corresponds

to ui = 0 and F̄−
i corresponds to li = 0. Then if FS is an

upper face corresponding to dimension i, for example, we

have that FS ⊆ F̄+
i , but it can be the case that FS is a

“window” in F̄+
i . We know that the bounding polynomials of

FS always correspond to the bounding polynomials of either

C or S; windows are formed when they correspond to the

bounding polynomials of S rather than those of C. If they all

corresponded to the bounding polynomials of C, then we have

FS = F̄+
i and no window would exist.

We will construct a vector field over C̄ similar to our

approach in [21]. We will define appropriate smooth distance

functions representing the distance to each face of the cell, as

well as face vector fields for each face and an attractor vector

field for the cell. Face vector fields are easily defined; any face

F ⊆ F̄+
i will be assigned a vector field of − ∂

∂xi
and any face

F ⊆ F̄−
i will be assigned a vector field of + ∂

∂xi
. This is the

case except for FS ; for any x ∈ FS , the face vector field Vf

is defined as

Vf (x) =

{

+ ∂
∂xi

if FS ⊆ F̄+
i

− ∂
∂xi

if FS ⊆ F̄−
i

These face vector fields guarantee that the integral curves will

not cross any face except the exit face, where they cross from

C to its successor, S.

Recall that through the construction of the CAD, algebraic

points have been computed which lie in the interior of each

cell. Denote the algebraic point in FS as pa. Also, define

relative height as follows: for any point x = (x1, . . . , xn) ∈ C̄
and dimension i, define hi : C̄ → [0, 1] as

hi(x) =
xi − li(x)

ui(x) − li(x)
. (2)

This is a smooth mapping, since both the upper and lower

bounding polynomials are smooth. For the sake of com-

pleteness, we can arbitrarily define hi(x) to be zero if

ui(x) = li(x); this can only occur when faces corresponding

to certain dimensions are missing, and will not affect our

algorithm at all, because these faces will always be less than

(n − 1)-dimensional and are consequently irrelevant to full-

dimensional cell connectivity. We define the relative coordi-

nates of x as h(x) = (h1(x), . . . , hn(x)) ∈ [0, 1]n. Then, we

can intuitively define the attractor vector field Va as that which

induces a straight line path toward pa, when considered in

relative coordinates. Formally, this can be computed using the

Jacobian of h, which is guaranteed to have full rank since h is

a diffeomorphism on C: Va(x) := (Jh(x))−1(h(pa)− h(x)).
Now, all we need is to define acceptable distance functions

to each face. Then, we can blend the component vector fields

together as in the polygonal case, and we will show that the



integral curves of the resulting vector field always reach the

goal. The distance function is easy to define, using the relative

height functions. Define the scaled perpendicular distance

function d⊥ as follows:

d⊥(x, F ) =

{

1−hi(x)
1−hi(pa) if F ⊆ F̄+

i
hi(x)
hi(pa) if F ⊆ F̄−

i

(3)

As required, the distance function equals zero on the face

itself and is greater than zero elsewhere inside the cell. Note

that it multiple faces which correspond to the same bounding

polynomial will have the same distance; this is acceptable,

because such faces will have the same face vector field.

This holds except for all faces except the face F̄±
i such that

FS ⊆ F̄±
i (we use the notation F̄±

i to indicate that it can

be either the upper or lower bounding face corresponding to

dimension i). We will need to define another distance function

to use to distinguish FS from the remainder of F̄±
i , to use

when the point x is in the region of the cell closest to F̄±
i .

Understanding cell connectivity is important for computing

the distance to FS , because FS can be a window in the

larger face F̄±
i , as discussed above. It is useful to note that

if FS ⊆ F̄±
i , then both C and S were lifted from the same

full-dimensional cell in Li−1. This means that the “parents”

of C and S in Li were adjacent cells in the same cylinder,

separated by an (i − 1)-dimensional face. The parent cells

shared a complete face at that level; lifting the cells into higher

dimensions may have restricted the area of the face which they

share until only a window remains.

Keeping in mind that each successive lifted dimension adds

constraints which restrict the shared face between C and S,

consider some point x ∈ F̄±
i . It is simple to verify whether

or not x lies in FS (simply check to see if it satisfies the

constraints of the bounding polynomials of FS). In addition

to this, we need a smooth function defined over all of F̄±
i

that can serve as a distance function, indicating how far x is

from FS even if x /∈ FS . One option which seems obvious

but which is incorrect would be to compute the distance to

each of the bounding polynomials of FS which is unsatisfied,

smooth them using a bump function if necessary, and add them

together. This is incorrect because the bounding polynomials

of FS are not necessarily well-defined for any point x ∈
F̄±

i . The bounding polynomials uF
2 and lF2 are not well-

defined unless uF
1 and lF1 are satisfied. Similarly, the bounding

polynomials uF
j and lFj are not guaranteed to be well-defined

unless uF
k and lFk are satisfied, for all k ∈ i+1, . . . , j−1; this

happens when the bounding polynomials of FS coincide with

those of S rather than those of C. Consequently, our distance

function will only depend on uF
j and lFj if all lower bounding

polynomials are satisfied.

