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Abstract— The conventional technique for dealing with dy-
namic objects in SLAM is to detect them and then either treat
them as outliers [20][1] or track them separately using traditional
multi-target tracking [18]. We propose a technique that combines
the least-squares formulation of SLAM and sliding window
optimisation together with generalised expectation maximisation,
to incorporate both dynamic and stationary objects directly into
SLAM estimation. The sliding window allows us to postpone the
commitment of model selection and data association decisions
by delaying when they are marginalised permanently into the
estimate. The two main contributions of this paper are thus: (i)
using reversible model selection to include dynamic objects into
SLAM and (ii) incorporating reversible data association. We show
empirically that (i) if dynamic objects are present our method
can include them in a single framework and hence maintain
a consistent estimate and (ii) our estimator remains consistent
when data association is difficult, for instance in the presence of
clutter. We summarise the results of detailed and extensive tests
of our method against various benchmark algorithms, showing
its effectiveness.

I. INTRODUCTION

SLAM in dynamic environments is essentially a model
selection problem. The estimator constantly needs to answer
the question: is a landmark moving or is it stationary?
Although there are methods for doing model selection in
recursive filtering frameworks such as interacting multiple
model estimation or generalised pseudo-Bayesian estimation
[9], these methods always have some lag before the model
selection parameter(s) converge to the correct steady state.
This means that for a period of time the filter could classify
a target as dynamic when it is stationary or vice versa.
This is potentially catastrophic for SLAM because incorrectly
modeling a dynamic or stationary landmark will lead to biased
measurements and hence map corruption and inconsistency.

We propose a framework that combines least-squares with
sliding window optimisation [17] and generalised expectation
maximisation [13]. This allows us to include reversible model
selection and data association parameters in the estimation and
hence include dynamic objects in the SLAM map robustly.
At the heart of our method is the use of sliding window
optimisation, which delays the point when information is
marginalised out, allowing the filter a period of time to get

the model selection and data association parameters correct
before marginalisation. Although something similar could be
achieved with a more traditional Extended Kalman Filter
(EKF) using delayed decision making [11], the difference is
that our method uses reversible as opposed to delayed decision
making i.e. decisions can change many times in light of new
information before being committed to the estimate.

The adverse effects of poor data association in SLAM,
namely inconsistent estimates and divergence, are normally
unacceptable and hence a suitable method must be selected.
A common approach is the chi-squared nearest neighbour
(NN) test, which assumes independence between landmarks
and then probabilistically chooses the best measurement which
falls within the gate of an individual landmark. This method
can work well for sparsely distributed environments with
good sensors; however, once the proximity between landmarks
approaches the sensor noise or clutter is present, ambiguous
situations arise and a more sophisticated method is required.
One such method is joint compatibility branch and bound
(JCBB) [14] which takes into account the correlations between
landmarks by searching an interpretation tree [7] for the
maximum number of jointly compatible associations. This
method produces very good results when ambiguities are
present, but still suffers from problems in the presence of
clutter and is slow for large numbers of measurements. More
recently the data association problem has been treated as
a discrete optimisation over multiple time steps [15]. We
also treat data association as a discrete optimisation, but
include model selection and propose an alternative method that
uses sliding window optimisation and generalised expectation
maximisation [13](more specifically an approximate method
called classification expectation maximisation [3]).

We begin by introducing our notation and the background
on least-squares SLAM in Section II; Section III describes
the background on sliding window optimisation; Section IV
describes our method for doing SLAM with reversible data
association; Section V extends this to SLAM in dynamic
environments; Section VI compares our methods to an Iterated
Extended Kalman Filter (IEKF) with either NN or JCBB for
data association and finally in Section VII we conclude and



discuss our ideas for future work.

II. NOTATION AND LEAST-SQUARES SLAM

Although this section and the next cover background work
[6][17], they have been included because they form the basis
for our techniques.

A. Notation

• xt: A state vector describing the vehicle’s pose (location
and orientation [x, y, θ]) at time t.

• ut: A control vector (odometry [ẋv, ẏv, θ̇v] in vehicle
coordinates where ẋv is in the direction the vehicle is
pointing) that was applied to vehicle at time t−1 to take
it to time t.

