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Abstract— For robots of increasing complexity such as hu-
manoid robots, conventional identification of rigid body dynamics
models based on CAD data and actuator models becomes
difficult and inaccurate due to the large number of additional
nonlinear effects in these systems, e.g., stemming from stiff
wires, hydraulic hoses, protective shells, skin, etc. Data driven
parameter estimation offers an alternative model identification
method, but it is often burdened by various other problems,
such as significant noise in all measured or inferred variables
of the robot. The danger of physically inconsistent results also
exists due to unmodeled nonlinearities or insufficiently rich data.
In this paper, we address all these problems by developing a
Bayesian parameter identification method that can automatically
detect noise in both input and output data for the regression
algorithm that performs system identification. A post-processing
step ensures physically consistent rigid body parameters by
nonlinearly projecting the result of the Bayesian estimation onto
constraints given by positive definite inertia matrices and the
parallel axis theorem. We demonstrate on synthetic and actual
robot data that our technique performs parameter identification
with 5 to 20% higher accuracy than traditional methods. Due
to the resulting physically consistent parameters, our algorithm
enables us to apply advanced control methods that algebraically
require physical consistency on robotic platforms.

I. INTRODUCTION

Advanced robot control algorithms usually rely on model-

based control techniques in order to accomplish a desired level

of accuracy and compliance. Typical examples include com-

puted torque control, inverse dynamics control and operational

space control [1], [2]. Depending on their sophistication, these

model-based controllers also have different levels of demands

on the quality of the identified robot model. For instance,

computed torque control is generally rather insensitive to

modeling errors, while operational space control, with its

explicit use of both the rigid body dynamics inertia matrix and

the centripetal/Coriolis force vector, degrades significantly in

face of modeling errors. Thus, accurate model identification

is a highly important topic for advanced robot control, and

many modern robotics applications rely on it (e.g., as in haptic

robotic devices, robotic surgery and the safe application of

compliant assistive robots in human environments).

Ideally, system identification can be performed based on the

CAD data of a robot provided by the manufacturer, at least

in the context of rigid body dynamic systems—which will be

the scope of this paper. However, many modern light-weight

robots such as humanoid robots have significant additional

nonlinear dynamics beyond the rigid body dynamics model,

due to actuator dynamics, routing of cables, use of protective

shells and other sources. In such cases, instead of trying to

explicitly model all possible nonlinear effects in the robot,

empirical system identification methods appear to be more

useful. Under the assumption that a rigid body dynamics

(RBD) model is sufficient to capture the entire robot dynamics,

this problem is theoretically straightforward as all unknown

parameters of the robot such as mass, center of mass and

inertial parameters appear linearly in the rigid body dynamics

equations [3]. Hence, after an appropriate re-arrangement of

the RBD equations of motion, parameter identification can be

performed with linear regression techniques.

Several problems, however, make this seemingly straight-

forward empirical RBD system identification approach more

challenging. Firstly, for high dimensional robotic systems, it is

not easy to generate sufficiently rich data so that all parameters

will be properly identifiable. Secondly, sensory data collected

from a robot is noisy. Noise sources exist in both input

and output data, and this effect is additionally amplified by

numerical differentiation done to obtain derivative data from

the sensors. Traditional linear regression techniques are only

capable of dealing with output noise, and the presence of input

noise introduces a persistent bias to the regression solution.

Digital filtering of the data can eliminate some noise, but it

often eliminates important structure as well. Techniques exist

such as Total Least Squares (TLS) [4], [5], otherwise known as

orthogonal least-squares regression [6], to perform parameter

estimation, but it assumes that the variances of input noise and

output noise are the same [7]. In real-world systems where this

assumption does not hold, the resulting parameter estimates

will be biased [8]. Thirdly, there is no mechanism in the

regression problem for RBD model identification that ensures

the identified parameters are physically plausible. Particularly

in the light of insufficiently rich data and nonlinearities beyond

the RBD model, one often encounters physically incorrectly

identified parameters such as negative values on the diagonal

of an inertial matrix. Using physically incorrect data in model-

based control leads to dangerously unstable controllers. The

final problem with empirical RBD system identification is that

some RBD parameters of a robot are not identifiable at all [3].



As a result, the regression problem for RBD parameter estima-

tion is almost always numerically ill-conditioned and bears the

danger of generating parameter estimates that strongly deviate

from the true values, despite a seemingly low error fit of the

data.

