
Optimal Kinodynamic Motion Planning for
2D Reconfiguration of Self-Reconfigurable Robots

John Reif Sam Slee
Department of Computer Science, Duke University Department of Computer Science, Duke University

Abstract— A self-reconfigurable (SR) robot is one composed of
many small modules that autonomously act to change the shape
and structure of the robot. In this paper we consider a general
class of SR robot modules that have rectilinear shape that can be
adjusted between fixed dimensions, can transmit forces to their
neighbors, and can apply additional forces of unit maximum
magnitude to their neighbors. We present a kinodynamically
optimal algorithm for general reconfiguration between any two
distinct, 2D connected configurations of n SR robot modules.
The algorithm uses a third dimension as workspace during
reconfiguration. This entire movement is achieved within O(

√
n)

movement time in the worst case, which is the asymptotically
optimal time bound. The only prior reconfiguration algorithm
achieving this time bound was restricted to linearly arrayed
start and finish configurations (known as the “x-axis to y-axis
problem”). All other prior work on SR robots assumed a constant
velocity bound on module movement and so required at least time
linear in n to do the reconfiguration.

I. INTRODUCTION

The dynamic nature of self-reconfigurable robots makes
them ideally suited for numerous environments with chal-
lenging terrain or unknown surroundings. Applications are
apparent in exploration, search and rescue, and even medical
settings where several specialized tools are required for a
single task. The ability to efficiently reconfigure between the
many shapes and structures of which an SR robot is capable
is critical to fulfilling this potential.

In this paper we present an O(
√
n) movement time al-

gorithm for reconfiguration between general, connected 2D
configurations of modules. Our algorithm accomplishes this
by transforming any 2D configuration into a vertical column in
a third dimension in O(

√
n) movement time. By the Principle

of Time Reversal mentioned in [4], we may then reconfigure
from that vertical column to any other 2D configuration in
the same movement time. Thus, we have an algorithm for
reconfiguration between general 2D configurations by going
through this intermediate column state.

We begin with a general, connected 2D configuration in
the x/y-axis plane, with the z-axis dimension used as our
workspace. The configuration is represented as a graph with
a node for each module and an edge between nodes in the
graph for pairs of modules that are directly connected. The
robot modules are then reconfigured in O(1) movement time
so that they remain in the x/y-axis plane, but a Hamiltonian
Cycle (a cycle that visits each module exactly once) is formed
through the corresponding graph and is known.

Using this cycle we create a Hamiltonian Path which
may be reconfigured in O(

√
n) movement time so that each

module has a unique location in the z-axis direction. It is in

this stage that our kinodynamic formulation of the problem
is necessary to achieve the desired movement time bound.
Finally, in two further stages all modules will be condensed
to the same x-axis location and y-axis location in O(

√
n)

movement time. This forms the intermediate configuration of
a z-axis column of modules. Reversing this process allows
general reconfiguration between connected, 2D configurations.

Organization The rest of the paper is organized as follows.
Work related to the results given in this paper is summarized
in Section II. In Section III the problem considered in this
paper is more rigorously defined and the notation that will
be used in the remainder of the paper is given. In Section
IV we transform a general, connected 2D configuration of
modules into a 2D configuration with a known Hamiltonian
Cycle through its modules in O(1) movement time. In Section
V that Hamiltonian Cycle is used to allow reconfiguration into
the z-axis column intermediate stage. Finally, we conclude
with Section VI.

II. RELATED WORK

The results given in this paper primarily apply to lattice
or substrate style SR robots. In this form, SR robot modules
attach to each other at discrete locations to form lattice-
like structures. Reconfiguration is then achieved by individual
modules rolling, walking, or climbing along the surfaces
of the larger robotic structure formed by other modules in
the system. Several abstract models have been developed by
various research groups to describe this type of SR robot.

In the work of [7] these robots were referred to as metamor-
phic robots (another common term for SR robots [2, 3, 8]).
In this model the modules were identical 2D, independently
controlled hexagons. Each hexagon module had rigid bars
for its edges and bendable joints at the 6 vertices. Modules
would move by deforming and “rolling” along the surfaces
formed by other, stationary modules in the system. In [1]
the sliding cube model was presented to represent lattice-
style modules. Here each module was a 3D cube that was
capable of sliding along the flat surfaces formed by other cube
modules. In addition, cube modules could make convex or
concave transitions between adjacent perpendicular surfaces.

Most recently, in [4] an abstract model was developed that
set explicit bounds on the physical properties and abilities
of robot modules. According to those restrictions, matching
upper and lower bounds of O(

√
n) movement time for an

example worst case reconfiguration problem were given. The
algorithm for that problem, the x-axis to y-axis problem, was



designed only for that example case and left open the question
of finding a general reconfiguration algorithm. This paper
gives an O(

√
n) movement time algorithm for reconfiguration

between general, connected 2D configurations. This algorithm
satisfies the abstract model requirements of [4] and matches
the lower bound shown in that paper.