• zt: A measurement made by the vehicle at time t of a
landmark in the world.

• mk: A state vector describing the location of landmark
k.

• X = {x0, . . . ,xt}: A set of vehicle poses.
• U = {u1, . . . ,ut}: A set of odometry.
• Z = {z1, . . . , zt}: A set of measurements.
• M = {m0, . . . ,mk}: A set of all landmarks.

B. Least-Squares SLAM

Consider the Bayesian network in Figure 1 where each node
represents a stochastic variable in the system. The grey nodes
represent observed variables, the white nodes represent hidden
variables and the arrows in the graph represent the dependence
relationships between variables, for instance zt−1 depends
upon xt−1 and M. For the benefit of the reader let us reduce
notation by making two assumptions: (i) only one observation
per time step; (ii) we assume known data association i.e. which
landmark generated a given measurement (we will relax this
assumption from Section IV onwards).

zt−1 zt

xt−1 xt

ut−1 ut

M

Fig. 1. A Bayesian network representing the SLAM problem.

The joint probability of X, M, U and Z can be factorised,
using the independence structure depicted by the Bayesian
network in Figure 1, as follows:

P (X,M,U,Z) = P (x0)P (M)×
T∏

t=1

P (zt|xt,M)P (xt|xt−1,ut). (1)

where:

• T is the number of time steps.
• P (x0) is the prior on vehicle state, which has a mean x̃0

and covariance P0.
• P (M) is the prior on the map, which is normally taken

to be the uninformative uniform distribution.
• P (zt|xt,M) is the measurement model i.e. the probabil-

ity of the measurement zt given the vehicle pose xt, the
map M and the correct data association.

• P (xt|xt−1,ut) is the motion model i.e. the probability
of the new pose xt given the last vehicle pose xt−1 and
the odometry ut.

If we take P (M) to be the uninformative uniform distribu-
tion then (1) reduces to:

P (X,M,U,Z) = P (x0)
T∏

t=1

P (zt|xt,M)P (xt|xt−1,ut).

(2)

Let us now also make Gaussian assumptions and define the
prior term, motion model and measurement model respectively
as:

x0 = x̃0 + p0 ⇔

P (x0) ∝ exp(−1
2
‖x̃0 − x0‖2

P0
) (3)

xt = f(xt−1,ut) + qt ⇔

P (xt|xt−1,ut) ∝ exp(−1
2
‖f(xt−1,ut)− xt‖2

Qt
)

(4)
zt = h(xt,M) + rt ⇔

P (zt|xt,M) ∝ exp(−1
2
‖h(xt,M)− zt‖2

Rt
) (5)

where p0, qt and rt are normally distributed, zero mean,
noise vectors with covariances P0, Qt and Rt respectively.
The ‖e‖2

Σ notation represents the squared Mahalanobis dis-
tance eT Σ−1e, where Σ is a covariance. We can now
perform inference on the Bayesian network in Figure 1 to
find the maximum a posteriori (MAP) estimate {X̂, M̂} =
arg max{X,M} P (X,M|U,Z). This can be done by minimis-
ing the negative log of the joint distribution (2):

{X̂, M̂} , arg min
{X,M}

(− log(P (X,M,U,Z))). (6)

By substituting Equations (3), (4) and (5) into (6) we get a
non-linear least-squares problem of the form:

{X̂, M̂} , arg min
{X,M}

{
‖x̃0 − x0‖2

P0
+

T∑
t=1

(
‖f(xt−1,ut)− xt‖2

Qt
+ ‖h(xt,M)− zt‖2

Rt

)}
. (7)

Let us now linearise the non-linear terms and re-write as a
matrix equation:



{X̂, M̂} , arg min
{X,M}

{
‖Bδx0 − {x0 − x̃0}‖2

P0
+

T∑
t=1

(
‖{Ft−1δxt−1 + Bδxt} − {xt − f(xt−1,ut)}‖2

Qt
+

‖{Htδxt + JtδM} − {zt − h(xt,M)}‖2
Rt

)}
, (8)

where Ft−1 is the Jacobian of f(.) w.r.t. xt−1, Ht is the
Jacobian h(.) w.r.t. xt and Jt is the Jacobian of h(.) w.r.t. M.
We have also introduced B = −Id×d so that δxt which is a
small change in the states corresponding to the pose at time t
is treated in the same way as the other terms; where d is the
dimension of a single vehicle pose.

