
Emergent Task Allocation for Mobile Robots
Nuzhet Atay

Department of Computer Science and Engineering
Washington University in St. Louis

Email: atay@cse.wustl.edu

Burchan Bayazit
Department of Computer Science and Engineering

Washington University in St. Louis
Email: bayazit@cse.wustl.edu

Abstract— Multi-robot systems require efficient and accurate
planning in order to perform mission-critical tasks. However,
algorithms that find the optimal solution are usually computa-
tionally expensive and may require a large number of messages
between the robots as the robots need to be aware of the
global spatiotemporal information. In this paper, we introduce
an emergent task allocation approach for mobile robots. Each
robot uses only the information obtained from its immediate
neighbors in its decision. Our technique is general enough to be
applicable to any task allocation scheme as long as a utilization
criteria is given. We demonstrate that our approach performs
similar to the integer linear programming technique which finds
the global optimal solution at the fraction of its cost. The
tasks we are interested in are detecting and controlling multiple
regions of interest in an unknown environment in the presence
of obstacles and intrinsic constraints. The objective function
contains four basic requirements of a multi-robot system serving
this purpose: control regions of interest, provide communication
between robots, control maximum areaand detect regions of interest.
Our solution determines optimal locations of the robots to
maximize the objective function for small problem instances while
efficiently satisfying some constraints such as avoiding obstacles
and staying within the speed capabilities of the robots, and
finds an approximation to global optimal solution by correlating
solutions of small problems.

I. I NTRODUCTION

Several real life scenarios, such as fire fighting, search
and rescue, surveillance, etc., need multiple mobile robot
coordination and task allocation. Such scenarios generally
include distinct regions of interest that require the attention of
some robots. If the locations of these regions are not known,
the mobile robots need to explore the environment to find
them. In this paper, we propose a solution to the problem
of detecting and controlling multiple regions of interest in
an unknown environment using multiple mobile robots. In
our system, we assume a bounded environment that is to
be controlled by a group of heterogeneous robots. In this
environment, there are regions of interest which need to be
tracked. These regions are dynamic, i.e. they can appear at any
point, anytime and can move, spread or disappear. Each region
may require more than one robot to track and control. Robots
do not have initial information about the environment, and the
environment is only partially-observable by the robots. Each
robot has wireless communication capability, but its rangeis
not uniform. Two robots can communicate between each other
only if both of them are in the communication range of each
other. They can have different speed limits and are equipped
with the sensors to identify the obstacles and the regions of

interest if they are within robots’ sensing range. Sensor ranges
on these robots are not necessarily uniform. The environment
can have static or dynamic obstacles, and the robots need to
avoid them in order to perform their tasks.

We propose an emergent solution to the task allocation
problem for heterogeneous robots. The tasks we are interested
in are: (i) covering all regions of interest, (ii) providing
communication between as many robots as possible, (iii)
controlling maximum total surface by all the robots, (iv)
exploring new regions. Our objective is to maximize these
items while satisfying the constraints such as avoiding the
obstacles or moving within the speed capabilities of individual
robots. Additional constraints we are considering are the com-
munication between two robots (which exists only if either two
robots are in the communication range of each other or there
is a route between them through other robots satisfying the
communication constraints), and, the sensing of the obstacles
and regions of interest when they are within the robots’ sensor
range. Our approach is general enough to be easily adapted to
additional constraints and objectives, making it customizable
for various mobile robot problems.

Several linear programming based solutions have been
proposed for mobile robot task allocation problem. Although
these proposals are generally successful in finding the optimal
solution, they usually require collecting information about all
robots and regions of interest, and processing this information
at a central location. As a result, these approaches can be
infeasible in terms of the computation time and communica-
tion cost for large groups. In order to provide scalability and
efficiency, we are proposing an emergent approach. In this
approach, each robot solves a partial problem based on its
observations, then exchanges information (such as intentions
and directives) with the robots in the communication range to
maintain coordination. The system is fully distributed which
allows this technique to be applied to any number of robots
with computation and communication cost limited by constant
parameters which can be defined according to the application
requirements. We experimentally show that this approach gives
results comparable to global optimal solution, and performs
hundreds of times faster with little communication cost.