We will construct a function which is uniformly equal to one

outside FS , uniformly zero on some subset of F ′
S , smoothly

transitioning between the two on FS \ F ′
S . We need to make

several definitions in order to construct this function. First,

define z+
j (x) and z−j (x) as the zeros of uF

j and lFj that

correspond to x: namely, z+
j (x) and z−j (x) are identical to x

in all coordinates except for coordinate j, which is chosen so

that uF
j (z+

j (x)) = lFj (z−j (x)) = 0. Then, for some α ∈ (0, 1)

define the satisfaction function wj : F̄±
i → [0, 1] as

wj(x) = b

(

1

α

(

|h(x) − h(pa)|

|h(z+
j (x)) − h(pa)|

− (1 − α)

))

+ b

(

1

α

(

|h(x) − h(pa)|

|h(z−j (x)) − h(pa)|
− (1 − α)

))

.

(4)

Then define the distance function d̂j as follows:

d̂i+1(x) = wi+1(x)

...

d̂j(x) = d̂j−1(x) + (1 − d̂j−1)wj(x)

(5)

The satisfaction function wj considers the bounding poly-

nomials corresponding to dimension j and is identically one

for points above the upper bounding polynomial or below

the lower bounding polynomial in that dimension. It equals

zero for any x such that the difference in relative height

from x to pa (in direction xj) is less than (1 − α) times the

difference in relative height from pa to the boundary of FS ,

again in direction xj . These can be used to construct the final

distance function d̂n, which for any point x ∈ F̄±
i indicates the

“distance” from that point to FS , and does so smoothly. The

important results are summarized in the proposition below:

Proposition 1 The following properties hold:

1) For all j, d̂j is well-defined.

2) The function d̂n is smooth, identically equal to one on

F̂±
i \FS , and identically equal to zero on an open subset

of FS .

Proof: We prove the first property by induction. As we

have already indicated, wj(x) is only guaranteed to be well-

defined if the polynomial constraints lFk and uF
k are satisfied

for all k ∈ i + 1, . . . , j − 1. For 1 ≤ k ≤ i, the constraints

are always satisfied because the cells C and S are in the same

cylinder in the projection into Ri. Therefore, we know that

the base case d̂i+1 is well-defined. Now assume that d̂j is

well-defined and consider d̂j+1. The function d̂j+1 will be

well-defined if d̂j = 1 for any point x such that wj+1 is

not well-defined (since the term containing wj+1 will then

vanish). But this fact is apparent from the definition of d̂j ; if

some constraint lFk or uF
k is not satisfied, then we have d̂l = 1

for all k ≤ l ≤ j. Therefore d̂j = 1 over any point where

wj+1 is not well-defined, and so d̂j+1 is well-defined over all

of F̄±
i .

For the second property, the above proof also yields the

fact that d̂n is identically equal to zero on F̂±
i \ FS . It is

also readily apparent that if all polynomial constraints are

satisfied by a factor of (1 − α), then we have d̂n = 0. So

we simply need to verify that d̂n is smooth. It is constructed

using smooth functions, so all we need to verify is that the

derivatives exist on the constraint polynomials, which is the



boundary where the satisfaction functions become ill-defined.

This can be argued inductively, as above. The base case, d̂i+1,

is clearly smooth. Now assume that d̂j is smooth. Just as

guaranteeing that d̂j = 1 wherever wj+1 is not well-defined

is sufficient to make d̂j+1 well-defined, we use the property

that all derivatives of the bump function b(s) are zero outside

the unit interval. This implies that anywhere the function

wj+1 is not well-defined, the derivatives of d̂j all equal zero.

Consequently, all derivatives of d̂j+1 exist and are well-defined

over F̂±
i , and the function d̂n is smooth.

Using these distance functions, for any point x ∈ C we can

determine the face in whose region of influence it lies (i.e.,

which face it is “closest to”). There are three different cases.

Assume as before that FS ⊆ F̄±
i . First, for some face F̄±

j

with j 6= i, we say that x lies in the region of influence of

F̄±
j if d(x, F̄±

j ) ≤ d(x, F̄±
k ), for all k. Second, we say that x

lies in the region of influence of FS if d(x, F̄±
i ) ≤ d(x, F̄±

k )

for all k and if d̂n(x) ≤ 1− d̂n(x). Finally, x lies in the region

of influence of F̄±
i \ FS if d̂n(x) ≤ 1 − d̂n(x) for all k and

if 1 − d̂n(x) ≤ d̂n(x).
The final step is to define a function for each face which

interpolates between a value of zero on the face itself and

a value of one on the boundaries of its region of attraction

(loosely, the “faces” of the GVD). As in our previous work,

we use a product of analytic switches. For any face F̄±
j with

j 6= i, use the following:

s(p) =
∏

F̄ 6=F̄
±

j

d⊥(p, F̄ ) − d⊥(p, F̄±
j )

d⊥(p, F̄ )
, (6)

in which F̄ ∈ F are the faces of C. This function is smooth

(except where faces meet), and has the desired property of

being identically equal to one on the face of the cell and zero

on the boundary of the region of influence. Then, using the

shorthand b(p) = b(s(p)), we define the global vector field V
at point p as V (p) = norm(b(p)Vf (p) + (1 − b(p))Va(p)), in

which Vf is the face vector field for the face in whose region

of influence p lies, Va the attractor vector field, b the bump

function, and norm is the normalization function, so that V
is a unit vector field.