While the results of this paper are theoretical, the abstract
modules used do closely resemble the compressible unit or
expanding cube hardware design. Here an individual module
can expand or contract its length in any direction by a constant
factor dependent on the implementation. Modules then move
about in the larger system by having neighboring modules
push or pull them in the desired direction using coordinated
expanding and contracting actions. Instances of this design
include the Crystal robot by Rus et. al. [5] and the Telecube
module design by Yim et. al. [6]. In [5, 6] algorithms are given
that require time at least linear in the number of modules.

III. NOTATION AND PROBLEM FORMULATION

Bounds and Equations We assume that each module has
unit mass, unit length sides, and can move with acceleration
magnitude upper bounded by 1. This acceleration is created by
exerting a unit-bounded force on neighboring modules so that
one module slides relative to its neighbors. Each module in any
initial configuration begins with 0 velocity in all directions.
We also assume that each module may exert force to contract
itself from unit length sides to 1/2 unit length or expand up
to 3 units in length in any axis direction in O(1) time. These
assumptions match the abstract module requirements stated in
[4]. Friction and gravitational forces are ignored. Our analysis
will make use of the following physics equations:

Fi = miai (1)

xi(t) = xi(0) + vi(0)t+
1
2
ait

2 (2)

vi(t) = vi(0) + ait . (3)

In these equations Fi is force applied to a module i having
mass mi and acceleration ai. Similarly, xi(t) and vi(t) are
module i’s position and velocity after moving for time t.

Problem Formulation Define the coordinate location of a
module in a given axis direction as being the smallest global
coordinate of any point on that module. This must be the loca-
tion of some face of the module since all modules are assumed
to be rectangles with faces aligned with the 3 coordinate axes.
Let A and B be two connected configurations, each of n
modules with each module having a z-axis coordinate of 0
and unit-length dimensions. Let at least one module δ in A
and one module β in B have the same coordinate location.
The desired operation is reconfiguration from A to B while
satisfying the requirements of the abstract model given in [4].

IV. CREATING A HAMILTONIAN CYCLE

We begin to lay the groundwork for our algorithm by first
showing that a Hamiltonian Cycle may be formed through a
collection of modules in a general, connected 2D configuration

along the x/y-axis plane. We consider this configuration as a
graph, with the modules represented as nodes and connections
between touching, neighboring modules represented as edges
in the graph. First a spanning tree for this graph will be found.
Then the modules will be reconfigured to form a Hamiltonian
Cycle through them that essentially traces around the original
spanning tree.

A. Finding A Spanning Tree
To facilitate the creation of such a cycle, we will form a

spanning tree by alternating stages of adding rows and stages
of adding columns of modules to the tree. We later show how
this method of creating a spanning tree is useful. We define a
connected row of modules as a row of modules i = 1, . . . , k
each having the same y-axis coordinate and with face-to-face
connections between adjacent modules i and i+ 1 along that
row. A connected column is defined in the same way as a
connected row, but with each module having the same x-
axis coordinate. An endpoint module has only one adjacent
neighbor in the spanning tree.

Define a free module as one that has not yet been added to
the spanning tree. Consider a case where we have a partially
formed spanning tree T and a given module p that has been
added to T . Let the free-connected row about p be the longest
possible connected row of modules which includes p and
is composed only of modules, other than p, that are free.
Similarly, the free-connected column about p is the longest
possible connected column of modules which includes p
and is composed only of free modules (with p possibly not
free). These definitions are used in the algorithm below and
examples are given in Figure 1.

CREATE SPANNING TREE(Module m)
Input: A module m in the 2D configuration.

Output: A spanning tree of all configuration modules.
Initialize: Add m to spanning tree T .

Add m to queue R.
Add m to queue C.

While: R is nonempty or C is nonempty.
Repeat:

For-each module x in R
Remove x from queue R.
For-each module y in x’s free-connected row

Add y to tree T as part of that row.
Add y to queue C.

End-for-each
End-for-each

For-each module x in C
Remove x from queue C.
For-each y in x’s free-connected column

Add y to tree T as part of that column.
Add y to queue R.

End-for-each
End-for-each



The algorithm above simply adds modules to the spanning
tree through alternating stages of adding free-connected rows
and columns of modules. The For-each loops are executed
synchronously so rows and columns are added one at a
time (i.e. no time overlap). The fact that we add these
synchronously and that we alternate between row stages and
column stages will be used in later proofs.

Spanning Tree Property 1: If two modules a and b have a
face-to-face connection, the same y-axis (x-axis) coordinate,
and were each added to the spanning tree as part of rows
(columns), then a and b were added as part of the same free-
connected row (column).

An example run of this tree creation algorithm is given in
the top row of pictures in Figure 1. The bottom row of pictures
shows how the spanning tree may be converted to a double-
stranded spanning tree, which will soon be discussed.