Since we use mixed integer linear programming for the
solution of the partial problems, our contributions also include
a customizable multi-robot task allocation solver which can
be used to find global optimal solution under the given
constraints. In contrast to other linear programming solutions,



we also present an efficient way to check obstacle collisions.
While we are concentrated on the mobile robots, our solu-

tion is applicable to other distributed task allocation problem
as long as a function to evaluate the goodness of the solutionis
defined. The technical report version of this paper that includes
the details of the mixed integer linear programming solution
with the description of constraints and variables, as well as
some proofs including the convergence of our approach to
the global solution, extensions that show the flexibility of
the approach, and a larger set of experiments on different
environments can be found at [1].

The rest of the paper is organized as follows. The next
section gives a summary of the related research and brief
comparison to our approach when it is applicable. Section III
gives the problem definition. Section IV describes our mixed
integer linear programming solution, and Section V explains
the emergent behavior task allocation approach. We present
simulation results in Section VI and Section VII concludes
our paper.

II. RELATED WORK

Multi-robot task allocation has been studied extensively
because of the importance of application areas. One quite
popular approach to this problem is utilizing negotiation or
auction based mechanisms. In this approach, each distributed
agent computes a cost for completing a task, and broadcasts
the bid for that task. Auctioneer agent decides the best
available bid, and winning bidder attempts to perform this
task. Following the contract-net protocol [2], several variations
of this method has been proposed [3]–[7]. Another important
approach is using behavior based architecture. ALLIANCE [8]
is a behavior-based architecture where robots use motivational
behaviors such as robot impatience and robot acquiescence.
These behaviors motivate robots to perform tasks that cannot
be done by other robots, and give up the tasks they can-
not perform efficiently. BLE [9] is another behavior-based
architecture which uses continuous monitoring of tasks among
robots and best fit robot is assigned to each task. A detailed
analysis and comparison of these methods can be found
at [10], [11]. These methods propose distributed algorithms
where resource allocation is an approximation to the global
optimum. The main difference between these methods and our
approach is that we are using a formulation that can provide
global optimum solution when information propagation is
not limited. However, instead of finding the global optimal
solution using all the information which has high computation
and communication cost, we distribute computation and infor-
mation processing among robots and reach an approximation
to the global optimal solution through iteration.

Task allocation problem is also studied in the context
of cooperation of Unmanned Aerial Vehicles (UAVs). Sev-
eral methods are proposed for search and attack missions
of UAVs [12]–[20]. Our method is similar to the methods
proposed in [13], [14], [17], [20], since these methods are
also using mixed-integer linear programming task allocation.
However, in these papers, the problem is defined as minimizing

mission completion time while UAVs visiting predetermined
waypoints and avoiding no-fly zones. The solution to this
problem is formulated as finding all possible combinations
of task allocations, and choosing the best combination. This
definition of task allocation is actually quite different than
our problem definition. Our aim is to explore environment,
find regions of interest, and assign tasks optimally obeying
the constraints imposed at that moment. In other words, we
are finding a solution in real-time, instead of finding an initial
plan and executing it.

III. PROBLEM DEFINITION

In our problem definition, there are regions of interest we
want robots to explore and cover. In the rest of the paper,
we will call these regions “targets”. Since larger areas canbe
represented with multiple points, without loss of generality,
we assume targets are represented as points in planar space.A
target is assumed to be covered if there are enough robots that
have the target in their sensing range. The number of robots
required to cover a target varies for each target. We assume
the future locations of known targets after a time period can
be predicted. Our primary purpose is to find locations of
robots in order to cover as many targets as possible using the
estimated locations of targets. While covering all the targets, it
is also desirable to provide communication between as many
robots as possible because this will allow robots to exchange
the information about the environment and the targets. In
a centralized approach, this also leads to a better solution
since the solver will be aware of more information. It is also
preferable that robots need to cover as much area as possiblein
addition to covering targets to increase the chances of detecting
other undiscovered targets. Similarly, in order to discover new
targets and avoid waiting at the same location when no targets
are being tracked, the robots are expected to explore new
regions.

