
Generation of Point-contact State Space between Strictly
Curved Objects∗

Peng Tang
IMI Lab, Dept. of Computer Science

University of North Carolina - Charlotte
Charlotte, NC 28223, USA

ptang@uncc.edu

Jing Xiao
IMI Lab, Dept. of Computer Science

University of North Carolina - Charlotte
Charlotte, NC 28223, USA

xiao@uncc.edu

Abstract— Isolated point contacts are most common between
two curved objects that do not have line segment on their
surfaces. This paper addresses how to represent concisely and
generate automatically graphs of topological contact states
made of isolated contact points between such curved objects.
Information of contact states is useful for a wide range of appli-
cations, from robotic tasks involving compliant motion to virtual
prototyping, haptic rendering, and dynamic simulation. The
approach has been implemented with an effective algorithm.

Index Terms— point-contact states, 3-D curved objects, auto-
matic generation, compliant motion

I. INTRODUCTION

Many robotic tasks involve objects in contact and com-
pliant motion and require the information of contact geom-
etry. It is often necessary to know not only the contact
configuration between two objects but also the high-level,
discrete, topological contact state that is more descriptive of
the topological and physical characteristics of contact shared
by two or more contact configurations. Contact states and
adjacency information can be captured by a contact state
graph, where each node denotes a contact state and each arc
links two adjacent contact states. Information of such a graph
can be useful for automatic assembly planning or control [9],
[13], [19], [15].

Information of contact states can facilitate planning and
executing compliant motion in general. Planning compliant
motion means planning motion on the surface of configura-
tion space obstacles (C-obstacles) [10]. This poses a major
problem because computing C-obstacles exactly in high-
dimensional space remains a formidable task to date [4]. Most
of the relevant work is limited to 3-D C-obstacles (i.e., C-
obstacles of planar objects) [1], [3], [16], [18], and only a few
concern approximation of C-obstacles of 3-D polyhedra [5],
[7]. Planning compliant motion is greatly simplified with a
known contact state graph. Here planning can be decomposed
as (1) a graph search problem to plan a sequence of contact
state transitions in the contact state graph at the high level,

∗This work is supported by the U.S. National Science Foundation under
grant IIS-#0328782.

and (2) planning compliant motion within a known contact
state and a transition to a neighboring contact state at the low-
level, which is a lower dimension and smaller scope motion
planning problem [6].

In view of compliant motion control, it is not sufficient
to know only a path of contact configurations because it
is not possible to have a compliant control law applicable
to all contact configurations, but rather it is practical to
have a stratification of compliant control strategies based
on different contact states and transitions [8], [14], i.e.,
information of a contact state graph is often necessary.

In haptic rendering and dynamic simulation (e.g., [12],
[17]), collision detection is inevitably subject to digital error.
As a result, when multiple collisions are detected as happened
at the same time during simulation, actually not all of these
collisions may be able to happen at the same time in reality.
In other words, a false contact state may be identified. A false
contact state leads to false force and dynamic effects, which
should be prevented in high-fidelity simulation. Clearly, with
a pre-determined graph of (valid) contact states, a simple
search of the graph can rule out impossible contact states.
Hence, information of a contact state graph is needed here.

There is considerable existing work concerning contact
states between polyhedral objects. For contacting polyhedral
objects, it is common to describe a contact state as a set of
primitive contacts. Each primitive contact is defined in terms
of a pair of contacting surface elements, which are faces,
edges, and vertices. One common representation [10], [5]
defines primitive contacts as point contacts in terms of vertex-
edge contacts for 2D polygons, and vertex-face and edge-
edge contacts for 3D polyhedra. Another representation [23]
uses the notion of principal contacts as primitive contacts,
where a principal contact can be a face contact, an edge
contact, or a point contact. A general approach was developed
to generate automatically graphs of contact states based on
such a notion [24]. For convex curved objects, contact states
are described similarly with each primitive contact defined in
terms of a pair of contacting curved surface elements [22].