Various methods exist to deal with some of the problems

mentioned above such as regression based on singular-value

decomposition (SVD), ridge regression to cope with the ill-

conditioned data [9], or TLS and orthogonal-least squares

to address input noise [6]. Nevertheless, a comprehensive

approach to address the entire set of issues has not been

suggested so far. Recent work such as [10] has addressed

the problem of input noise, but in the context of system

identification of a time-series, while ignoring the problems as-

sociated with ill-conditioned data in high dimensional spaces.

In this paper, we suggest a Bayesian estimation approach to

the RBD parameter estimation problem that has all the desired

properties:

• Explicitly identifies input and output noise in the data

• Is robust in face of ill-conditioned data

• Detects non-identifiable parameters

• Produces physically correct parameter estimates

A key component of our technique is a recently developed

Bayesian machine learning framework that enables us to recast

ordinary least squares (OLS) regression in a more advanced

algorithm for input noise clean-up and numerical robustness,

especially for very high dimensional estimation problems. A

post-processing step ensures that the rigid body parameters are

physically consistent by nonlinearly projecting the results of

the Bayesian estimate onto the constraints. We will sketch the

derivation of this algorithm and compare its results with other

approaches in the context of identification of RBD parameters

on synthetic data and on a robotic vision head. On average, our

algorithm achieves a 5 to 20% improvement when compared

to other standard techniques for the identification of RBD

parameters.

The remaining paper is structured as follows. First, we

motivate the problem of input noise in linear regression

problems and outline possible solutions. Then, based on these

insights, we develop a novel estimation technique that incor-

porates input noise detection and employs Bayesian regular-

ization methods to ensure robustness of the algorithm for ill-

conditioned data. Third, we add a post-processing step to our

algorithm that enforces physical correctness of the estimated

RBD parameters. Finally, we evaluate our approach for RBD

parameter estimation on synthetic data, on a 7 degree-of-

freedom (DOF) robotic vision head and on a 10 DOF robotic

anthropomorphic arm.

II. HIGH DIMENSIONAL REGRESSION WITH INPUT NOISE

Before describing our solution to RBD parameter identifica-

tion, it is useful to examine some of the problems associated

with traditional estimation methods. For robot systems with

many DOFs, the linear regression problem for identifying

RBD parameters has hundreds of dimensions, i.e., at least 10
parameters for every DOF. Hence, estimation algorithms need

to be suitable for this dimensionality. The re-arrangement of

the RBD equations for parameter estimation creates a matrix

where the input vectors x are arranged in the rows of the

matrix X and the corresponding scalar outputs y are the

coefficients of the vector y. A general model for such linear

regression with noise-contaminated input and output data is:

y =
d

∑

m=1

wzmtm + εy

xm = wxmtm + εxm

(1)

where d is the number of input dimensions, t is noiseless input

data composed of tm components, wz and wx are regression

vectors composed of wzm and wxm components respectively,

and εy and εx are additive mean-zero noise. Only X and y
are observable. Note that if the input data is noiseless (that

is, xm = wxmtm) and if we set wxm = 1, then we obtain

the familiar linear regression equation of y = wz
Tx+ εy for

noiseless input data and noisy output data. The slightly more

general formulation above will be useful in preparing our novel

estimation algorithm.

The OLS estimate of the regression vector βOLS is

(XTX)−1XTy, where βOLS is composed of the parameters

wz and wx, as discussed in the following paragraph. The

first major issue with OLS regression in high dimensional

spaces is that the full rank assumption of (XTX)−1 is often

violated due to underconstrained datasets. For more than 500
input dimensions, the matrix inversion required in OLS also

becomes rather expensive. Ridge regression can fix the prob-

lem of ill-conditioned matrices by introducing an uncontrolled

amount of bias. There exist also alternative methods to invert

the matrix more efficiently [11], [12], as for instance through

singular value decomposition factorization (e.g., using the

Matlab pinv() function). Nevertheless, all these methods are

unable to model noise in input data and require the manual

tuning of meta parameters, which can strongly influence the

quality of the estimation results. Moreover, in the case of RBD

parameter estimation, there is no mechanism that ensures the

parameter estimates are physically consistent.

If we examine Eq. (1), we see that if the input data is

noiseless (that is, xm = wxmtm), the true regression vector

βtrue will be composed of the coefficients wzm/wxm. This is

exactly what the OLS estimate of the regression vector will

be for noiseless input data. However, when the input data

is contaminated with noise, it can be shown that the OLS

estimate will be βOLS,noise = γβtrue, where 0 < γ < 1,

where its exact value depends on the amount of input noise.