We define the state of the system as current locations of
targets, number of robots needed to cover a target, current
positions of the robots, positions of the obstacles, previously
explored regions, and each robot’s speed, communication
range and sensing range. The output of our algorithm is the
optimal locations of the robots for the next state of the system
after a brief period of time. Please note that, we assume we
can predict the location of the targets at the next step. There
are approaches for motion prediction that can be used for
this purpose [21]. We also assume that there are no sensor
or odometry errors, however, implementation of our method
on real robots can introduce these errors. The method we are
planning to utilize for handling noisy measurements, sensor
errors and mechanical errors like slippage or odometry errors
takes advantage of communication among nearby robots. We
believe our approach promotes robots to stay in the contact
as much as possible and make it possible to share as much
sensor information as possible.
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Fig. 1. SR stands for sensing range, and CR stands for communication range (a) A target is covered when it is in sensing range of some
robots, where number of robots is determined according to the requirements of the target. RobotsR1 and R2 cover T1, while R3 covers
T3. T2 is not covered. (b) Two robots can communicate if both robots are in communication range of each other.R2 can communicate with
R1 andR3, and works as a hub betweenR1 andR3 which cannot communicate directly. (c) Maximum area coverage is obtained if sensing
range of robots do not overlap. In the figure, sensing regions of robots barely touch each other (d) Robots mark regions they explored before,
and move towards unexplored regions.R1 andR2 move upward toward unexplored region after marking dark (blue) region as explored

IV. M IXED INTEGERL INEAR PROGRAMMING FORTASK

ALLOCATION

Although our main contribution is the emergent task alloca-
tion, we first would like to show how a centralized approach
can be utilized to find the optimal placement of robots after
a defined time period. In the next section, we will show how
individual robots can use the same approach to solve their
partial problems to achieve emergent task allocation.

Our centralized approach utilizes a mixed integer linear
program. Either a designated robot runs the solver or each
robot in a group executes the same solver with the same data
to find its placement. A group consists of the robots that are
in the communication range of each other, hence states and
observations of all the robots are known to the solver(s). If
there are multiple groups of robots that cannot communicate
with each other, each group will have its own task allocation
based on its world view. If two groups merge, they can share
their knowledge. The program runs periodically to find the
best placements for each robot. It also runs if a new event
happens, such as the discovery of an obstacle or a target. The
linear program should satisfy some constraints: (i) an evaluated
location is not acceptable if the robot cannot reach there either
because of its speed limits or because of an obstacle, (ii)
two robots cannot communicate if one of them is outside the
communication range of the other, (iii) an obstacle or target is
detectable only if it is within the sensing range of the robot.
Our goal is then to maximize the number of targets tracked,
the number of robots that can communicate with each other,
the area of the environment covered by the robot sensors, and
the area of the environment that was explored. In the next
subsections, we will first discuss different objective functions
and constraints, then we will show our overall optimization
criterion and we will discuss the complexity. We give only the
overview of the linear program because of space limitations,
but detailed formulations and explanations can be found in the
technical report version [1].

A. Obstacle Avoidance

In our system, we assume there are only rectangular shaped
obstacles for the sake of simplicity of defining linear equations.
However, more general shaped obstacles can be represented

as rectangular meshes. When considering obstacles, we are
not finding a path to avoid them, but we are finding whether
or not it is possible to avoid them with the robot speed and
timestep as the constraints. As it is mentioned before, output
of the linear program is the final positions of the robots.
When computing these positions, we utilize Manhattan paths
to identify if there is a way for a robot to avoid an obstacle. As
long as there is a Manhattan path that bypasses the obstacle
and has a length that is possible for the robot to traverse
under the given speed constraints, we consider the final
position of the robot as a feasible configuration. Otherwise,
that configuration is eliminated. Once a position is selected,
more advanced navigation algorithms can be utilized to find
more efficient paths. The alternative approach, i.e., finding
exact path, requires finding intermediate states of the system at
a fine resolution which increases complexity drastically. Please
note that we are not aware of any other linear programming
approach that addresses navigation problem.

B. Target Coverage

A target can be considered covered only if the number of
robots following it is greater than or equal to its coverage
requirement.1 A robot can sense and control a target only if its
sensing range is greater than or equal to the distance between
itself and the target. A sample organization of the robots and
targets is shown in Fig. 1(a).R1 and R2 are covering target
T1 andR3 is coveringT3 while T2 is not covered by any of
the robots.