However, if non-convex curved surfaces or curves are
present, between a pair of curved surface elements there can

()a

()b

Fig. 1. Different numbers of contact regions can be formed between the
same two contacting surfaces

be one or more than one contact region formed, resulting
different contact states with different contact constraints. Fig-
ure 1 shows two examples. To resolve the ambiguity caused
by such one-to-many mappings, one approach was to divide
curved surface elements into so-called curvature monotonic
segments [11], [20] so that between two curvature monotonic
segments only one contact can be formed (i.e., a one-to-one
mapping). However, such an approach of artificially dividing
natural surfaces leads to a large number of contact states and
does not work well for objects with space curves.

In this paper, we consider contact states consisting of iso-
lated contact points between two arbitrary, strictly curved ob-
jects, i.e., those that have no line segment on their boundary
surfaces, since such point-contact states are most common
between strictly curved objects. We use a different approach
to handle the one-to-many mapping problem illustrated in
Figure 1 and represent point-contact states concisely without
ambiguity (Section II). We next present an approach to
generate graphs of such point-contact states automatically
(Section III). We describe the implementation results in
Section IV and provide a discussion of complexity in Section
V. We conclude the paper in Section VI.

Note that in the rest of the paper, the term curved objects
means strictly curved objects.

II. REPRESENTATION OF POINT-CONTACT STATES
BETWEEN CURVED OBJECTS

We first describe the boundary elements of 3-D curved
objects, then describe a point contact, and finally introduce a
new representation to describe point-contact states between
two such objects.

A. Boundary Elements of Curved Objects

A 3-D curved object can be characterized by the following:
the boundary of such an object consists of smooth surfaces or
surface patches that can be described parametrically, which
are called faces; the intersection smooth curve segments of
two faces are called edges; and the intersection points of two
or more edges or the singular points of a surface are called
vertices. Clearly, a smooth surface patch that is not closed
is bounded by edges and vertices, and a smooth edge that is
not closed is bounded by vertices. We call the faces, edges,
and vertices of a curved object its boundary elements. For
simplicity, we use f, e and v to denote face, edge, and vertex
respectively.

B. Topological Point Contacts between Curved Objects

We define a topological point contact (PtC) between two
3-D curved objects A and B in terms of the pair of boundary
elements αA and αB that form it, denoted as αA-αB .
Moreover, a f-f type PtC is a face tangential contact between
two faces, i.e., the two faces are tangent to each other. A f-e
(or e-f) type PtC is an edge tangential contact between the
edge and the face but is not a face tangential contact. A PtC
between two edges is either an e-e-cross contact if the tangent
lines of the two edges at the contact point are not collinear
or an e-e-touch contact if the two tangent lines at the contact
point are collinear. An e-e-cross, e-e-touch, or a v-* (or *-v)
type PtC is neither a face tangential nor an edge tangential
contact because there is no face-face or face-edge pairs that
are tangential to each other; these are called non-tangential
contacts.

Figure 2 shows an example for each type of topological
point contacts between 3-D curved objects.

We further define the contact plane of f-f, f-e (or e-f), f-v
(or v-f), and e-e-cross types of point contacts as follows:
• f-f: the contact plane is the plane tangent to both faces

at the contact point.
• f-e or f-v: the contact plane is the tangent plane of the

face at the contact point.
• e-e-cross: the contact plane is the plane determined by

the two tangent lines of the two edges at the contact
point.

We define the contact line of a v-e (e-v) or an e-e-touch
type point contact as the tangent line of the edge (or edges)
at the contact point. No single contact plane or contact line
can be defined for a v-v type point contact.

C. Point-contact States between 3-D Curved Objects

As shown in Figure 1, there can be different number of
point contacts between the same two non-vertex boundary
elements of two curved objects. Therefore, we characterize a
general topological contact state between two curved objects
by revising the notion of contact formations originally defined
for polyhedral objects [23] as follows: A point contact

f f- f e e f- / - e e touch- -

e e cross- - v f f v- / - v e e v- / -

v v-

Fig. 2. The types of point contacts between two curved objects

CF e f1={()}- ,1 CF e-f e-e2={() (,)}, ,1 2

Fig. 3. Two point contact formations between two curved objects

formation(CF) between two curved objects is defined as the
set of point contacts (PtCs) formed, where the same PtC may
be formed more than once, denoted as:

CF = {(PtC1, n1), (PtC2, n2), · · ·, (PtCm, nm)}, where
ni ∈ N, N is the set of positive integers, i = 1··m.