Thus, OLS regression underestimates the true regression vector

βtrue. For the application of RBD parameter estimation, we

obtain a persistent bias in the model identification such that

the model is inaccurate, and this is a problem that cannot be

fixed by simply adding more data.

Intentionally, the input/output noise model formulation in

Eq. (1) was chosen such that it coincides with a version of

a well-known algorithm in the statistical learning community

called Factor Analysis [13]. The intuition of this model is
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(a) Joint Factor Analysis (JFA)
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(b) A modified model of JFA for
efficient estimation
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(c) A Bayesian version of JFA

Fig. 1. Graphical Models for Noisy Linear Regression. Random variables are in circular nodes, observed random variables are in double circles and point
estimated parameters are in square nodes. d is the total number of input dimensions while N is the total number of samples in the dataset.

given in Figure 1(a): every observed input xim and output yi
is assumed to be generated by a set of hidden variables tim
and contaminated with some noise, exactly as given in Eq. (1).

The graphical model in Figure 1(a) compactly describes the

full multi-dimensional system: the variables xim, tim, wxm
and wzm are duplicated d times for the d input dimensions of

the data—represented by the inner plate containing four nodes.

The outer plate shows that there are N samples of observed

{x, y} data. The goal of learning is to find the parameters

wxm and wzm, which can only be achieved by estimating

the hidden variables tim and all noise processes as well. For

technical reasons, it needs to be assumed that all tim follow

a normal distribution with mean zero and unit variance, i.e.,

tim ∼ Normal(0, 1), such that all parameters of the model are

well-constrained. The specific version of factor analysis for

regression depicted in Figure 1(a) is called joint-space Factor

Analysis or Joint Factor Analysis (JFA), as both input and

output variables are actually treated the same in the estima-

tion process, i.e., only their joint distribution matters. While

Joint Factor Analysis is well suited for modeling regression

models with input noise, it does not handle ill-conditioned

data very well and is computationally very expensive for high

dimensions.

In the following section, we will develop a Bayesian treat-

ment of Joint Factor Analysis that is robust to ill-conditioned

data, automatically detects non-identifiable parameters and,

due to some post-processing, produces physically consistent

parameters for RBD—all in a computationally efficient way.

III. BAYESIAN PARAMETER ESTIMATION OF NOISY

LINEAR REGRESSION

Figure 1 demonstrates the successive modifications of the

graphical model needed to derive a Bayesian version of Joint

Factor Analysis regression. As a first step, we introduce the

hidden variables zim such that zim = wzmtim. This trick

was introduced by [14] and allows us to avoid any form of

matrix inversion in the resulting learning algorithm. With this

modification, the noisy linear regression model in Eq. (1) is

modified to become:

yi =
d

∑

m=1

zim + εy (2)

Due to the hidden variables zim and tim, we formulate the

estimation of all open parameters as a maximum likelihood

estimation problem using the Expectation-Maximization (EM)

algorithm [15]. For this purpose, the following standard as-

sumptions about the probability distributions of the random

variables are made:

yi ∼ Normal(1T zi, ψy)

zim ∼ Normal(wzmtim, ψzm)

xim ∼ Normal(wxmtim, ψxm)

tim ∼ Normal(0, 1)

where 1 = [1, 1, ...1]T , zi is a d by 1 vector, wz is a d
by 1 vector composed of wzm elements and wx, ψz, and

ψx are similarly composed of wxm, ψzm and ψzm elements,

respectively. As Figure 1(b) shows, the regression coefficients

wzm are now behind the fan-in to the output yi. This decou-

ples the input dimensions and generates a learning algorithm

that operates with O(d) computational complexity, instead of

O(d3) as in traditional Joint Factor Analysis.

The efficient maximum likelihood formulation of Joint

Factor Analysis is, however, still vulnerable to ill-conditioned

data. Thus, we introduce a Bayesian layer on top of this model

by treating the regression parameters wz and wx probabilis-

tically to protect against overfitting, as shown in Figure 1(c).