C. Communication

Each robot has a communication range. A robot can have
a duplex communication link to another robot only if each
robot is in the communication range of the other one. However,
robots can communicate between each other with the help of
other robots. So, if two robots cannot directly communicate
with each other, but they share a common robot both of which
can communicate, we assume that they can communicate. In
other words, transitive links are allowed in the system. It

1Please see the technical report [1] for the proof that our optimization
criterion results in continuous target coverage of all targets, if this optimization
has highest priority.



should be noted that this condition implies communication
between robots with the help of multiple intermediate robots,
i.e. one or more robots can participate in a transitive link
between two robots. A communication pattern of the robots
is shown in Fig. 1(b).R2 can communicate with bothR1 and
R3. R1 andR3 do not have a direct communication link, but
they can communicate with the help ofR2.

D. Area Coverage

Robots have limited and constant sensing range, so the only
way to maximize area coverage is by preventing the overlap of
sensing ranges of robots. An ideal area coverage for the robots
is represented in Fig. 1(c), where robots have no overlapping
sensing range.

E. Exploration

In order to explore the environment, robots need to know
places they have visited recently. We store this information as
rectangular regions defining explored areas. Then the linear
program tries to move robots into unexplored regions by
checking the final position of the robots. So, the program gives
a final position not located in an explored region.2 A sample
exploration scenario is shown in Fig. 1(d). Dark (blue) region
is explored in the first step, so robots try to locate themselves
outside of the explored area.

1T

R23R

R1

2T

Fig. 2. An example distribution of robots providing optimum target
coverage, communication and area coverage. RobotR1 covers target
T1 andR2 covers targetT2. R3 is located to provide communication
between them, and its sensing range does not overlap with others.
Dark colored circles represent communication range, light colored
circles represent sensing range.

F. Optimization Criterion

Optimization criterion consists of four components,target
coverage, communication between robots, area covered by the
robotsandthe number of robots located in unexplored regions.

Target Coverage: We utilize the number of targets that are
covered, i.e.,

T =

n∑

j=1

coveragej (1)

wheren=number of targets,coveragej is 1 when the number
of robots that are coveringtargetj is greater than or equal to
the minimum requirement for that target, 0 otherwise.

2Please see the technical report [1] for the proof that given sufficient number
of robots for communication and target tracking, our algorithm will result in
the exploration of the all environment.

Communication: We utilize the number of pairs of robots
that can communicate with each other, i.e.,

C =
n∑

i=1

n∑

j=1

communicationij (2)

where n=number of robots,communicationij is 1 when
robots i and j are within their communication range or they
can communicate with the help of other robots, 0 otherwise.

Area Coverage: We utilize the number of pairs of robots
whose sensor ranges do not intersect, i.e.,

A =

n∑

i=1

n∑

j=1

areaij (3)

where n=number of robots,areaij is 1 when robotsi and j

cover non-overlapping regions, 0 otherwise.
Exploration: We utilize the number of robots in unexplored

regions, i.e.,

E =

n∑

i=1

m∑

j=1

explorationij (4)

where n=number of robots, m=number of explored regions,
explorationij is 1 if the roboti is not in the explored region
j, 0 otherwise.

Optimization Criterion: Our objective function is weighted
sum of the above components.

maximize αT + βC + γA + δE (5)

whereα, β, γ, andδ are constants defining priorities.
Figure 2 represents an optimal distribution of robots accord-

ing to this optimization criterion. Robots arrange themselves
so that they cover all targets, provide communication between
each other, and cover as much area as possible.

G. Complexity

Our formulation results in a mixed-integer linear program,
which is NP-Hard in the number of binary variables, so
complexity of our program is dominated by the number of
binary variables. Definitions and properties of binary variables
can be found at the technical report [1]. For a problem with
n targets,m robots,p obstacles andq explored regions, there
are n + nm + 2nn + 5mq + 4mp binary variables. So, the
complexity can be stated asO(n + nm + n2 + mq + mp).