Moreover, the cardinality of a CF is denoted as:

card(CF)= n1 + n2 + · · ·+ nm.

Figure 3 illustrates two point-contact formations between
two curved objects.

The geometrical representation of a point CF denotes the
set of relative contact configurations between the two curved
objects that satisfy the contact conditions of all the PtCs in the
CF at the same time. Generally, such a set may consist of one
or more connected regions of contact configurations, called
CF-connected regions in the configuration space. Within a
CF-connected region, there exists a motion constrained by
the CF from any contact configuration to any other one,
called CF-compliant motion. In other words, there is no
need to change the CF in moving from one configuration
to another within a CF-connected region. Thus, we define a
point-contact state between two curved objects as a single
CF-connected region of configurations, represented by the
point CF and a representative configuration in the region,
denoted as a pair <CF, C>.

D. Locally-defined Neighbor (LN) and Globally-defined
Neighbor (GN)

Two point-contact states <CFi, Ci> and <CFj , Cj> are
called neighboring point-contact states if there exists a
neighboring transition motion as a CFi-compliant motion
succeeded by a transition to a CFj-compliant motion from
Ci to Cj , and CFi and CFj are called neighboring point-
contact formations.

If two single-point CFs, CFi = {(PtCi, 1)} and CFj =
{(PtCj , 1)}, where PtCi 6= PtCj , are neighboring point
contact formations, then PtCi and PtCj are called neighbor-
ing point contacts. Moreover, two neighboring point contacts
PtCi =αi

A-αi
B and PtCj =αj

A-αj
B satisfies one of the

following conditions:

• αi
A is αj

A and αi
B is adjacent to αj

B ,
• αi

B is αj
B and αi

A is adjacent to αj
A.

We can now further distinguish two kinds of neighboring
point-contact states based on the topological information of
the neighboring CFs. Given two neighboring point contact
states <CFi, Ci> and <CFj , Cj>, <CFj , Cj> is a locally-
defined neighbor (LN) of <CFi, Ci> if the following are
satisfied:

• card(CFj) ≤ card(CFi), and
• every PtC in CFj either belongs to CFi or is a neigh-

boring PtC of a PtC in CFi.

Accordingly, CFj is called the LN CF of CFi. If
card(CFj) < card(CFi), then CFi is a globally-defined
neighbor (GN) of CFj , <CFi, Ci> is a GN point-contact
state of <CFj , Cj>, and <CFj , Cj> is a LN point-contact
state of <CFi, Ci>. Figure 3 gives an example, where CF1

is a LN CF of CF2, and CF2 is a GN CF of CF1.
The reason that we differentiate neighboring point-contact

states into LNs and GNs is that given a CF, the topological
information of its LNs can be derived directly from its own
topological definition: from the PtCs in the CF, one can obtain
the possible PtCs of the LNs of the CF. This is a very useful

property for automatic generation of point-contact states (see
next section).

The point-contact state space (of the contacting objects)
can be defined as a point-contact state graph G, where each
node denotes a valid point-contact state <CF, C>, and each
link connects two neighboring point-contact states.

III. GENERATION OF POINT-CONTACT STATE GRAPHS

Our approach is to generate special subgraphs of the point-
contact state graph G automatically and to merge these sub-
graphs automatically. This approach sounds similar to the one
used for polyhedral objects [24], but the special subgraphs
considered here are different, and the details of generation
are different due to different subgraphs and distinct natures
of curved objects.