To do this, we introduce so-called “precision” variables αm
over each regression parameter wzm. The same αm is also

used for each wxm. As a result, the regression parameters

are now distributed as follows: wzm ∼ Normal(0, 1/αm) and

wxm ∼ Normal(0, 1/αm), where αm takes on a Gamma

distribution. The rationale of this Bayesian modeling technique

is as follows. The key quantity that determines the relevance of

a regression input is the parameter αm. A priori, we assume

that every wzm has a mean zero distribution with variance

1/αm. If the value of an αm turns out to be very large after

all model parameters are estimated, then the corresponding

posterior distribution of wzm must be sharply peaked at zero,

thus giving strong evidence that wzm = 0 and that the

input tm contributes no information to the regression model.

If an input tm contributes no information to the output,

then it is also irrelevant how much it contributes to xim.

Hence, the corresponding inputs xm could be treated as pure

noise. Coupling both wzm and wxm with the same precision



variable αm achieves this effect. In this way, the Bayesian

approach automatically detects irrelevant input dimensions and

regularizes against ill-conditioned datasets.

Even with the Bayesian layer added, the entire regression

problem can be treated as an EM-like learning problem [16].

Given the data D = {xi, yi}
N

i=1
, our goal is to maximize the

log likelihood log p(y|X), which is often called an “incom-

plete” log likelihood as all hidden probabilistic variables are

marginalized out. However, due to analytical problems, we

do not have access to this incomplete likelihood, but rather

only to a lower bound of it. This lower bound is based on

an expected value of the so-called “complete” data likelihood,

〈log p(y,Z,T,wz,wx, α, |X)〉, formulated over all variables

of the learning problem, where:

log p(y,Z,T,wz,wx, α, |X)

=

N
∑

i=1

log p(yi|zi) +

N
∑

i=1

d
∑

m=1

log p(zim|wzm, tim)

+
N

∑

i=1

d
∑

m=1

log p(xim|wxm, tim) +
N

∑

i=1

d
∑

m=1

log p(tim)

+

d
∑

m=1

log {p(wzm|αm)p(αm)}

+

d
∑

m=1

log {p(wxm|αm)p(αm)}

The expectation of this complete data likelihood should be

taken with respect to the true posterior distribution of all hid-

den variables Q(α,wz,wx,Z,T). Unfortunately, this is an an-

alytically intractable expression. Instead, a lower bound can be

formulated using a technique from variational calculus where

we make a factorial approximation of the true posterior in

terms of: Q(α,wz,wx,Z,T) = Q(α)Q(wz)Q(wx)Q(Z,T).
While losing a small amount of accuracy, all resulting pos-

terior distributions over hidden variables become analytically

tractable and have the following distributions:

yi|zi ∼ Normal(1T zi, ψy)

zim|wzm ∼ Normal(wzmtim, ψzm)

wzm|αm ∼ Normal(0, 1/αm)

wxm|αm ∼ Normal(0, 1/αm)

αm ∼ Gamma(aαm
, bαm

)

As a final result, we now have a mechanism that infers the

significance of each dimension’s contribution to the observed

output y and observed inputs x. The resulting EM update

equations are list in the Appendix. The final regression solution

regularizes over the number of retained inputs in the regression

vector, performing a functionality similar to Automatic Rele-

vance Determination (ARD) [17]. Notably, the EM updates

have a computation complexity of O(d) per EM iteration,

where d is the number of input dimensions, instead of the

O(d3) of Joint Factor Analysis that arises due to a matrix

inversion. The final result is an efficient Bayesian algorithm

that is robust to high dimensional ill-conditioned noisy data.

A. Inference of Regression Solution

Estimating the rather complex probabilistic Bayesian model

for Joint Factor Analysis reveals distributions and mean values

for all hidden variables. One additional step, however, is

required to infer the final regression parameters, which, in

our application, are the RBD parameters. For this purpose, we

consider the predictive distribution p(yq|xq) for a new noisy

test input xq and its unknown output yq. We can calculate

〈yq|xq〉, the mean of the distribution associated with p(yq|xq),
by conditioning yq on xq and marginalizing out all hidden

variables to obtain:

p(yq|xq,X,Y) =

∫ ∫

p(yq,Z,T|xq,X,Y)dZdT

where X and Y are the data used for training. We can infer

the value of the regression estimate b̂, since 〈yq|xq〉 = b̂Txq.

Since an analytical solution for the integral above is only

possible for the probabilistic Joint Factor Analysis model in

Figure 1(b) and not the full Bayesian treatment, we restrict our

computations to the simpler probabilistic model, assuming that

the results will hold in approximation for the Bayesian model.