V. EMERGENT TASK ALLOCATION

As we have mentioned in the previous section, finding the
optimal solution is an NP-Hard problem. While it may be
possible to solve simple problems with on-board processors,
finding solution for larger networks is very expensive even for
a more powerful central server (because of both the cost of
computation and the number of messages). In order to over-
come this problem, we propose a distributed approach where
each robot in the network finds a local solution based on the in-
formation from the vicinity of the robot. This approach utilizes
the mixed integer linear program we described in Section IV.
The local vicinity of the robot contains the region covered by
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Fig. 3. Information exchange for emergent task allocation: (a) Intentions, (b) Directives, (c) Intentions and Directives, (d) Intentions,
Directives and Target Assignment. The dashed-circles connected to the neighboring robotsRk,l,m,n represent their intentions, the dashed-
circles connected to theRi represent the directives to that robot by its neighbors.

the robot and its first-degree neighbors (1-hop away). Each
robot uses the information about targets and obstacles that
can be sensed by the robot itself and 1-hop neighbor robots
in its computation. In order to increase efficiency, we further
restrict the vicinity to k-closest robots if the number of 1-hop
neighbors is large. While this segmentation of the problem
makes the individual problems solvable by the mobile robots,
each robot is concentrated on its own problem which is usually
different than those of neighboring robots. As a result, its
solution may be different from another robot’s solution. In
order to provide coordination between the neighboring robots,
the robots exchange information among the neighbors (mainly
contains intentions and/or directives) and update their local
solutions based on this information. This exchange makes the
solution of emergent task allocation comparable to that of
centralized approach. Algorithm 1 summarizes this approach.

Algorithm 1 Coordination (roboti)
1: Find a solution with local information
2: for all k-closest1-hop neighborj do
3: Send solution information toj
4: Receive solution information fromj
5: end for
6: Update solution according to new information
7: returnposition(i)

Although it is possible to iterate through lines2 − 6
several times, i.e., continuously updating the solution until it
converges, we are interested in only a single exchange for
efficiency purposes. In the technical report [1], we show that
as the number of iterations increases, the solution converges
to the global optimum. Similarly, if there is sufficient compu-
tational power on individual robots, the size of neighborhood
can be increased to include the robots that are more hops away
for obtaining better solution.

The information exchange between the robots could range
from single position information which may require a single
message between the robots to all the state information which
may require multiple messages. We have selected the follow-
ing methods for the information exchange:

A. Intentions

In the most simple approach, after finding a position that
maximizes its utility (based on the current sensor information

and neighbor information), each robot sends this location to
its neighbors as its intended location. When a robot gets
intentions from all neighbors, it assumes that these locations
are final, and computes its own location that would maximize
the utility. Note that, we still use the algorithm of SectionIV,
however, other robots’ positions now become constraints of
the system. Figure 3(a) represents this approach for roboti.

B. Directives

In the second approach, each robot computes a location
for its neighbor, and sends this location to the neighbor as
a directive. When a robot gets location information from all
neighbors, it uses the list of locations as the potential locations,
and finds the one that gives the highest value of the objective
function using the linear program. The information transferred
for robot i is shown in Figure 3(b).

C. Intentions and Directives

In the third approach, each robot computes optimal locations
of itself and its neighbors, and sends these locations to
the neighbors. When a robot gets these locations, for each
potential location given by the neighbors, it evaluates the
utility of that directive based on the intended locations of
all neighbors. The directive that gives the highest value of
the objective function is selected as the next location for that
robot. This is represented in Figure 3(c) for roboti.

D. Intentions, Directives and Target Assignment Information

The last approach is similar to the third approach, but in
addition to the information about locations, target assignment
information is also sent to the neighbors. Target assignment
states whether or not a robot is assigned to cover a target.
This information can be used in different ways, but we use
this so that no two robots try to cover the same target, unless
that target needs to be covered by more than one robot. This
approach provides better exploration and better area coverage,
as robots can ignore a target and spread out when the target is
covered by another robot. Figure 3(d) represents this approach
for robot i.

E. Comparison to Centralized Global Optimization

Global optimization through centralized computation re-
quires all information about the environment to be collected at
one location. Assuming the central server is physically located



in the center of the network and average hop count from other
robots to the central server isp, average message count in the
system for one planning phase isO(p ∗ n), wheren is the
number of robots. On the other hand, number of messages
at the emergent approach isk for each robot, wherek is the
maximum number of neighbors that a robot can have. Total
number of messages in the system isO(k ∗ n) at emergent
approach. It should be noted thatp is dependent on the network
size, whereask is a constant and for practical applications
p >> k. Average delay for transmitting messages at the global
approach isO(p), whereas average delay is constant and 1 at
emergent approach when each robot communicates to only
1-hop neighbors.