Each special subgraph we generate is an undirected graph
consisting of a seed point-contact state <CFs, Cs>, its LN
point-contact states, their subsequent LN point-contact states,
and so on, which we call a LN graph of <CFs, Cs>. Starting
from the seed point-contact state <CFs, Cs>, the LN graph
can be grown by repeatedly obtaining LN point-contact states
until all the LN point-contact states have been generated in
a breadth-first search. In the loop for obtaining a LN point-
contact state, there are two key steps:

(1) From a known point-contact state <CFi, Ci>, hypothe-
size its LN CFs based on the topological information of CFi,
and

(2) determine if a hypothesized LN CF, CFj , is valid or
not by checking if there is a feasible neighboring transition
motion from Ci under CFi to some configuration Cj under
CFj . If such a feasible motion exists, then <CFj , Cj> is a
valid LN point-contact state of <CFi, Ci>.

We explain both steps below.

A. Hypothesizing Locally-defined Neighboring (LN) Point-
Contact Formations (CFs)

For a CF with a single point contact, CFi = {(PtCi, 1)},
to obtain a hypothesized LN CF of CFi is to change PtCi

to one of its neighboring PtCs.
For a CF with multiple point contacts, i.e., card(CF) ≥ 2,

we use the following action sets to hypothesize its possible
LN CFs:
• Action set 1: keep some PtCs and change some other

PtCs to their neighboring PtCs.
• Action set 2: keep some PtCs and remove some PtCs.

B. Neighboring Transition Motions

Between two neighboring contact states of two strictly
curved objects A and B, a neighboring transition motion can
be one of the following three types of compliant motions or
certain combinations of these types of object A with respect
to object B:

slidingA

s
li

d
in

g
B

com
bination

of

slidingA
and

slidingB

com
bin

ed
sl

id
in

g

and
ro

ta
ti

on

pure rotation

Fig. 4. Types of neighboring transition motions.

• slidingA, where the contact points of A do not change
but the contact points of B changes (Figure 4);

• slidingB, where the contact points of B do not change
but the contact points of A changes (Figure 4);

• pure rotation about an axis through a contact point,
which is usually either on or normal to the contact plane
(if the contact plane exists) (Figure 4);

Note that neither slidingA nor slidingB are pure rotations.
Neighboring transition motions can also be of the follow-

ing types of combined motions:
• a combined slidingA and slidingB, where the contact

points of A and B both change (note that if the contact
points of A and B change in equal displacements, the
motion is in fact a rolling motion) (Figure 4);

• a combined sliding and rotation motion, where a
slidingA or a slidingB motion or a combine sliding
is combined with a pure rotation (Figure 4);

In order to implement a neighboring transition motion, we
need to set up a good moving task frame. The origin of the
task frame should be at a contact point. For a PtC with a
contact plane, the x − y plane is along the contact plane

and the z axis is along the normal direction of the plane.
Moreover, using the parametric representation of a face s =
s(u, v), either the x or the y axis can be along one parametric
derivative vector su or sv . For an e-e-cross PtC, either the
x or the y axis can be along the tangent line of one of the
edges.

For a PtC with a contact line, the x axis is along the contact
line, the z axis is on the plane formed by the contact line
and that edge at the contact point and is normal to the edge.
In all other cases, the axes of the task frame can be set based
on a neighboring PtC that the transition is aimed at, which
should have either a contact plane or a contact line.

Each slidingA and slidingB can be generally viewed as
an integral of instantaneous pure translation ds combined
with an instantaneous pure rotation dθ, and the results can
be implemented by a summation of digitized small motion
steps, and each small motion step is implemented as a
small translation ∆s combined with a small rotation ∆θ.
Specifically, by digitizing the u and v parameters of a face,
we get a grid of points on the face. Each small motion along
the face is implemented as a small translation from one grid
point p to an adjacent grid point q on the face followed by a
small rotation along an axis through q on the tangent plane
and orthogonal to the translation vector from p to q. The
angle ∆θ of the rotation is determined by the tangent plane
T1 at p and the tangent plane T2 at q. Similar strategy can
be used to implement a small motion step along an edge.