Lemma 1: The algorithm described above finds a spanning
tree through a given 2D connected configuration along the x/y
plane and satisfies Spanning Tree Property 1.
Proof: To prove that a spanning tree is formed we must show
that all modules are added to the tree and that no cycles are
created. First, consider a case where the algorithm for creating
the spanning tree has finished, but one or more modules have
not been added to the spanning tree. Since the given 2D
configuration is assumed to be connected, there must be some
module q in the group, not yet added to the spanning tree, that
has a face-to-face connection to another module d which has
been added to the spanning tree.

Yet, in this case q would be a part of either module d’s
free connected row or its free connected column. So q would
have been added to the spanning tree when d was added or in
the next stage when the free connected row or column about
d was added. Hence, we cannot have that the algorithm has
finished and module q is not a part of the spanning tree. Thus,
all modules must be part of the spanning tree.

Furthermore, with the exception of the first module added to
the tree (module p0) modules are added to the spanning tree
through either a free connected column or a free connected
row. Then each module m has at most one ‘parent’ module
in the spanning tree: the module preceding m along the row
or column with which m was added. Hence, no cycles are
formed and a complete spanning tree has been created. Also,
each module is added to the spanning tree exactly once and is
considered for inclusion in the spanning tree at most 4 times
(once when each of its 4 possible neighbors are added). Thus,
the algorithm terminates and, from a centralized controller
viewpoint, it takes O(n) computation time.

Finally, to prove that Spanning Tree Property 1 holds,
consider two modules a and b that were added to the spanning
tree from different rows r1 and r2, respectively, but share a
face-to-face connection and have the same y-axis coordinate.
Since rows are added synchronously one at a time, either r1
or r2 was added first. Without loss of generality let it be r1.
Then at the time that module a was added as part of r1,
module b would have been free. Thus, module b would have
been included in r1, the same free-connected row as module

Fig. 1. Top Row: Creating a spanning tree by successive rows and columns.
Bottom Row: Transforming into a double-stranded spanning tree.

a, instead of r2. Thus, Spanning Tree Property 1 holds for
rows. A matching argument for columns also holds (replacing
rows r1 and r2 with columns c1 and c2 and letting a and b
have the same x-axis coordinate instead of the same y-axis
coordinate). Thus, Spanning Tree Property 1 holds for both
rows and columns. 2

B. Doubling the Spanning Tree

With a spanning tree through our given 2D configuration
now found, we may focus on turning that into a Hamiltonian
Cycle. A basic step for this is to divide the modules along
the spanning tree into adjacent pairs of modules. We then
reconfigure each of these pairs of consecutive 1×1 dimension
modules along that spanning tree into 1

2×2 dimension modules
that run parallel to each other in the direction of the original
spanning tree. An example is shown in the 3 pictures along
the bottom row of Figure 1.

This reconfiguration is done so that each pair of modules
maintains the same 1 × 2 length dimension bounding box
around those modules. So, all such reconfigurations may be
done locally and simultaneously in two stages. Using two
stages allows alternating pairs of modules to be kept stationary
so that the overall configuration does not become discon-
nected. At all times adjacent modules along the spanning tree
will share at least a corner connection from the 2D ‘bird’s eye’
view (which is really an edge connection since each module
has a 3D rectilinear shape).

The effect of this reconfiguration is to transform our original
tree into a “double-stranded” spanning tree. That is, a spanning
tree which has two parallel sets of modules along each edge
of the tree, but with single modules still permitted at the
endpoints of the tree. This allows traversal of the tree by using
one module from each pair to travel ‘down’ a tree branch, and
the other module in the pair to travel back ‘up’ the branch.
Further reconfiguration work will transform this intuition into
an actual Hamiltonian Cycle.

Lemma 2: Given the spanning tree T formed in Lemma
1, the modules in that tree may be paired such that the only
modules remaining single are endpoint modules in that tree.
Proof Sketch: Begin with the root module p0 and pair



modules while moving away from p0. At the end of any
row/column if a module p is left single it is either: (1) an
endpoint of the spanning tree, or (2) included in some other
column/row where pairs have not yet been assigned. In case
(1) no more work is needed and in case (2) recursively solve
the subtree that has module p as its root. 2

Now that we have the modules in our spanning tree paired
together, the next step is to reconfigure those pairs so that
the desired double-stranded spanning tree is formed. This
reconfiguration and its proof are similar to the confined cubes
swapping problem introduced in [4].

Lemma 3: Consider a row of n modules in the x/y plane,
labeled i = 1, . . . , n along the row, each having unit length
dimensions. Each pair of adjacent modules along the row may
be reconfigured in O(1) movement time so that each has 1/2×2
unit dimensions in the x/y plane while maintaining the same
1 × 2 unit dimension bounding box around each pair in that
plane throughout reconfiguration.
Proof Sketch: Same as given in the c. c. s. problem in [4]. 2

With the reconfiguration step proven for a single row, we
may now state that the entire double-stranded spanning tree
may be formed in O(1) movement time.