Once all the information is collected at a central location,
the linear program can find the global optimal solution if the
problem instance is not too big for the processing capability
and the memory available. On the other hand, the solution with
emergent approach is found using limited information, so the
solution may not be optimal. However, as the information is
shared among neighbors, the quality of the solution improves
and optimal solution can be obtained if information sharing
is continued until the system reaches a stable state, which is
when all robots find the same solution. The proof showing that
these iterations finally converge can be found at [1].

VI. SIMULATION RESULTS

In our simulations, we want to evaluate how well emergent
task allocation (ETA) behaves with respect to centralized
global optimization approach (CGO) using mixed integer
linear programming. For this purpose we have designed an
experimental scenario and run ETA with different information
exchange methods and CGO. Next, we will discuss the envi-
ronment, present the behaviors of individual techniques and
compare them. Since our main application is mobile sensors,
we are interested in finding how well either technique can
cover targets. For this purpose we compared the number of
targets covered by each technique as well as the solution
times. We also experimented with larger networks of robots
and targets on bigger environments to show the scalability of
ETA. Simulation results with 20 robots - 10 targets and 30
robots - 15 targets can be found at [1].

A. Environment

The environment is bounded and has size12 × 12.
There are three rectangular obstacles, which are located at
{(0, 4), (5, 6)}, {(4, 8), (8, 10)} and {(8, 2), (10, 6)} (darkest
(dark blue) regions in Figs. 4 and 5). In the environment there
are 8 robots which are located at point(0, 0), and 6 targets
whose locations are unknown initially. The targets follow
predefined paths and we assume we can predict their locations
for the next timestep, if their locations are known at the current
step. Robots are heterogeneous with sensing range and speed
differing between 1-2, and communication range 4. Detailed
parameters can be found at [1]. All targets except the target
t3 require a single robot for coverage, whereast3 requires
two robots. Timestep is selected to be 4, so robots arrange

themselves according to the environment which they estimate
to be in 4 steps. In the experiments, we chose constants at
the optimization criterion asα > β > γ > δ. In other
words, the linear program optimizes (1)target coverage, (2)
communication between robots, (3) area coverageand (4)
explorationfrom highest to lowest priority, respectively.

B. Centralized Global Optimization (CGO)

We show a sample execution of our program to highlight
the properties of the solution. Robots start exploring the envi-
ronment by moving out of the region they explored when they
were all at(0, 0). The initial explored region is the rectangle
{(0, 0), (1, 1)} because the robot with highest sensing range
can sense a region of radius 2.

Since there are no targets detected yet, and the communica-
tion constraints are satisfied, the robots try to cover as much
area as possible while obeying the movement constraints. The
new environment is shown in Fig. 4(a) where blue (darker)
areas indicate explored regions. Exploration reveals targets t1
and t2, and predicts their positions to be(0, 4) and (2, 2),
respectively. Optimal allocation is shown in Fig. 4(b). Robots
r6 andr8 cover targets, and other robots continue exploration
while staying within the communication range. Next, target
t3 is found, which requires two robots to be covered. Robots
r2, r3 andr7 continue exploration andr6 works as the com-
munication bridge while remaining robots are assigned to the
targets. Distribution of robots is shown in Fig. 4(c). Two other
targets,t4 and t5 are discovered at the next step. Moreover,
targetst1 andt2 move faster than their controller robots,r1 and
r4, which cannot catch them. However, global optimization
finds a solution to this problem by assigning the covering task
to other robots that can reach the targets (Fig. 4(d)). Target t6
is discovered at the next step. At this time, it is not possible to
cover all the targets while keeping the communication between
all robots. Since target coverage is given more importance,
robots are distributed into two independent groups. Robotsr3

andr5 form one team, while others form the other team. Each
team has communication in itself, but cannot reach to the other
team. An optimal solution is found and applied for each team.
Fig. 4(e) represents result of two optimal solutions. Targets
t1 and t5 leave the environment at the next step. Team of
robotsr3 andr5 has one target to follow, so while one robot
follows target, the other robot, in this caser3, which is the
faster robot, continues exploration. The other team coversall
targets, and provides communication in itself. Fig. 4(f) shows
the final state of the environment which is totally explored.