We can now factorise and write a standard least-squares
matrix equation:

AT Σ−1Aδ = AT Σ−1b, (9)

where A is a matrix of Jacobians, Σ is a covariance matrix
and b is an error vector, for a detailed look at the structure of
these matrices refer to [6]. We solve for δ in (9) using direct
sparse methods [4][6].

C. The Hessian, Information Matrix and Inverse Covariance

If the Cramer Rao lower bound [16] is reached, then given
that we have normally distributed zero mean variables the
following condition is satisfied:

P−1 = Y = AT Σ−1A

where AT Σ−1A is the approximation to the Hessian calcu-
lated when solving the least-squares problem (9). This is why
the information matrix Y in the information filter version of
SLAM [19] and the Hessian in the least-squares formulation
of SLAM [17] are equivalent to the inverse of the covariance
matrix P in the more traditional Kalman filter based SLAM
systems. Interestingly, as explained fully in [6], the non-zero
elements of the information matrix Y correspond to links in
the Markov Random Field (MRF) that is equivalent to the
Bayesian network in Figure 1. Each of these links represents
a constraint or relationship between two nodes in the MRF, e.g.
a measurement equation linking a vehicle pose to a landmark
or an odometry equation linking one vehicle pose to the next.
The first row of Figure 2 shows the structure of the information
matrix and MRF for a simple 2D example. Let us now consider
the structure of the information matrix in the first row of
Figure 2: Yv is block tridiagonal and represents the information
from odometry between vehicle poses; Ym is block diagonal
and represents the information about landmarks in the map
and Yvm and Y T

vm represent the information associated with
measuring a landmark from a given pose. We will revisit
this simple example in Section III-A when discussing how
marginalisation affects the structure of both Y and the MRF.
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Fig. 2. Illustrates how the information matrix (left column) and MRF (right
column) change as poses x0 (row 2), x1 (row 3), x2 (row 4) and x3 (row
5) are marginalised out. The light grey region indicates the Markov blanket
that corresponds to the prior term (11) in Equation (10).

III. SLIDING WINDOW SLAM

Each iteration of “standard” EKF-based SLAM provides a
maximum a posteriori estimate for the state at the current time
step. Modern understanding of this recognises that previous
poses have been marginalised out. In contrast, Full-SLAM [2]



finds the maximum a posteriori estimate of the entire pose
history. This is akin to bundle-adjustment techniques from
photogrammetry [8], and has the advantage that more accurate
solutions can be found since optimisation is performed over
past and future data. It does of course suffer from the problem
of growth without bound in the state size. Recently [17]
proposed Sliding Window SLAM; where optimisation is carried
out over a time window of length τ . This aims to capture
the advantages of Full-SLAM, but rather than retaining the
entire trajectory history, poses older than τ are marginalised
out. In our work we take advantage of the optimisation over
the trajectory history not only to improve the pose estimates,
but crucially in order to allow reversible data association and
model selection to take place. Details of this are presented in
section IV, but first we review the two governing equations of
sliding window SLAM which are: (i) an optimisation step

{x̂t−τ :t, M̂} = arg max
{Xt−τ:t,M}

(
P (xt−τ ,M|z1:t−τ ,u1:t−τ )×

t∏
j=t−τ+1

P (zj |xj ,M)P (xj |xj−1,uj)

)
(10)

and (ii) a marginalisation step

P (xt−τ+1,M|z1:t−τ+1,u1:t−τ+1) =∫
P (xt−τ+1,xt−τ ,M|z1:t−τ+1,u1:t−τ+1)dxt−τ . (11)

The term P (xt−τ ,M|z1:t−τ ,u1:t−τ ) is the prior used at time
t and is just the posterior at time t− τ i.e. the distribution of
vehicle pose and map at the beginning of the sliding window.
In practice this is only recalculated when t − τ > 0, before
that time the distribution of initial vehicle pose P (x0) is used
and the marginalisation step is left out.