Lemma 4: Given the spanning tree formed in Lemma 1,
and the pairing of modules along that tree given in Lemma 2,
that spanning tree may be reconfigured into a double-stranded
spanning tree in O(1) movement time.
Proof Sketch: Module pairs reconfigure just as in Lemma
3, but here all pairs reconfigure simultaneously in one of
two stages. Placing adjacent module pairs into different stages
keeps the total configuration connected throughout. 2

C. Forming a Hamiltonian Cycle

With the lemmas above we have shown that any connected,
2D configuration of modules may be reconfigured into a
double-stranded (DS) spanning tree in O(1) movement time.
The next step is to form a Hamiltonian Cycle. Note that a
single DS module pair, or a module left single, trivially forms
a “local” cycle of 2 or 1 module, respectively. Thus, all that
remains is to merge local cycles that are adjacent along the
DS spanning tree. This will form a Hamiltonian Cycle that
effectively traces around the original tree.

Single modules only occur at the endpoints of the spanning
tree. So, we only have 2 types of adjacent local cycle merge
cases to consider: (1) DS module pair adjacent to another DS
pair, and (2) DS pair adjacent to a single module. Thus, it is
sufficient to consider these merge cases from the viewpoint of
a given DS pair. Figure 2 illustrates an example DS pair and
the 6 possible locations, A-F, of adjacent local cycles. These

Fig. 2. The 6 possible lo-
cations for neighbors adja-
cent to a double-stranded
module pair.

6 neighbor locations have 2 types:
(1) at the endpoint of the DS pair
(locations A and D) and (2) along the
side of the DS pair (B, C, E, and F).

Since the original spanning tree was
made with straight rows and columns,
adjacent DS pairs along the tree will
typically form straight lines or make

Fig. 3. (1,2): Adjacent neighbors occurring at ‘endpoint’ locations A or D.
(3,4): Adjacent neighbors occurring at ‘side’ locations B, C, F, or E.

perpendicular row-column connections. The lone exception
is a short row-column-row or column-row-column sequence
where the middle section is only 2 modules long. This can
sometimes cause adjacent DS pairs that are parallel but slightly
offset. An example of this situation, which we refer to as the
kink case, occurred in the example in Figure 1 (modules 1,2,3
and 4). Later it is also shown more clearly in Figure 4.

We now have only 5 types of local cycle merges to handle:
(1) pair-single merge at the end of the pair, (2) pair-pair merge
at the end of each pair, (3) pair-single merge at the side of the
pair, (4) pair-pair merge at the side of 1 pair and end of the
other pair, and (5) pair-pair merge at the side of each pair (kink
case). A given DS pair must be able to simultaneously merge
with all neighboring local cycles adjacent to it along the DS
spanning tree. In order to merge adjacent cycles, there needs
to be sufficient face-to-face module connections between the
2 cycles to allow one cycle to be “inserted” into the other
cycle. In the 2D viewpoint of this paper’s figures, this means
shared edges between modules rather than just a shared point.
We now present 5 reconfiguration rules for handling all 5
cases as well as 4 further rules for resolving potential conflicts
between the first 5 rules. Typically, a rule first shows the
cycles to be merged and then shows the reconfigured modules
after their cycles have been merged in O(1) movement time.
In the following descriptions, a module’s length refers to its
longest dimension and a module’s width refers to its shortest
dimension in the x/y-plane.

Rules 1, 2: The leftmost two pictures of Figure 3 show
examples of merge types 1 and 2: neighbors at the ends of the
DS pair. No reconfiguration of the modules is necessary as
the adjacent modules already share sufficient edges to allow
cycle merges. Thus, no conflict can arise between multiple
applications of rules 1 and 2.

Rules 3, 4: In Figure 3 rules are also given for handling
merge types 3 and 4. The two middle pictures in Figure 3
show how to insert a single module into a DS pair while the
two rightmost pictures show how to insert another DS pair.
In reconfigurations for this rule modules travel O(1) distance
and do not exceed the original bounding boxes of the modules
shown. Thus, reconfiguration takes O(1) movement time and
does not interfere with other modules in the system. Note that
rules 3 and 4 may simultaneously be applied at each of the
four possible side locations along this DS pair without conflict.

The only possible conflict occurs with the module end that
was extended in rule 4, when this same module end is also
faced with another rule 4 application along its side (a rule 3
application at this same side location is not a problem). This



Fig. 4. Rule 5: Double-stranded module pairs occurring in a ‘kink’ case.

second rule would require the module end to contract, creating
a direct conflict with the first rule. In this case the conflicted
module does contract and the void it was supposed to extend
and fill will be handled later by reconfiguration rule 8.

Rule 5: In Figure 4 we present a reconfiguration rule for
handling the last type of local cycle merge, the type 5 ‘kink
case’. Dark blue modules are those adjacent to each other
along the kink case. Light red modules are from a different
part of the spanning tree not directly connected to any of the
blue modules. In this example the blue modules were added in
a left-to-right, row-column-row order sequence. We now prove
two small properties about this kink case arrangement.