The resulting regression estimate, given noisy inputs xq and

noisy outputs yq, is b̂noise:

b̂noise =
ψy1

TB−1

ψy − 1TB−11
Ψ−1

z 〈Wz〉A
−1 〈Wx〉

T
Ψ−1

x (3)

where Ψx is a diagonal matrix with the vector ψx on its diago-

nal (〈Wx〉, 〈Wz〉, Ψz are similarly defined diagonal matrices

with vectors of 〈wx〉, 〈wz〉 and ψz on their diagonals, respec-

tively), A =
(

I +
〈

WT
xWx

〉

Ψ−1

x +
〈

WT
z Wz

〉

Ψ−1

z

)

and

B =
(

11
T

ψy
+ Ψ−1

z − Ψ−1

z 〈Wz〉
T

A−1 〈Wz〉Ψ
−1

z

)

. Note

that Eq. (3) is similar in form to the regression estimate derived

for Joint Factor Analysis regression (which can be found in

the Appendix). The major difference is that Eq. (3) contains

an additional term
〈

WT
z Wz

〉

Ψ−1

z , due to the introduction of

hidden variables z. The regression estimate is scaled by an

additional term as well.

It is important to note that the regression vector given

by Eq. (3) is for optimal prediction from noisy input data.

However, for system identification in RBD, we are interested

in obtaining the true regression vector, which is the regression

vector that predicts output from noiseless inputs. Thus, the

result in Eq. (3) is not quite suitable and what we want to

calculate is the mean of p(yq|tq) where tq are noiseless inputs.

To address this issue, we can take the asymptotic estimate

of Eq. (3) by letting ψx → 0 and interpret the resulting

expression to be the true regression vector for noiseless inputs

(as ψx → 0, the amount of input noise approaches 0). The

resulting regression vector estimate b̂true becomes:

b̂true =
ψy1

TC−1

ψy − 1TC−11
Ψ−1

z 〈Wz〉
T
〈Wx〉

−1
(4)

where C =
(

11
T

ψy
+ Ψ−1

z

)

, which is the desired regression

vector estimate.



B. Post-processing for Physically Consistent Rigid Body Pa-

rameters

Given a Bayesian estimate of the RBD parameters, we

would like to ensure that the inferred regression vector satisfies

the constraints given by positive definite inertia matrices and

the parallel axis theorem. These constraints are shown in Eq.

(5) for one DOF. There are 11 parameters for each DOF,

which we arrange in an 11-dimensional vector θ consisting

of the following 10 parameters: mass, three center of mass

coefficients multiplied by the mass and six inertial parameters

(cf. [3]). Additionally, we include viscous friction as the

11th parameter. Now, this parameter vector θ is assumed

to be generated through a nonlinear transformation from a

11-dimensional virtual parameter vector θ̂. In essence, these

virtual parameters θ̂ correspond to the square root of the mass,

the true center-of-mass coordinates (i.e., not multiplied by

the mass), the six inertial parameters describing the inertia

matrix at the DOF’s center of gravity, and the square root

of the viscous friction coefficient. The following functions

show the relationship between virtual parameters θ̂ and actual

parameters θ:

θ1 = θ̂2
1
, θ2 = θ̂2θ̂

2

1
, θ3 = θ̂3θ̂

2

1
, θ4 = θ̂4θ̂

2

1
, θ11 = θ̂2

11

θ5 = θ̂2
5

+
(

θ̂2
4

+ θ̂2
3

)

θ̂2
1

θ6 = θ̂5θ̂6 − θ̂2θ̂3θ̂
2

1
, θ7 = θ̂5θ̂7 − θ̂2θ̂4θ̂

2

1

θ8 = θ̂2
6

+ θ̂2
8

+
(

θ̂2
2

+ θ̂2
4

)

θ̂2
1

θ9 = θ̂6θ̂7 + θ̂8θ̂9 − θ̂3θ̂4θ̂
2

1

θ10 = θ̂2
7

+ θ̂2
9

+ θ̂2
10

+
(

θ̂2
2

+ θ̂2
3

)

θ̂2
1

(5)

These functions encode the parallel axis theorem and some

additional constraints, essentially ensuring that mass and vis-

cous friction coefficients remain strictly positive. Given the

above formulation, any arbitrary set of virtual parameters gives

rise to a physically consistent set of actual parameters for the

RBD problem. For a robotic system with s DOFs, Eq. (5) is

repeated for each DOF. The result is a regression vector θ,

where θm = fm(θ̂) (for m = 1..d where d = 11s and s is the

number of DOFs in the system).