A. Marginalisation in Information Form

It is well known that it is possible to decouple states y1

from a system of equations of the form:

[
A B
BT D

] [
y1

y2

]
=
[
b1

b2

]
(12)

using the Schur Complement [8] method. The idea is to
pre multiply both sides of the equation with the matrix
[I 0;−BT A−1 I], which results in a system of equations
where y2 can be solved independently of y1 i.e.

[
A B
0 D−BT A−1B

] [
y1

y2

]
=
[

b1

b2 −BT A−1b1

]
(13)

The term D−BT A−1B is known as the Schur Complement
and corresponds to the information matrix for the decoupled
system. If this system of equations represents a least-squares
problem as described in Section II then this is equivalent
to marginalising out the random variables y1. Let us now

consider what happens to the structure of D − BT A−1B
as old poses are marginalised out. Figure 2 shows the effect
of marginalising out poses one by one. The first row shows
the situation before any marginalisation. The second row
corresponds to marginalising out x0, which results in no
change of structure in the information matrix (because no
features were observed from this pose) but does introduce a
prior on the vehicle state x1. Then in the third row x1 has
been marginalised out and a link has been introduced between
x2 and m0, which is also seen in the Yvm block of the
information matrix (this extra link and the prior on x2 and m0

is explained by the prior term in Equation (10)). As poses x2

and x3 are marginalised out more links are again introduced
between the oldest pose and the landmarks; links are also
introduced between landmarks that are no longer observed
from the oldest pose. In practice we use the prior term (3)
in our least-squares formulation to represent the prior term
(11) in the sliding window; where we replace x̃0 with y2, x0

with the poses and landmarks that have a prior and P0 with
(D−BT A−1B)−1. To maintain probabilistic correctness only
equations containing the pose being marginalised out should
be included in the system (12) and then the modified system
(13) should be solved for y2.

IV. REVERSIBLE DATA ASSOCIATION

So far the previous sections have covered the necessary
background knowledge, let us now introduce the first of our
two algorithms. We first relax our assumption of known data
association and introduce integer data association parameters
D , {d1, . . . , dt}, which assign measurement zt to landmark
mdt

. By combining sliding window estimation and least-
squares with generalised expectation maximisation we can
estimate both the continuous state estimates {X̂, M̂} and the
discrete data association parameters D.

zt−1 zt

xt−1 xt

ut−1 ut

dtdt−1

M

Fig. 3. A Bayesian network representing SLAM with reversible data
association (Note:- Square boxes indicate discrete variables).

Figure 3 illustrates the Bayesian network that corresponds
to the joint distribution of the relaxed problem:

P (X,M,D,U,Z) = (14)

P (x0)P (M)P (D)
T∏

t=1

P (zt|xt,M, dt)P (xt|xt−1,ut) .

(15)



What we are really after is the MAP estimate
P (X,M|U,Z), whereas what we have is P (X,M,D,U,Z)
where D is considered a nuisance parameter. One solution
would be to marginalise D out i.e.

P (X,M|U,Z) =
∫
D

P (X,M,D|U,Z)dD.

Unfortunately in practice this integral is computationally in-
tractable because the number of permutations of D grows
exponentially with the length of the sliding window. A more
tractable solution is to use the expectation maximisation
algorithm [10], [5] to estimate P (X,M|U,Z). If we let
Θ = {X,M} and Ψ = {U,Z} then we would like P (Θ|Ψ)
as opposed to P (Θ,D|Ψ). The expectation maximisation
algorithm achieves this by recursively applying the following
two steps:
• E-Step: calculate P (D|Θk,Ψ).
• M-Step: Θk+1 = arg maxΘ

(∫
D

P (D|Θk,Ψ)
log P (Θ|D,Ψ)dD).

A common simplification that is often applied to make the M-
Step even more tractable is the ‘winner-take-all’ approach also
known as classification expectation maximisation [3], [12],
which assumes P (D|Θk,Ψ) to be a delta function centered
on the best value of D, reducing the algorithm to:
• E-Step: Dk+1 = arg maxD P (D|Θk,Ψ).
• M-Step: Θk+1 = arg maxΘ P (Θ|Dk+1,Ψ).