Proposition 1: The green square labeled “open” is not
occupied by any module in the original 2D configuration.
Proof: Since the blue modules in this kink case were added
to the original spanning tree in a left-to-right order, modules w
and x were added first as part of a left-to-right row (before r
and s were added). If the green square were occupied by some
module g then it would have been added either as part of a row
or part of a column. If added as part of a row then by Spanning
Tree Property 1 module g would be part of the same row as
modules w and x and thus would be added before modules
r and s. Yet, in this case in the next part of the sequence
for creating the kink case, modules r and s would have been
added as parts of different columns and therefore could not
have been paired together as shown.

So, if module g exists it must have been added to the
spanning tree as part of a column. In this case, the column
would have to be added before modules w and x were added
as part of a row. Otherwise module g would be part of that row
instead. Yet, this means that module s would have been part
of the same column. Thus, modules r and s could not have
been paired together as shown and follow modules w and x
as part of a left-to-right kink case. Thus, module g could not
have been added as part of a column and hence could not
exist. Thus, the green square must be unoccupied. 2

Proposition 2: The red ‘question mark’ square, if occupied
by a ‘red’ module, must have been added to the spanning tree
as part of a column and must not have a neighbor to its left
adjacent to it in the spanning tree.
Proof Sketch: Let the supposed red module be labeled m. If
m is added to the tree before module w then it would be part
of the same column as w or part of the same row as r. Either
would prevent the kink case shown. Also, m cannot be added
after module s because then it would be part of a column
coming up from w – meaning it would not be a red module.
So m is added to the tree after w but before s, and thus must

Fig. 5. Rule 6: Correcting a conflict between a rule 4 and a rule 5 case.

be part of a column. Also, it cannot have a red neighbor to its
left (added from a row) because such a module would first be
added as part of a blue column. 2

These properties allow rule 5 to work. The green square in
the bottom-right corner is open, so module s can expand into
that space. If the upper-left corner (question mark space m)
is filled by a blue module, by rules 3 and 4 it will first be
inserted to the left of module w and will not be a problem.
Otherwise that corner is filled by a red module which may be
pushed upwards as shown in picture 5.3.

Only two minor issues remain: (1) rule case 4 requires a
module with width 1/2 to extend its length and fill a void,
but modules w and s in the kink case have width 1, and (2)
module s expands its width into an open space below it, but
what if another module from a different kink case also expands
into that space? These conflicts are handled by rules 6 and 7.

Rule 6: Figure 5 gives a reconfiguration rule for handling
one of the possible conflicts caused by the previous kink case.
In all pictures shown the green square marked “open” must be
unoccupied. If the kink case in Figure 5 (modules r, s, t and
u) was formed right-to-left then by Proposition 1 that green
square must have been unoccupied for the kink case to form.
Otherwise the kink case is formed left-to-right. Consider if
some module m did occupy the green space. Module m cannot
be part of a row because by Spanning Tree Property 1 it would
be part of the same row as modules t and u, preventing the
kink case from forming.

The only remaining possibility is that module m was added
to the tree as part of a column. This column must have been
added after the bottom row of the kink case. Otherwise either
module r or s would have been part of that column and not
part of the kink case shown. Thus, r and s are added to the tree
before any module in the green space (module m). Yet, then
in the same stage when r and s are added as part a row (left-
to-right), module m would have been added as part of a row
along with modules t and u (left-to-right) since the column to
its left was added before modules r and s. Again, this prevents
the kink case from forming and so is not possible. Hence, the
green square must be unoccupied in all pictures shown. If we
only have blue modules (all adjacent along the spanning tree)
then reconfiguration may proceed as in 6.1.

The only other conflict from combining the kink case with
rule 4 is shown in Figure 5, picture 6.2, and is handled by
either 6.2a or 6.2b. In this arrangement, the conflict occurs if



we require DS pair (w, x) to be adjacent to DS pair (y, z) in
the spanning tree. It is not important that these module pairs
be adjacent, just that each module pair be attached to the tree
at exactly one location. So, the tactic used is split and steal:
break apart adjacent DS pairs and add one pair, along with
its subtree, to a different portion of the spanning tree. First,
consider the case where pair (w, x) is the parent of pair (y, z)
(i.e. (w, x) precedes (y, z) in the DS tree). In this case split off
pair (y, z) and insert it into the ‘blue’ portion of the spanning
tree as shown in picture 6.2a.

In the opposite scenario, pair (y, z) is the parent of pair
(w, x). In this case, the blue kink case must have been formed
from right to left. Note that if the kink case was formed from
left to right, modules p and q would have been added as part
of a column. Yet, since pair (y, z) is the parent of pair (w, x),
modules y and z would have been added as part of a column.
By Spanning Tree Property 1, this means that y, z, p, and q
would have to be part of the same column. This is not the case
as shown in picture 6.2. Therefore, the kink case must have
been formed right to left and pair (r, s) must be the parent of
pair (p, q). Thus, we can split off pair (p, q) and add it to the
red portion of the spanning tree as shown in 6.2b.

In both 6.2a and 6.2b, the DS module pair chosen to move
to a new location was the child pair rather than the parent.
Therefore, when the parent and child are split, the parent can
stay at its old location. Meanwhile, the child pair may be
successfully added to its new location or may be stolen by a
third spanning tree location not shown. In this way, no conflicts
will arise between multiple applications of Rule 6.