Our Bayesian parameter estimation method (as well as any

other traditional RBD parameter estimation method) generates

the parameter vector θ, not the virtual parameters θ̂. We

want to find the optimal parameters θopt,RBD that satisfy the

physical RBD constraints while minimizing the least squared

error in the prediction. That is to say, we want to minimize:

〈

1

2
(y − Xθopt,RBD)

T
(y − Xθopt,RBD)

〉

(6)

We can re-express θopt,RBD as (θBayes − ∆θ). Eq. (6) can

then be simplified in order to obtain:
〈

1

2
(y − Xθopt,RBD)

T
(y − Xθopt,RBD)

〉

=
1

2

〈

(y − XθBayes)
T

(y − XθBayes)
〉

+
〈

(y − XθBayes)
T

X∆θ
〉

+
1

2

〈

∆θTXTX∆θ
〉

(7)

Notice that the minimization of the first term
〈

(y − XθBayes)
T

(y − XθBayes)
〉

is what our Bayesian

EM-based algorithm does, since it finds the unconstrained

parameter estimates that minimize the least squares error

using the noisy input and output data. The second term in

Eq. (7) is equal to 0 (refer to the Appendix for details). Now,

if we re-express the noisy inputs X as Xt + Γ, where Xt

are noiseless inputs and Γ is the input noise, then we can

re-write the third term in Eq. (7) as:

1

2

〈

∆θTXTX∆θ
〉

=
1

2
∆θTXTX∆θ + ∆θTXT

t 〈Γ〉∆θ +
1

2
∆θT

〈

ΓTΓ
〉

∆θ

=
1

2
∆θT

(

XTX +
〈

ΓTΓ
〉)

∆θ

(8)

since the input noise is modeled with a Gaussian distribution

with a mean of zero and some variance Ψx. Hence, as the

above equation shows, to minimize the third term in Eq. (7),

we need to find the parameter estimate θopt,RBD that is closest

to θBayes, under the metric XTX (plus noise variance), as

possible. In summary, we can see that in order to minimize the

least squared error in Eq. (6), we can do so in two independent

minimization steps. First, we apply our Bayesian algorithm

(or any other algorithm, for that matter) to come up with

an optimal unconstrained parameter estimate. Then, we find

the physically consistent parameter estimates θopt,RBD such

that the error between θopt,RBD and the optimal unconstrained

parameter estimates is minimized in the sense of Eq. (8).

IV. EVALUATION

We evaluated our algorithm on both synthetic data and

robotic data for the task of system identification. The goal

of these evaluations was to determine how well our Bayesian

de-noising algorithm performs compared to other standard

techniques for parameter estimation in the presence of noisy

input data.

First, we start by evaluating our algorithm on a synthetic

dataset in order to illustrate its effectiveness at de-noising

input and output data. Then, we apply the algorithms on a

7 DOF robotic oculomotor vision head and on a 10 DOF

robotic anthropomorphic arm for the task of RBD parameter

estimation.

A. Synthetic Data Set

We synthesized random input training data consisting of 10
relevant dimensions and 90 irrelevant and redundant dimen-

sions. The first 10 input dimensions were drawn from a multi-

dimensional Gaussian distribution with a random covariance
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Fig. 2. Average normalized mean squared errors on noiseless (clean) test
data and noisy test data for a 100 dimensional dataset with 10 relevant input
dimensions and various combinations of redundant input dimensions r and
irrelevant input dimensions u, averaged over 10 trials, for different levels of
noisy data

matrix. The output data was generated using an ordered

regression vector btrue = [1, 2, ..., 10]T . A signal-to-noise

ratio (SNR) of 5 was added to the outputs. Then, we added

Gaussian noise with varying SNRs (a SNR of 2 for strongly

noisy input data and a SNR of 5 for less noisy input data)

to the relevant 10 input dimensions. A varying number of

redundant data vectors was added to the input data and these

were generated from random convex combinations of the 10
noisy relevant data vectors. Finally, we added irrelevant data

columns, drawn from a Normal(0, 1) distribution, until a total

of 100 input dimension were attained. The result was an

input training dataset that contained irrelevant and redundant

dimensions. Test data was created using the same method

outlined above, except that input and output data were both

noiseless. A second test dataset consisting of noisy input and

output data, possessing the same noise characteristics as the

training dataset, was also generated.