Finally, it has been shown that it is not necessary to
complete the maximisation but that a single step where
P (Θk+1|Dk+1,Ψ) >= P (Θk|Dk,Ψ) is not only sufficient
for convergence but often improves the rate of convergence
[13]. For probabilistic correctness it is necessary to use the
joint distribution over landmarks and a single pose during
the E-Step i.e. JCBB. In practice this is very slow for large
numbers of measurements and so we also include in our
results an implementation which makes an extra assumption of
landmark independence during the E-Step i.e. chi-squared NN.
In practice this method gives a significant improvement over
other methods (which do not use reversible data association)
without the full cost of JCBB. It is also interesting at this point
to draw on the similarity between this approach and iterative
closest point; the significant difference is that our method uses
the underlying probability distribution (Mahalanobis distances)
to find the most likely correspondences as opposed to the
closest in a euclidean sense. Algorithm 1 gives a summary
of our method.

V. SLAM IN DYNAMIC ENVIRONMENTS

We will now introduce our method for SLAM in dynamic
environments (SLAMIDE). Let us start by relaxing the prob-
lem even further by: (i) introducing model selection parameters
VT , {v0

T , . . . , vk
T }, which consist of a binary indicator

variable per landmark taking the value stationary or dynamic
with probability p, 1− p respectively; (ii) extending the state
vector for each landmark to include velocities ẋ, ẏ and (iii)
using the estimated landmark velocities as observations to

Algorithm 1: SLAM with reversible data association.
P = P0;x0 = x̃0;M = [];D = [];
for t=[0:T] do

DoVehiclePrediction();
while |δ|∞ > ε do

D̂ = DoDataAssociation();
AddAnyNewLandmarks();
Compute A, Σ and b;
Solve for δ in AT Σ−1Aδ = AT Σ−1b;
{x̂t−τ :t, M̂} = {x̂t−τ :t, M̂}+ δ;
Compute P using triangular solve;

end
if t− τ > 0 then

Compute y2 and D−BT A−1B using Schur
Complement method (see Section III-A);

end
end

a Hidden Markov Model (HMM) that estimates the prob-
ability of an object being dynamic or stationary. Figure 4
is a Bayesian network that shows our formulation of the
SLAMIDE problem, where the most significant changes from
normal SLAM are:

• The map becomes time dependent M , {M0, . . . ,Mt}.
• Model selection parameters VT , {v0

T , . . . , vk
T } are

introduced.
• Data association parameters D , {d1, . . . , dt} are intro-

duced.

zt−1 zt

xt−1 xt

ut−1 ut

Mt−1

dtdt−1

Mt

VT

Fig. 4. A Bayesian network representing SLAMIDE (Note:- Square boxes
indicate discrete variables).

The corresponding joint distribution P (X,M,D,V,U,Z)
from Figure 4 is:

P (X,M,D,V,U,Z) = P (x0)P (M0)P (D)P (VT )×
T∏

t=1

P (zt|xt,Mt, dt)P (xt|xt−1,ut)P (Mt|Mt−1,VT ),

(16)

where:

• P (VT ) is a prior on the model selection parameters.



• P (Mt|Mt−1,VT ) is the motion model for the map given
the current estimate of the model selection parameters.
We use constant position for stationary landmarks and
constant velocity with noise in ẋ and ẏ for dynamic
landmarks.

Following the same principles used in our reversible data
association method and including the extra nuisance parameter
V we propose the following five steps to solve the optimisa-
tion:

1) Dk+1 = arg maxD P (D|Θk,Vk,Ψ)
2) Θk+1 = arg maxΘ P (Θ|Dk+1,Vk,Ψ)
3) Mk+1′ = arg maxM P (M|Xk+1,Dk+1,V = dyn,Ψ)
4) Vk+1 = arg maxV P (V|Xk+1,Mk+1′ ,Dk+1,Ψ)
5) Θk+1 = arg maxΘ P (Θ|Dk+1,Vk+1,Ψ)