Rule 7: Picture 7.0 in Figure 6 depicts a case where two
different kink cases will attempt to expand into the same open
space. Picture 7.1 depicts the resulting collision. To resolve
this conflict, consider the case where module pair (p, q) is the
parent of pair (y, z). In this case we can, once again, apply
the “split and steal” tactic and join module pair (y, z) to the
blue portion of the spanning tree. Figures 7.2 and 7.3 depict
how this can happen depending on whether module y has a
neighbor to its left in the blue question mark area shown in

Fig. 6. Rule 7: Correcting a
conflict between two rule 5 cases.

picture 7.3. Alternatively, if
module pair (a, b) was the par-
ent of pair (w, x), then the
same reconfiguration could be
applied to add module pair
(w, x) to the red portion of the
spanning tree instead. If neither
case occurs, then pair (y, z) is
the parent of pair (p, q), and
pair (w, x) is the parent of pair
(a, b). In this case, we can add
modules y, z, p, and q to the
blue portion of the spanning
tree as shown in picture 7.4.

Rule 8: In Figure 7 rules
are given to resolve a conflict
between two simultaneous rule
4 applications. The initial state

Fig. 7. Rule 8: Correcting a conflict between two rule 4 cases.

of this module arrangement is given with the blue modules
in picture 8.0. The green squares labeled A and B are given
simply to label the two important spaces beneath module z.
For example, if space A is occupied by any blue module —
one directly adjacent either to pair (w, x) or pair (y, z) on the
spanning tree — then no reconfiguration is necessary and the
cycles may be merged as shown in picture 8.1. This is true
regardless of what type of blue module occupies space A.

Alternatively, if space A is not occupied by a blue module
then this conflict case can typically be resolved by the recon-
figurations shown in the transition from picture 8.2a to picture
8.2b. Here module z expands downward to make a connection
with module x, but module x also expands upward to meet z.
To allow this, w must contract its width (shortest dimension
in x/y-plane) to 1/4 and potentially red modules occupying
spaces A or B must also contract. Red modules p, q, r and s
represent such a case. Note that r contracts but s does not,
leaving the boundary between the two modules at the same
location. Thus, module r maintains any connections to other
modules it previously had (though with smaller area).

The reconfiguration from 8.2a to 8.2b allows red modules in
spaces A or B may contract and maintain prior connections.
However, conflicts can occur between two simultaneous ap-
plications of rule 8. In pictures 8.3a and 8.3b a case is shown
where expanding module z must connect not to module x
but to another expanding module c instead. Since modules w
and x have unlabeled blue modules above and below in these
pictures they must have been added by a row. Therefore by
Spanning Tree Property 1 there must be an open space between
them and any red modules filling the space between z and c.
Because of this, any such red modules are surrounded on 3
sides by a blue module or open space and these red modules
can be contracted out of the way. An example is given with
r, s, and the red single module shown. Now modules z and c
can expand until they make contact (a width of 1 for each).



Fig. 8. Rule 9: Correct-
ing a conflict between two
rule 8 cases or a rule 5 and
a rule 8 case.

Two more possible conflicts be-
tween rule 8 applications are handled
in the transition from picture 8.4a to
8.4b and in going from 8.5a to 8.5b.
Here spaces A and B are partially or
completely filled by another module
facing a rule 8 application. In the
case where only space B is filled
(8.4a/8.4b) then module z can have
its length contracted before expand-
ing its width. A potential connecting
module g may then expand its length
to maintain the connection. The cor-
responding red modules do the same.
In these pictures it can be proven that
the green spaced marked “open” are

in fact unoccupied, but the reconfigurations shown work even
if these spaces were occupied. If spaces A and B are both
occupied by red modules in a rule 8 case, then the conflicted
modules are stolen to become blue modules just as was done
for rule 7. In 8.5a and 8.5b these modules are m and n and by
changing them from the red to the blue portion of the spanning
tree this conflict is easily handled.

With this fix, all possibilities have been checked to ensure
that blue module z can expand downward if needed. The
last remaining problem is that module z must connect to
horizontal DS pair module x as in picture 8.2b. This requires
module w to contract its width so x can expand. A second
rule 8 application could require the opposite thing. This case
is depicted in picture 8.6a and the resulting reconfiguration
fix is given in 8.6b. Note that here modules w and x achieve
the required connections (w to t and x to z) while exceeding
their original bounding box by a width of 1/4 unit. Thus, any
module previously occupying that space can be pushed out of
the way without further conflict (as with the red module given
below x in picture 8.6b). If the blue portion of the spanning
tree in these pictures began in the lower-left corner (either
with pair (t, u) or the vertical blue DS pair next to it) then it
can be shown that the green squares marked “open” must be
unoccupied. Again, the reconfigurations shown work without
creating further conflicts even if these spaces are filled.