We compared our Bayesian de-noising algorithm with the

following methods: OLS regression; stepwise regression [18],

which tends to be inconsistent in the presence of collinear

inputs [19]; Partial Least Squares regression (PLS) [20], a

slightly heuristic but empirically successful regression method

for high dimensional data; LASSO regression [21], which

gives sparse solutions by shrinking certain coefficients to 0

under the control of a manually set tuning parameter; our

probabilistic treatment of Joint Factor Analysis in Figure 1(b);

and our Bayesian de-noising algorithm shown in Figure 1(c).

The Bayesian de-noising algorithm had an improvement of

10 to 20% compared to other algorithms for strongly noisy

input data and an improvement of 7 to 50% for less noisy

input data, as the black bars in Figures 2(a) and 2(b) illustrate.

One interesting observation is that for the case where the 90
input dimensions are all irrelevant, the Bayesian de-noising

algorithm does not give such a significant reduction in error

as in the other 3 scenarios. This can be explained by the

fact that the other algorithms cannot handle data containing

redundancy, and that the true power of our algorithm lies in

its ability to identify relevant dimensions in the presence of

redundant and irrelevant data.

B. Robotic Oculomotor Vision Head

Fig. 3. Sarcos Ocu-
lomotor Vision Head

Next, we move on to a 7 DOF robotic

vision head manufactured by Sarcos as

shown in Figure 3, possessing 3 DOFs in

the neck and 2 DOFs for each eye. With

11 features per DOF, this gives a total

of 77 features. This kinematic structure

of robotic systems always creates non-

identifiable parameters and thus, redun-

dancies [3]. The robot is controlled at 420
Hz with a VxWorks real-time operating

system running out of a VME bus. We

collected about 500,000 data points from the robotic system

while it performed sinusoidal movements with varying fre-

quencies and phase offsets in all DOFs.

We compared our Bayesian algorithm with 3 other tech-

niques for parameter estimation on the robot data. The first

technique consisted of ridge regression using a hand-tuned

regularization parameter with nonlinear gradient descent per-

formed on the virtual parameters of the system. The second

algorithm was a version of LASSO regression that had the

additional step of projecting the resulting parameter values

onto the constraint space in order to produce physically

consistent RBD parameters. Finally, the last algorithm was

a version of stepwise regression with the additional projection

step. All four algorithms produced physically consistent RBD

parameters. Note that the other algorithms used in the synthetic

dataset like PLS and JFA were not applied, since they fail

to explicitly eliminated irrelevant input features and do not

perform any form of reasonable parameter identification.

For evaluation, we implemented a computed torque control

law on the robot, using estimated parameters from each

technique. Results are quantified as the root mean squared

errors in position tracking, velocity tracking and the root

mean squared feedback command. Table I shows these results

averaged over all 7 DOFs. The Bayesian parameter estimation

approach performed around 10 to 20% better than the ridge

regression with gradient descent approach, thus validating the

effectiveness of our methods. LASSO regression performed

worse than ridge regression with gradient descent. As well,



Position (radians) Velocity (radians/sec) Feedback Command (Newton-meter)

Ridge Regression 0.0291 0.2465 0.3969
Bayesian De-noising 0.0243 0.2189 0.3292
LASSO regression 0.0308 0.2517 0.4272
Stepwise regression FAILURE FAILURE FAILURE

TABLE I

ROOT MEAN SQUARED ERRORS FOR POSITION (IN RADIANS), VELOCITY (IN RADIANS/SEC) AND FEEDBACK COMMAND (IN NEWTON-METERS) FOR THE

SARCOS ROBOTIC VISION HEAD. ALGORITHMS EVALUATED INCLUDE RIDGE REGRESSION WITH NONLINEAR GRADIENT DESCENT, OUR BAYESIAN

DE-NOISING ALGORITHM, LASSO REGRESSION WITH THE PROJECTION STEP, AND STEPWISE REGRESSION WITH THE PROJECTION STEP. STANDARD

DEVIATIONS ARE NEGLIGIBLE AND THUS OMITTED.