Step 1: performs the data association using either NN or
JCBB. In practice this is actually also computed at every
iteration in steps 2, 3 and 5.
Step 2: is a least-squares optimisation for the vehicle poses
and landmark states using the new data association. The
main purpose of this optimisation is to refine the predicted
vehicle and landmark locations using the new measurements.
In practice this step is particularly important if the vehicle pre-
diction is poor (large odometry noise), because large vehicle
uncertainty gives rise to an ambiguous situation where it is
hard to differentiate between vehicle and landmark motion.
Step 3: optimises for the landmark states assuming all land-
marks are dynamic whilst holding the vehicle poses constant.
The reason the vehicle poses are held constant is to remove
any ambiguity between vehicle and landmark motion. This
is reasonable if most of the landmarks maintain their model
selection between time steps and hence the Xk+1 given by
Step 2 is close to the optimal answer.
Step 4: takes the answer from Step 3 and computes the next
step of the HMM using a recursive Bayesian filter; where the
likelihood model is a Gaussian on the average velocity with
σ=2.0m/s and µ=0 and the prior P (VT ) for landmark j is:

P (vj
T = stationary) =

{
0.6 if vj

T−1 = stationary,

0.4 if vj
T−1 = dynamic,

which is based on VT−1 the model selection parameters
chosen at the last time step. Given that the probability P (vj

T =
stationary) = p and P (vj

T = dynamic) = 1 − p we
threshold at 0.5 to get a discrete decision on which model
to use.
Step 5: is a least-squares optimisation with the new model
selection and data association parameters (using the answer
from Step 2 as the starting point for optimisation). This step
refines the estimate from Step 2 taking into account any
changes in model selection to give the final estimate for this
time step.

In practice this whole process only requires a few least-
squares iterations typically: two in Step 2; one in Step 3 and
two or three in Step 5; Step 1 and Step 4 are solved directly.
Map Management: When adding a new landmark we ini-
tialise its model selection probability to 0.5 (to reflect the

uncertainty in whether it is dynamic or stationary) and add
a very weak prior of zero initial velocity; this weak prior is
essential to make sure that a landmark’s velocity is always
observable and hence our system of equations is positive
definite. We also remove any dynamic landmarks that are
not observed within the sliding window, this is done for two
reasons: (i) real world objects do not obey a motion model
exactly and so errors accumulate if you predict for too long
and (ii) if you continue predicting a dynamic landmark and
hence adding noise, then at some point measurements begin
to get incorrectly associated to it due to the Mahalanobis test.

VI. RESULTS

We use two simple 2D environments, which cover 400m
by 400m, one with 15 landmarks and the other with 20
landmarks. In both environments the vehicle moves between
three waypoints at 5m/s using proportional heading control
(max. yaw rate 5◦/sec) and provides rate-of-turn, forwards
velocity and slip as odometry with covariance Q. It has a range
bearing sensor with a 360◦ field-of-view, 400m range and zero
mean Gaussian noise added with covariance R. The second
environment is used for the dynamic object experiment where
we progressively change stationary landmarks to dynamic
landmarks, which move between waypoints using the same
control scheme, speed and rate-of-turn as the vehicle.

We compare our method using either NN or JCBB for data
association against an IEKF with either NN or JCBB. All
experiments are 60 time steps long and use: a chi-squared
threshold of υT S−1υ < 16; a sliding window length of 6 time
steps; odometry noise (all noise quotes are for 1σ) of 0.1m/s
on forwards velocity and 0.01m/s on slip; measurement noise
of 1m for range and 0.5◦ for bearing; a maximum number
of 8 iterations; the same stopping condition and the same
initial vehicle uncertainty. The reason we use such a large
chi-squared threshold is because for any significant angular
uncertainty linearising the prediction covariance can cause all
measurements to fall outside their data association gates.

In order to compare the performance of the algorithms we
use two metrics: (i) the percentage of correct data association,
which we define to be the ratio of correct associations between
time steps w.r.t the number of potential correct associations
(×100) and (ii) the percentage of consistent runs where we
use the following test to determine whether a run is consistent:
compute the Normalised Estimation Error Squared (NEES),
which is defined as D2

t = (xt − x̂t)T P−1
t (xt − x̂t) and then

for each time step perform the corresponding chi-squared test
D2

t ≤ χ2
r,1−α where r is the dimension of xt and α is a

threshold. We take the threshold α to be 0.05 and can then
compute the probability of this test failing k times out of
n from the binomial distribution B(n, α), which we use to
threshold on the number of times the test can fail before we
are 99% certain that a run is inconsistent.