Each combined motion can be similarly implemented as
an integral (or summation) of small motion steps such that
each small step consists of one small single-type motion δ1

followed by another small single-type motion δ2 etc.

C. Checking the Feasibility of Neighboring Transition Mo-
tions

Given a valid point-contact state <CFi, Ci> and a hy-
pothesized LN CF CFj between two 3-D curved objects A
and B, checking if there is a feasible neighboring transition
motion from Ci to a configuration Cj of CFj is to determine
whether or not <CFj , Cj> is a valid LN CF of CFi. Any
neighboring transition may involve remove, keep, or change
one or more PtCs of CFi. The change action is to change a
PtC to its neighboring PtCs.

The types of possible compliant motions (among the four
types introduced in the previous subsection) to change a
point-contact PtCi =αi

A-αi
B , to a neighboring point-contact,

PtCj , depends on the types of PtCi and PtCj as well as
which boundary element in PtCi is changed from PtCi to
PtCj :
• Between (1) a non-tangential contact and a face or edge

tangential contact, or (2) a face tangential contact and
an edge tangential contact, a pure rotation is necessary
for the transition. A sliding motion may also be needed.

• Between two non-tangential contacts, a sliding motion
is necessary.

• If αi
A has to be changed to an adjacent boundary

element, a slidingB motion is needed. Otherwise, if αi
B

has to be changed to an adjacent boundary element, a
slidingA motion is needed.

The types of possible compliant motions to keep or
maintain a point-contact PtCi =αi

A-αi
B depends on the type

of PtCi:
• To keep a v-v PtC, the only possible motion is a pure

rotation.
• To keep a v-e/e-v or v-f/f-v PtC, if αi

A is a v, the possible
motions are pure rotation, slidingA, or combined
slidingA and rotation motions; else if αi

B is a v,
the possible motions are pure rotation, slidingB, or
combined slidingB and rotation motions.

• To keep an e-f/f-e PtC, the possible motions are pure
rotation (about the tangent line of the edge at the con-
tact point), slidingA, slidingB combined slidingA and
slidingB, and combined sliding and rotation motions.
If αi

A is an e, slidingB should be one dimensional along
the edge, else if αi

B is an e, slidingA should be one
dimensional along the edge.

• To keep a f-f PtC, the possible motions are slidingA,
slidingB, combined slidingA and slidingB, pure ro-
tation about an axis normal to the tangent plane and
combined sliding and rotation motions.

• To keep an e-e-touch PtC, the possible motions are
one dimensional slidingA, slidingB, combined slidingA
and slidingB along the edges, pure rotation about the
tangent line and combined sliding and rotation.

• To keep an e-e-cross PtC, the possible motions are
slidingA, slidingB, combined slidingA and slidingB
and pure rotation about the contact normal.

If CFi and CFj involve a face, sometimes there can be
an infinite number of possible neighboring transition motions.
For example, let CFi = {(fA−fB , 1)}, i.e., a CF with a single
face-face PtC, and CFj = {(fA − eB , 1)} be a hypothesized
LN CF, where eB is an edge of face fB . There can be an
infinite number of possible paths of neighboring transition
motions in the type of sliding A along fB to reach (any
point on) eB . Our method in such a case is to enumerate
possible paths until a feasible path is found.

In general, if a neighboring transition from state
<CFi, Ci> to a hypothesized LN state <CFj , Cj> requires
keeping some PtCs while changing or removing some other
PtCs, our strategy is to try to realize a keep action of one
PtC. If multiple PtCs need to be kept, we prefer to pick a PtC
that does not involve a face or is not of e-e-cross type so that
only a finite number of motions are possible to maintain it.
Here, the preference is for speeding up the keep action when
there are many options to do it. With the chosen PtC, we
construct a possible compliant motion of A to maintain it (the
possible types are listed above). If the motion is possible in
all small (digital) steps without causing additional collisions

and is able to change or remove some other PtC(s) that the
transition also require, the motion is considered feasible, and
the hypothesized point-contact state is considered a valid LN
state.