We must also define the vector field on the goal cell so that

the integral curves converge to the goal point xg inside the

goal cell. All face vector fields point inward in this case; the

attractor vector field is the vector that points from x to xg ,

in relative coordinates. As before, this is defined as Va(x) :=
(Jh(x))−1(h(xg) − h(x)). Similarly, the d⊥ function should

be modified to consider coordinates relative to the goal point

xg rather than pa.

A. Theoretical Results

Now, we need to establish that the feedback plan associated

with our constructed vector field has all the properties we

require.

Theorem 1 The vector field V is smooth except for a set of

measure zero and has smooth integral curves.

Proof: Consider the functions used in the construction

of V in a particular cell. The perpendicular distance function

d⊥ is smooth since the bounding polynomials of the cell are

smooth, and the satisfaction functions and distance functions

d̂j are likewise smooth. The parameter function s is smooth

except on the (n− 2) dimensional surfaces where faces meet,

and the integral curves never go through these places. As

we know, the bump functions are smooth. They guarantee

smoothness across cell boundaries and between regions of

influence within a cell because all derivatives equal zero there

(this is easily verified). Hence V is smooth except on (n− 2)
dimensional sets, and the integral curves are all smooth.

Theorem 2 The integral curves of V never lead to obstacle

collision.

Proof: This property is obvious from the construction

of the vector field. In any collision free cell, the face vector

field corresponding to an obstacle face will be inward pointing,

because an obstacle face can never be the exit face. The vector

field V is identically equal to the face vector field on the face

itself, due to the bump function and its parameter function.

Hence, the vector field always points away from obstacle faces

and the integral curves never lead to collision.

Theorem 3 The integral curves of V converge to the goal.

Proof: First, we show that for any non-goal cell C, all the

integral curves of C reach the exit face FS and thus enter the

successor cell S. Recall that the attractor vector field is defined

as Va(x) := (Jh(x))−1(h(pa)− h(x)), in which pa is the al-

gebraic point in the exit face FS . Hence following the integral

curves of this vector field will cause the relative coordinates to

converge to those of pa: namely, hj(x) → hj(pa), 1 ≤ j ≤ n.

The face vector fields corresponding to all F̄±
j ), j 6= i also

cause the relative coordinates to converge. The only exception

is hi, which has to be considered separately because the vector

field corresponding to F̄±
i \FS points away from pa. Consider

all dimensions except dimension i. We know that the relative

coordinates will converge to a neighborhood of those of pa in

some finite time T (again, not considering dimension i). This

implies that for a suitably chosen neighborhood, the region of

influence of F̄±
i \FS cannot be entered after time T , because

it lies entirely outside this neighborhood. Consequently, we

can guarantee the convergence of hi after time T , and all

relative coordinates are guaranteed to converge. Once within a

neighborhood of pa (in relative coordinates) in all dimensions,

it is simple to observe that the integral curves reach the exit

face FS in finite time, since the face vector field of FS is

outward-pointing.

The case of the goal cell is similar. In this case, the

attractor vector field and face vector fields all cause the relative

coordinates to converge to those of the goal point. Therefore,

for any neighborhood of the goal point, the integral curves

will converge in finite time. Since the integral curves of V
reach the exit face of any cell in finite time, and reach the

goal point from any face of the goal cell in finite time, we



have the global result that all integral curves of V reach a

neighborhood of the goal state in finite time.

V. CONCLUSIONS

In conclusion, we have introduced an algorithm for con-

structing a vector field on the cells of a cylindrical algebraic

decomposition. Since CAD algorithms solve very general

motion planning problems [1], [11], this implies that we can

provide smooth feedback plans for these problems as well.

To the authors’ knowledge, this is the first construction of

smooth feedback plans with this level of generality. It is also

of interest that although a certain amount of detail is required

to guarantee smoothness, the cylindrical structure of the cells

lends itself quite readily to the construction of vector fields

with smooth integral curves.

Due to the complexity of cylindrical algebraic decompo-

sitions, it is highly unlikely that this method will be imple-

mented and used in its full generality. However, it has more

than purely theoretical interest. It may be reasonable to apply

to feedback planning for the rod [28] or for polygonal robots

translating and rotating in the plane [29]. Additionally, these

ideas can be applied to other specialized cell decompositions,

or used in conjunction with a precomputed path to provide

feedback in a neighborhood of the path. In the future, we plan

to explore these avenues of research.
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