Rule 9: When the modules in rule 8 expand outside their
original bounding boxes any modules in those locations are
pushed out of the way without conflict. Rule 9, depicted in
Figure 8, shows that this is true even if those “previous”
occupants were modules that underwent a rule 5 or another
rule 8 application. With all potential conflicts between rules
now resolved, we have a complete rule set for transforming
the DS spanning tree into a Hamiltonian Cycle.

Lemma 5: Reconfiguration Rules 1-9 successfully trans-
form a DS spanning tree into a known Hamiltonian Cycle
through the modules in O(1) movement time.
Proof Sketch: A cycle is formed by merging adjacent local
cycles. Five types of merges are needed. Rules 1-5 handle
these types. Rules 6-9 resolve any conflicts. Rules 1-4 are
used in unison, then rules 5-9, in O(1) total move time. 2

V. GENERAL 2D RECONFIGURATION

In the previous section we showed that any given 2D config-
uration of modules along the x/y plane could be reconfigured
in O(1) movement time so that a known Hamiltonian Cycle
through those modules was formed. Now, given such a 2D
Hamiltonian Cycle, in this section we will show how to
transform that into a single column of modules in the z-
axis direction in O(

√
n) movement time. By using this z-axis

column as an intermediate step, we will have the ability to
perform general reconfiguration between any 2 configurations
of modules along the x/y plane in O(

√
n) movement time.

Suppose that we have an initial configuration of n modules
with unit-length dimensions in a single row along the x-axis.
Let the modules be labeled i = 0, . . . , n along this row so that
module i has its leftmost edge at x-axis coordinate xi = i.
If zi is used to denote the z-axis coordinate of module i’s
bottom face, then each module initially has zi = 0. Recall
that the coordinate of module i along some axis direction is
the lowest global coordinate of any point on i.

Our goal is to reconfigure these n modules, starting at rest,
into an x/z-axis diagonal with length n in each direction and
final velocity 0 for each module in all directions. Note that this
may be achieved by moving each module i a distance of 1 unit-
length upward in the z-axis direction relative to its adjacent
neighbor i−1. Module i = 0 is stationary. This reconfiguration
will be completed in movement time T = 2

√
n− 1 while

meeting the requirements of the SRK model.
All modules must begin and end with 0 velocity in all direc-

tions and remain connected to the overall system throughout
reconfiguration. The effects of friction and gravity are ignored
to simplify calculations, though the bottom face of module
i = 0 is assumed to be attached to an immovable base to give
a foundation for reconfiguration movements.

Lemma 6: An x-axis row of n modules with unit length
dimensions in the z-axis, may be reconfigured into an x/z-
axis diagonal with length n in the z-axis direction in total
movement time T = 2

√
n− 1.

Proof Sketch: Reconfiguration may be completed by each
module traveling distance xi = 1 relative to its neighbor on
one side while lifting ≤ n−1 modules on its other side. Each
module has mass m = 1 and exerts force F = 1 = ma. So
each module may accelerate by α = 1/(n−1). Since we need
xi(T ) = 1

2αiT
2 = 1, then T =

√
2/αi ≤ 2

√
n− 1. 2

Corollary 7: Any 2D configuration of modules in the
x/y-axis plane with a Hamiltonian Path through it may be
reconfigured in movement time T = 2

√
n− 1 such that each

module i = 0, . . . , n−1 along that path finishes with a unique
z-axis coordinate zi(T ) = i.
Proof Sketch: Same as in Lemma 6. A module’s neighbors are
those preceding/following it along a Hamiltonian Path (from
breaking a single connection in the Hamiltonian Cycle). 2

In Section IV we showed that any connected 2D configu-
ration of unit-length dimension modules along the x/y-axis
plane could be reconfigured into a Hamiltonian Path of those
modules in O(1) movement time. From corollary 7 we have



shown that such a Hamiltonian Path may be reconfigured so
that each module i = 0, . . . , n− 1 along that path has its own
unique z-axis coordinate zi = i. This required movement time
T = 2

√
n− 1 and created a winding stair step or “spiral” of

modules. To reconfigure this new spiral configuration into a
z-axis column, all that remains is to move the modules so that
they all have the same x/y-plane coordinates.

Performing this contraction motion for each axis direction
is similar to the reconfiguration proven in Lemma 6. The
difference is that here all modules finish with the same
coordinate value rather than begin with the same value. Also,
the modules may have different lengths in the x-axis and y-
axis directions as a result of reconfigurations used to create
the initial Hamiltonian Path. However, those lengths are still
no less than 1/2 unit and no more that 3 unit lengths and so
we may use the same relative position and velocity analysis
as was used in the proof for Lemma 6.

We will first show that all n modules may be reconfigured
so that they have the same x-axis coordinate in total movement
time T ≤ 4

√
(n− 1). In particular, since the bottom module

i = 0 is assumed to have its bottom face attached to an
immovable base, all modules will finish with the same x-axis
coordinate as module i = 0. Let the relative x-axis location
and velocity of module i at time t be denoted as xi(t) and
vi(t), respectively. These values for module i = 1, . . . , n− 1
are relative to the module i− 1 directly below module i.