If no possible motion is feasible in any case, the hypoth-
esized CFj is discarded as not a valid LN CF of CFi, and
there is no corresponding LN point-contact state <CFj , Cj>
of <CFi, Ci>.

IV. IMPLEMENTATION

We have implemented the general algorithm as described
in Section III for automatic generation of an LN graph from
a seed point-contact state between two arbitrary, (strictly)
curved objects A and B. The algorithm is implemented in
Microsoft Visual C++ 6.0. We currently used the OPCODE
collision detection library [21] for detecting collisions other
than the desired point contacts in feasibility checking of
neighboring transition motions. Note that since all we need to
know here is whether a collision happens beyond the desired
point contacts and is not how a collision happens, a mesh-
based detection package serves the purpose well. Other mesh-
based collision detection packages could be used too. On
the other hand, it should be emphasized that our approach
generate exact point contacts from contacting smooth surface
features directly without mesh-based approximation.

Figure 5 and Figure 7 show two examples that our algo-
rithm applied. In both examples, object B is the same, and its
surface consists of three different smooth surface patches: the
upper part is an elliptic paraboloid concave face, the middle
one is a part of a convex sphere, the lower part is an elliptic
paraboloid convex face, and the corresponding equations are:

4x2 + 4y2 − 10.07047z = 15.75982,
−1.56495 ≤ z ≤ 2.43505, and

x2 + y2 + z2 = 16, 0 ≤ z ≤ 2.43505, and
x2 + y2 − 4z = 16, −4 ≤ z ≤ 0.

In Figure 5, object A has an ellipsoid surface with the
following equation:

225x2 + 100y2 + 36z2 = 225

In Figure 7, object A has a surface consists of two elliptic
paraboloid convex faces that meet on one edge, with the
following equations:

8x2 + 8y2 − 9z = 18, −2 ≤ z ≤ 0, and

8x2 + 8y2 + 9z = 18, 0 ≤ z ≤ 2

In order to have a clear observation, the objects are displayed
with transparency, and edges are drawn in solid lines. e’s and
f’s label the edges and faces of A and B. The seed point-
contact states for the two examples are shown in Figure 5b
and Figure 7b respectively, with the contact formations
labeled. In Figure 5b, the seed point-contact state shows a

Object A

x

y

z

fA

Object B

x

y

z

fB0

fB1

fB2

eB0

eB1

()a

()b

CF f fs A B0={(-)}, 2

Fig. 5. Example 1

case where two point contacts are between the same pair of
boundary elements.

For the example in Figure 5, our algorithm has generated,
from the seed contact state CSs, a LN graph of 6 valid
states including the seed. Figure 6 displays the LN graph.
The graph is in fact the complete point-contact state graph
for this example. For the example in Figure 7, from CSs,
our algorithm has generated its LN graph consisting of 18
valid nodes automatically, which is also the complete point-
contact state graph for that example. Figure 8 displays some
valid point-contact states generated.

From both examples we can see that because a seed point-
contact state is chosen to maximize the number of point
contacts, and because there is one such state globally in each
case, a complete point-contact state graph is generated from
the seed. This is a very nice property of an LN graph1. If
a complete point-contact state graph requires the merge of
two or more LN graphs, the minimum number of necessary
seed point-contact states (or LN graphs) is the number of
local maxima states, i.e., states that have the most number of
point contacts comparing to all neighboring states. A local
maximum state usually involves concave elements in contact.

The program is executed on a Pentium 4, 2.8Ghz machine
with 1024MB RAM. The running time for Example 1 (in
Figure 5 and Figure 6) is 11.272 seconds. The running time
Example 2 (in Figure 7 and Figure 8) is 27.364 seconds.

1From the same seed state, an LN graph is larger than a goal-contact
relaxation (GCR) graph [24].