Our experiment shows that we can successfully assign tasks
to the robots. We can successfully cover individual targets,
keep communication distance as long as possible, provide
maximum area coverage and explore the environment.

C. Emergent Task Allocation

In this section, we present the performance of the distributed
emergent approach under the same scenario. We have run
emergent approach for each information exchange method
described in Section V with k-closest neighbors wherek = 4.
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Fig. 4. Sample execution of the Centralized Global Optimization.
Robots are represented as circles, and targets are represented as
squares. Dark blue (darkest) regions are obstacles, blue (darker)
regions are explored regions, and gray (light gray) regions are
unexplored regions.

Table I presents running times for each method. It can be seen
that there is no significant difference in computation times
among ETA methods. On the other hand, as the amount of
shared information increase, the performance of ETA increases
(see Table II which shows the number of targets covered
at each time step). We obtain the worst performance if we
just utilize “Intentions”, i.e., the least number of targets is
covered. The performance of the “Directives” and “Intentions
and Directives” are similar and both are better than “Inten-
tions” which suggests that “Directives” are more important.
However, both fail to capture all targets. This is because no
target information is shared among neighbors, so multiple
robots can assign themselves to the same target independently.
Finally when the target information is distributed, we obtain
the best performance with “Intentions, Directives and Target

TABLE I

AVERAGE, MAXIMUM AND M INIMUM EXECUTION TIMES PERROBOT

FOR EACH METHOD

avg. time max. time min. time

ETA w/ Int. 4 s 11 s <1 s

ETA w/ Dir. 7 s 15 s <1 s

ETA w/ Int.Dir. 7 s 16 s <1 s

ETA w/ Int.Dir.Tgt 5 s 16 s <1 s

CGO 36 min 120 min 9 min

TABLE II

RATIO OF TARGETSCOVERED BY ROBOTSFOR EACH METHOD

steps 1 2 3 4 5

ETA w/Int. 2/2 2/3 2/5 2/6 2/4

ETA w/Dir. 2/2 3/3 3/5 4/6 2/4

ETA w/Int.Dir. 2/2 3/3 3/5 4/6 2/4

ETA w/Int.Dir.Tgt 2/2 3/3 5/5 6/6 4/4

CGO 2/2 3/3 5/5 6/6 4/4

Assignment” where ETA can cover all the targets. Figures 5
(a) to (f) shows the behavior of ETA in this case. We also
run ETA on larger environments and networks to measure the
scalability of this approach [1]. These experiments show that
the quality of the solution is satisfactory also in large networks,
and execution time per robot stays constant irrespective ofthe
network size.

Please remember that we chose to exchange information
among neighbors only once for each planning phase because of
the time limitations of real world applications. However, each
update increases the performance and if updates are continued
until the system reaches a stable state, the final state will be
closer to the global optimal solution.

D. Comparison of CGO and ETA

As it is seen at Table II, the performance of ETA with
“Intentions, Directives and Target Assignment” is similarto
CGO. On the other hand, ETA is 400 times faster than CGO
(Table I). This shows the main drawback of CGO which is
the infeasible computation time as the number of robots and
targets increase (e.g., when the number of robots is 8 and
number of targets is 6, the execution time can reach 2 hours).

VII. C ONCLUSIONS

We have presented an emergent task allocation method to
solve the task allocation problem of multiple heterogeneous
robots for detecting and controlling multiple regions of interest
in an unknown environment under defined constraints. We
compared our results to a mixed integer linear programming
approach which finds the global optimal solution for the
given state of the robots, targets and environment. Emergent
approach guarantees that each robot in the system computes
a limited sized problem, no matter what the number of robots
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Fig. 5. Sample execution of the Emergent Task Allocation. Robots
are represented as circles, and targets are represented as squares. Dark
blue (darkest) regions are obstacles, blue (darker) regions are explored
regions, and gray (light gray) regions are unexplored regions.

or targets in the environment is. Our simulation results and
analysis show that our approach performs similar to global
optimal solution at the fraction of its cost (hundreds of times
faster). We are planning to implement this approach to in-
network task allocation for sensor networks.
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