Position (radians) Velocity (radians/sec) Feedback Command (Newton-meter)

Ridge Regression 0.0210 0.1119 0.5839
Bayesian De-noising 0.0201 0.0930 0.5297
LASSO regression FAILURE FAILURE FAILURE
Stepwise regression FAILURE FAILURE FAILURE

TABLE II

ROOT MEAN SQUARED ERRORS FOR POSITION (IN RADIANS), VELOCITY (IN RADIANS/SEC) AND FEEDBACK COMMAND (IN NEWTON-METERS) FOR THE

SARCOS ROBOTIC ANTHROPOMORPHIC ARM. ALGORITHMS EVALUATED INCLUDE RIDGE REGRESSION WITH NONLINEAR GRADIENT DESCENT, OUR

BAYESIAN DE-NOISING ALGORITHM, LASSO REGRESSION WITH THE PROJECTION STEP, AND STEPWISE REGRESSION WITH THE PROJECTION STEP.

STANDARD DEVIATIONS ARE NEGLIGIBLE AND THUS OMITTED.

stepwise regression produced RBD parameters that were so

physically off that they were impossible to run on the robotic

head. This can be explained by stepwise regression’s failure to

identify the relevant features in the dataset, resulting in RBD

parameter values that were plain wrong.

C. Robotic Anthropomorphic Arm

Fig. 4. Sarcos An-
thropomorphic Arm

We also evaluated the parameter esti-

mation algorithms on a 10 DOF robotic

anthropomorphic arm made by Sarcos,

shown in Fig. 4. With 3 DOFs in the

shoulder, 1 DOF in the elbow, 3 DOFs in

the wrist and 3 DOFs in the fingers, this

gives a total of 110 features. We collected

about a million data points from the

robotic arm over a period of 40 minutes,

gathering data at a rate of 480 samples

per second. During this time period, the arm performed sinu-

soidal movements with varying frequencies and phase offsets

in all DOFs. We downsampled the data collected to a more

manageable size of 500000 and evaluated the algorithms in

a similar approach as for the robotic vision head. Table II

displays the results averaged over all 10 DOFs. The Bayesian

parameter estimation approach performed around 5 to 17%
better than the other techniques. LASSO regression failed,

due to its over-aggressive clipping of relevant dimensions,

and stepwise regression produced RBD parameters that were

impossible to run on the robotic arm.

V. CONCLUSION

We derived a Bayesian version of rigid body dynamics pa-

rameter estimation based on Joint Factor Analysis, a classical

machine learning technique. The Bayesian parameter estima-

tion algorithm is robust to high dimensional ill-conditioned

data contaminated with noisy input and noisy output data. In

order to produce physically coherent rigid body parameters of

the robotic system, we additionally introduce a post-processing

step that takes the Bayesian estimate and projects the solution

onto a set of constraints, derived from the parallel axis

theorem and from the need to ensure positive values for certain

parameters. We demonstrate the efficiency of the algorithm by

applying it on a synthetic dataset, a 7 DOF robotic vision head

and a 10 DOF robotic anthropomorphic arm. Our algorithm

successfully identified the system parameters from 5 to 20%

higher accuracy than alternative methods, thus proving to be

a competitive alternative for parameter estimation on complex

high degree-of-freedom robotic systems.
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APPENDIX

A. EM-update Equations

We can then derive the following EM updates using standard
manipulations of normal distributions:
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The covariance matrix, Σ, of the joint posterior distribution of Z and

T is

»
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and where 〈Wx〉 is a diagonal d by d matrix with 〈wx〉 along its
diagonal. Similarly, 〈Wz〉, Ψx, Ψz are d by d diagonal matrices
with diagonal vectors of 〈wz〉 , ψx and ψz. The E-step updates for
Z and T are then:
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z = diag(Σzz), σ
2

t = diag(Σtt), cov(z, t) = diag(Σzt)

B. Inference of Regression Estimate for Joint Factor Analysis

regression

The regression esimate for Joint-Space Factor Analysis regression
is as follows:

bJFA = Wz

“

I + W
T
xWxΨ

−1

x Wx

”

−1

W
T
xΨ−1

x (9)

C. Minimizing Least Squared Error

We want to minimize the cost function J where J =
1

2
(y − Xθ)T (y − Xθ). Now, let us differentiate J with respect to

θ to get:

∂J

∂θ
= − (y − Xθ)T X (10)

By setting ∂J
∂θ

to 0 and solving for θ, we will get the solution to

the minimization cost problem. We can see that when we have the

optimal solution for θ that minimizes J , then (y − Xθ)TX = 0.

When we are dealing with noisy instead of noiseless inputs, then we

can resort to our EM-based de-noising algorithm that attempts to find

a θ that is optimal.