CF1={(- }f f
A B0

1,) CF f e2 A B0={(- }1,)

CF f f3 A B1={(- }1,) CF f e4 A B2={(- }1,)

CF f f5 A B2={(- }1,)

CSs CS1 CS2

CS3
CS4

CS5

Fig. 6. Point-contact states generated in Example 1

Object A

x

y

z

fA0

fA1

eA0

Object B

x

y

z

fB0

fB1

fB2

eB0

eB1

()a

()b

CF f f f fs A0 B0 A1 B0={(- (- }1 1, , ,))

Fig. 7. Example 2

CF1={(- }f f
A0 B0

1), CF f f e f2 A1 B0 A0 B0={(- (- }1 1)), , ,

CF f f3 A1 B0={(- }1), CF f e4 A0 B0={(- }1),

CF e f5 A0 B0={(- }1), CF f e6 A1 B0={(- }1),

CF e e7 A0 B0={(- }1), CF f f8 A0 B1={(- }1),

CSs

CS1
CS2 CS3

CS4 CS6
CS5

CS7
CS8

Fig. 8. Some point-contact states generated in Example 2

V. DISCUSSION OF COMPLEXITY

The complexity of the generation algorithm for a LN
graph mainly depends on the total number of hypothesized
nodes in the LN graph, the number of collision checks in
constructing a neighboring transition motion, and the time
for each collision detection query during the process of
feasibility checking.

For two contacting 3-D curved objects A and B, we
use NA and NB to represent the total number of boundary
elements of A and B respectively, and we use p to indicate
the maximum number of valid contact formations between a
single pair of elements αA and αB (which could be single-
PtC and multiple-PtC CFs). Note that p depends on the
geometric characteristics of αA and αB related to convexity
and concavity. An upper bound on the total number of
hypothesized point-contact states with no more than three
PtCs is:

pNANB + p2

(
2

NANB

)
+ p3

(
3

NANB

)

which is of O(N3
AN3

Bp3). In practice, the actual number
of hypothesized point-contact states is much, much smaller.
Note that for m > 3, an m-PtC CF is likely to contain
redundancy in contact constraints because an object can be
usually immobilized by three contact points. Therefore, an
LN CF of a m-PtC CF (m > 3) is usually a two-PtC CF or
a single-PtC CF.

Now, for a neighboring transition motion, if it takes on
average k collision checks (among all step motions), and
since the time for each collision detection query is Topcode

by OPCODE2, its average time cost is kTopcode.

VI. CONCLUSIONS

In this paper, we have provided a general representation
of point-contact states between two 3-D curved objects and a
systematic algorithm for automatic generation of such point-
contact state space as point-contact state graphs. Automatic
generation of point-contact state graphs between curved
objects is not only highly desirable because it is tedious
to generate such states manually, but also necessary since
many point-contact states cannot be imagined or drawn easily.
Unlike contact states between polyhedral objects, it is often
much less obvious to human eyes whether a point-contact
state is actually possible or not between two arbitrary 3-D
curved objects.

We plan to continue this research by extending the ap-
proach to handle more general and complicated objects with
more types of contact states, such as objects with both curved
and flat surfaces.

2From [21], for all contacts, OPCODE provides O(1) queries most of the
time. In the worst case, it will not be over O(nlogn), where n is the number
of mesh triangles [2], [21].

REFERENCES

[1] F. Avnaim, J. D. Boissonnat, B. Faverjon, “A practical exact motion
planning algorithm for polygonal objects amidst polygonal obstacl es,”
Proc. IEEE Int. Conf. Robotics & Automation, pp. 1656-1661, April
1988.

[2] G. van den Bergen, “Collision Detection in Interactive 3D Environ-
ments,” Morgan Kaufmann Publishers, 2004.

[3] R. Brost, “Computing Metric and Topological Properties of
Configuration- Space Obstacles”, Proc. IEEE Int. Conf. Robotics &
Automation, pp. 170-176, May 1989.

[4] J.F. Canny, “The Complexity of Robot Motion Planning,” MIT Press,
1988.

[5] B. Donald, “On Motion Planning with Six Degrees of Freedoms:
Solving the Intersection Problems in Configuration Space,” IEEE Int.
Conf. Robotics & Automation,pp. 536-541, 1985.