We have carried out three Monte-Carlo simulation exper-
iments (where each point on the graphs has been generated
from 100 runs):



Figure 5 - Noise in rate-of-turn odometry: Performance was
tested without clutter against increasing noise in rate-of-turn
odometry with a variance of 1◦ to 60◦. The IEKFJCBB and
our RDJCBB both perform perfectly with data association but
start becoming inconsistent more often for higher noise levels.
As expected our RDNN outperforms the IEKFNN and matches
the performance of IEKFJCBB up to around 25◦ of noise; this
is interesting because it shows the RDNN could be used as a
faster alternative to IEKFJCBB for medium noise problems.
Figure 6 - Number of clutter measurements: Performance
was tested with a noise of 1◦ for rate-of-turn odometry against
increasing clutter from 0 to 100 clutter measurements within
the sensor range. This is where the real benefit of reversible
data association becomes apparent. All algorithms tested use
the same map management scheme, which is to remove land-
marks that are not observed for three consecutive time steps
after they have been added to the map. In the traditional IEKF
this is done by simply removing them from the state vector and
covariance matrix (marginalisation); whereas with our scheme
if the information is removed before marginalisation i.e. the
sliding window is longer than the time required to carry out
map management then there is no effect on the estimate. This
is clear from Figure 6 as both of our methods maintain their
consistency with increasing clutter as opposed to the IEKF
based methods which tail off.
Figure 7 - Percentage of dynamic objects: Performance was
tested without clutter and with a noise of 1◦ for rate-of-turn
odometry against an increasing percentage of dynamic objects
from 0 to 100 percent. The figure clearly shows that using
SLAMIDE to include dynamic objects allows us to navigate
in regions with dynamic objects. We maintain a good level of
consistency up to 90% of dynamic objects at which point the
performance degrades until at 100% every run is inconsistent,
which is because the system is no longer observable; i.e. there
are ambiguities between vehicle and landmark motion.
Timing Results: With 20 measurements per time step and a
sliding window length of 6 time steps on a 3.6GHz Pentium
4 the IEKF and SLAM with reversible data association run
at approximately 30Hz and SLAMIDE runs at about 3Hz.
We believe this can be significantly improved upon as we
have yet to fully optimise the code, for instance we currently
do a dense solve for P = Y−1 which is a bottleneck (this
could be heavily optimised or possibly avoided completely).
Also, once a landmark has been created and passed the map
management test, it always remains in the estimate; however,
sliding window estimation is constant time if you choose to
marginalise out landmarks i.e. maintain a constant state size.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a method that combines sliding window
optimisation and least-squares together with generalised ex-
pectation maximisation to do reversible model selection and
data association. This allows us to include dynamic objects
directly into the SLAM estimate, as opposed to other tech-
niques which typically detect dynamic objects and then either
treat them as outliers [20][1] or track them separately [18].
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Fig. 5. Comparison for increasing odometry (rate-of-turn) noise.

Our initial simulation results show that: (i) our SLAMIDE
algorithm significantly outperforms other methods which treat
dynamic objects as clutter; (ii) our method for computing
reversible data association remains consistent when other
data association methods fail and (iii) our reversible data
association provides excellent performance when clutter is
present. Aside from simulation we have also successfully run
our algorithms on a small set of real radar data with very
promising initial results.

The first thing we would like to improve is the use of
a Gaussian on average velocity for the likelihood model in
our model selection. In practice this works well, however, a
technique that does not introduce an extra threshold would be
preferable, ideally it would work directly on the estimated
distribution and the innovation sequence over the sliding
window. Secondly, we have observed that the length of the
sliding window in our experiments is often longer than it needs
to be. We are currently considering an active threshold based
on the convergence of parameters within the sliding window
to select an appropriate length on the fly.

In summary, we have developed a method for robustly
including dynamic objects directly into the SLAM estimate as
opposed to treating them as outliers. The benefit of including
dynamic objects in a single framework is clear for navigation
and path planning; interestingly it also helps with localisation
in highly dynamic environments, especially during short peri-
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Fig. 6. Comparison for increasing clutter.

ods of time without any stationary landmark observations. Our
longer term goal is to build a navigational aid using sliding
window SLAM with reversible data association and reversible
model selection to fuse data from a high performance pan tilt
camera, marine radar, GPS and compass.
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