Note that if module i has relative location xi(t) = 0 then at
time t module i has the same x-axis coordinate as module
i − 1 below it. Module i = 0 does not move throughout
reconfiguration. Thus, having xi(T ) = 0 for each module i
would give all modules the same global x-axis coordinate.
Finally, let a z-axis “spiral” configuration of n modules be
defined as one where for modules i = 0, . . . , n − 1 module
i has unit length in the z-axis direction, a z-axis coordinate
of zi = i and has either an edge-to-edge or a face-to-face
connection with module i − 1, if i > 0, and with module
i + 1, if i < n − 1. All modules are assumed to begin at
rest and we will show that the desired reconfiguration may be
completed in movement time T = 4

√
(n− 1) while meeting

the requirements of the SRK model.
Lemma 8: A z-axis spiral configuration of n modules may

be reconfigured in movement time T = 4
√

(n− 1) such that
all modules have final relative x-axis coordinate xi(T ) = 0.
Proof Sketch: Same approach as in Corollary 7, but modules
are condensed rather than expanded. Slightly more time is
required as modules may have x-axis length up to 3. 2

From the result just proven, we may conclude that the same
reconfiguration may be taken in the y-axis direction.

Corollary 9: A z-axis spiral configuration of n modules
may be reconfigured in movement time T = 4

√
(n− 1) so that

all modules have final relative y-axis coordinate yi(T ) = 0.
Proof Sketch: Same as for Lemma 8. 2

Theorem: Let A and B be two connected configurations
of n modules, with each module having a z-axis coordinate
of 0 and unit-length dimensions. Let modules δ in A and β
in B have the same coordinate location. Reconfiguration from

A to B may be completed in O(
√
n) movement time while

satisfying the requirements of the SRK model.
Proof Sketch: From configuration A, Lemma’s 1-5 create a
Hamiltonian Cycle in O(1) time. Lemma 6 – Corollary 9 gives
a z-axis column in O(

√
n) time. We break the cycle so that δ

is the base of the column. Reversing the process gives B. 2

VI. CONCLUSION

In this paper we presented a novel algorithm for gen-
eral reconfiguration between 2D configurations of expanding
cube-style self-reconfigurable robots. This algorithm requires
O(
√
n) movement time, met the requirements of the SRK

model given in [4], and is asymptotically optimal as it matches
the lower bound on general reconfiguration given in [4]. In
addition, it was also shown that a known Hamiltonian Cycle
could be formed in any 2D configuration of expanding cube-
style modules in O(1) movement time.

There are a number of open problems remaining. For
simplicity, in this paper we assumed that all reconfigurations
of modules were executed by a centralized controller to permit
synchronous movements. In the future, asynchronous control
would be preferable. Local, distributed control of reconfigu-
ration movements is also a topic of future interest. In this
paper we have ignored the effects of friction and gravity
in the SRK model, but frictional and gravitational models
should be included in future work. Note that this makes the
Principle of Time Reversal invalid. Furthermore, the general
problem of reconfiguration between two arbitrarily connected
3D configurations remains open, although we have developed
an algorithm for certain types of configurations. Our current
work focuses on extending this, and developing simulation
software to implement these algorithms with the SRK model.

VII. ACKNOWLEDGEMENT

This work has been supported by grants from NSF CCF-
0432038 and CCF-0523555.

REFERENCES

[1] K. Kotay and D. Rus. Generic distributed assembly and repair algorithms
for self-reconfiguring robots. In Proc. of IEEE Intl. Conf. on Intelligent
Robots and Systems, 2004.

[2] A. Pamecha, C. Chiang, D. Stein, and G. Chirikjian. Design and
implementation of metamorphic robots. In Proceedings of the 1996 ASME
Design Engineering Technical Conference and Computers in Engineering
Conference, 1996.

[3] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian. Useful metrics for
modular robot motion planning. In IEEE Trans. Robot. Automat., pages
531–545, 1997.

[4] J. H. Reif and S. Slee. Asymptotically optimal kinodynamic motion plan-
ning for self-reconfigurable robots. In Seventh International Workshop on
the Algorithmic Foundations of Robotics (WAFR2006), July 16-18 2006.

[5] D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with unit-
compressible modules. Autonomus Robots, 10(1):107–124, 2001.

[6] S. Vassilvitskii, J. Suh, and M. Yim. A complete, local and parallel
reconfiguration algorithm for cube style modular robots. In Proc. of the
IEEE Int. Conf. on Robotics and Automation, 2002.

[7] J. Walter, B. Tsai, and N. Amato. Choosing good paths for fast distributed
reconfiguration of hexagonal metamorphic robots. In Proc. of the IEEE
Intl. Conf. on Robotics and Automation, pages 102–109, 2002.

[8] Jennifer E. Walter, Jennifer L. Welch, and Nancy M. Amato. Distributed
reconfiguration of metamorphic robot chains. In PODC ’00, pages 171–
180, 2000.