[6] X. Ji and J. Xiao, “Planning Motion Compliant to Complex Contact
States,” International Journal of Robotics Research, 20(6):446-465,
June 2001.

[7] L. Joskowicz, R. H. Taylor, “Interference-Free Insertion of a Solid
Body Into a Cavity: An Algorithm and a Medical Application,” Int. J.
Robotics Res., 15(3):211-229, June 1996.

[8] T. Lefebvre, “Contact Modeling, Parameter Identification and Task
Planning for Autonomous Compliant Motion using Elementary Con-
tacts,” Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium,
May 2003.

[9] T. Lefebvre, J. Xiao, H. Bruyninckx, G. De Gersem, “Active Compliant
Motion: A Survey,” Advanced Robotics, 19(5):479-500, July 2005.

[10] T. Lozano-Pérez, “Spatial Planning: A Configuration Space Approach,”
IEEE Trans. Comput., C-32(2):108-120, 1983.

[11] Q. Luo, E. Staffetti, and J. Xiao, “Representation of Contact States
between Free-Form Objects,” IEEE Int. Conf. Robotics & Automation,
pp. 3589-3595, New Orleans, April 2004.

[12] Q. Luo and J. Xiao, “Physically Accurate Haptic Rendering with
Dynamic Effects,” IEEE Computer Graphics and Applications, Special
Issue - Touch-Enabled Interfaces, Nov/Dec. 2004.

[13] B. J. McCarragher, “Task Primitives for the Discrete Event Modeling
and Control of 6-DOF Assembly Tasks,” IEEE Trans. Robotics and
Automation, 12(2):280-289, April 1996.

[14] W. Meeussen, J. De Schutter, H. Bruyninckx, J. Xiao, and E. Staffetti,
“Integration of Planning and Execution in Force Controlled Compliant
Motion,” IEEE/RSJ International Conference on Intelligent Robots and
Systems, Edmonton, Alberta, Canada, August 2005.

[15] F. Pan and J.M. Schimmels, “Efficient Contact State Graph Generation
for Assembly Applications,” IEEE Int. Conf. Robotics & Automation,
pp. 2591-2598, Taipei, Taiwan, September 2003.

[16] J. Rosell, L. Basañez, and R. Suárez, “Determining Compliant Motions
for Planar Assembly Tasks in the Presence of Friction,” Proc. IEEE/RSJ
Int. Conf. on Intell. Robots & Sys., pp. 946-951, 1997.

[17] D. Ruspini and O. Khatib, “Collision/Contact Models for Dynamic
Simulation and Haptic Interaction,” Proc. ninth Int. Symp. Robotics
Research, pp. 185-194, Oct. 1999.

[18] E. Sacks, C. Bajaj, “Sliced Configuration Spaces for Curved Planar
Bodies,” Int. J. Robotics Res., 17(6):639-651, June 1998.

[19] R. H. Sturges, and S. Laowattana, “Fine Motion Planning through
Constraint Network Analysis,” IEEE Int. Conf. Assembly and Task
Planning, pp. 160-170, Pittsburgh, August 1995.

[20] P. Tang and J. Xiao, “Automatic Generation of Contact State Graphs
based on Curvature Monotonic Segmentation,” to appear in IEEE Int.
Conf. Robotics & Automation, Orlando, May 2006.

[21] P. Terdiman, http://www.codercorner.com/Opcode.htm..
[22] T.V. Thompson II and E. Cohen, “Direct Haptic Rendering of Complex

Trimmed Nurbs Models,” In Proceedings of Symposium on Haptic
Interfaces, ASME, 1999.

[23] J. Xiao, “Automatic Determination of Topological Contacts in the
Presence of Sensing Uncertainties,” IEEE Int. Conf. Robotics &
Automation, pp. 65-70, Atlanta, May 1993.

[24] J. Xiao and X. Ji, “On Automatic Generation of High-level Contact
State Space,” International Journal of Robotics Research, (and its first
multi-media extension issue http://www.ijrr.org/), 20(7):584-606, July
2001.

