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Abstract— In this paper we present an implicit time-stepping
scheme for multibody systems with intermittent contact by
incorporating the contact constraints as a set of complementarity
and algebraic equations within the dynamics model. Two primary
sources of stability and accuracy problems in prior time stepping
schemes for differential complementarity models of multibody
systems are the use of polyhedral representations of smooth
bodies and the approximation of the distance function (arising
from the decoupling of collision detection from the solution of the
dynamic time-stepping subproblem). Even the simple example of
a disc rolling on a table without slip encounters these problems.
We assume each object to be a convex object described by
an intersection of convex inequalities. We write the contact
constraints as complementarity constraints between the contact
force and a distance function dependent on the closest points on
the objects. The closest points satisfy a set of algebraic constraints
obtained from the KKT conditions of the minimum distance
problem. These algebraic equations and the complementarity
constraints taken together ensure satisfaction of the contact
constraints. This enables us to formulate a geometrically implicit
time-stepping scheme (i.e., we do not need to approximate
the distance function) as a nonlinear complementarity problem
(NCP). The resulting time-stepper is therefore more accurate;
further it is the first geometrically implicit time-stepper that does
not rely on a closed form expression for the distance function.
We demonstrate through example simulations the fidelity of
this approach to analytical solutions and previously described
simulation results.

I. INTRODUCTION

To automatically plan and execute tasks involving inter-

mittent contact, one must be able to accurately predict the

object motions in such systems. Applications include haptic

interactions, collaborative human-robot manipulation, such as

rearranging the furniture in a house, as well as industrial

automation, such as simulation of parts feeders. Due to the

intermittency of contact and the presence of stick-slip fric-

tional behavior, dynamic models of such multibody systems

are inherently (mathematically) nonsmooth, and are thus dif-

ficult to integrate accurately. In fact, commercially available

software systems such as Adams, have a difficult time sim-

ulating any system with unilateral contacts. Users expect to

spend considerable effort in a trial-and-error search for good

simulation parameters to obtain believable, not necessarily

accurate, results. Even the seemingly simple problem of a

sphere rolling on a horizontal plane under only the influence

of gravity is challenging for commercial simulators.

The primary sources of stability and accuracy problems are

polyhedral approximations of smooth bodies, the decoupling

of collision detection from the solution of the dynamic time-

stepping subproblem, and approximations to the quadratic

Coulomb friction model. This paper focuses on the develop-

ment of geometrically implicit optimization-based time-stepper

for dynamic simulation. More specifically, state-of-the-art

time-steppers [16, 15, 9] use geometric information obtained

from a collision detection algorithm at the current time, and

the state of the system at the end of the time step is computed

(by solving a dynamics time step subproblem) without mod-

ifying this information. Thus, state-of-the-art time-steppers

can be viewed as explicit methods with respect to geometric

information. We develop the first time-stepping method that

is implicit in the geometric information (when the distance

function is not available in closed form) by incorporating

body geometry in the dynamic time-stepping subproblem. In

other words, our formulation solves the collision detection

and dynamic stepping problem in the same time-step, which

allows us to satisfy contact constraints at the end of the time

step. The resulting subproblem at each time-step will be a

mixed nonlinear complementarity problem and we call our

time-stepping scheme a geometrically implicit time-stepping

scheme.

To illustrate the effects of geometric approximation, con-

sider the simple planar problem of a uniform disc rolling on a

horizontal support surface. For this problem, the exact solution

is known, i.e., the disc will roll at constant speed ad infinitum.

However, when the disc is approximated by a uniform regular

polygon, energy is lost a) due to collisions between the vertices

and the support surface, b) due to contact sliding that is

resisted by friction and c) due to artificial impulses generated

by the approximate distance function that is to be satisfied at

the end of the time-step. We simulated this example in dVC [3]

using the Stewart-Trinkle time-stepping algorithm [16]. The

parametric plots in Figure 1 show the reduction of kinetic

energy over time caused by the accumulation of these effects.

The top plot shows that increasing the number of edges, with

the step-size fixed, decreases the energy loss; the energy loss

approaches a limit determined by the size of the time-step. The

bottom plot shows reducing energy loss with decreasing step

size, with the number of vertices fixed at 1000. However, even

with the decrease in time-step an energy loss limit is reached.
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(a) As the number of edges of the “rolling” polygon in-
creases, the energy loss decreases. The computed value
obtained by our time-stepper using an implicit surface
description of the disc is the horizontal line at the top. The
time step used is 0.01 seconds.
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(b) For a given number of edges, the energy loss decreases
with decreasing step size, up to a limit. In this case, the limit
is approximately 0.001 seconds (the plots for 0.001, 0.0005,
and 0.0001 are indistinguishable).

Fig. 1. For a disc rolling on a surface, plots of the reduction of kinetic energy
over time caused by approximating the disc as a uniform regular polygon.

These plots make it clear that the discretization of geometry

and linearization of the distance function lead to the artifact

of loss in energy in the simulations.

To address these issues and related problems that we have

encountered (e.g., parts feeding), we present a highly accu-

rate geometrically implicit time-stepping method for convex

objects described as an intersection of implicit surfaces. This

method also takes into consideration other important nonlinear

elements such as quadratic Coulomb friction. This method will

provide a baseline for understanding and quantifying the errors

incurred when using a geometrically explicit method and when

making various linearizing approximations. Our ultimate goal

is to develop techniques for automatically selecting the appro-

priate method for a given application, and to guide method

switching, step size adjustment, and model approximations on

the fly.

Our paper is organized as follows. In Section II we survey

the relevant literature. Section III presents the dynamics model

for multi-rigid-body systems with an elliptic dry friction law.

In Section IV we develop a new formulation of the contact

constraints. In Section V, we give examples that validate and

elucidate our time-stepping scheme. Finally we present our

conclusions and lay out the future work.

II. RELATED WORK

Dynamics of multibody systems with unilateral contacts can

be modeled as differential algebraic equations (DAE) [7] if

the contact interactions (sliding, rolling, or separating) at each

contact are known. However, in general, the contact interac-

tions are not known a priori, but rather must be discovered as

part of the solution process. To handle the many possibilities in

a rigorous theoretical and computational framework, the model

is formulated as a differential complementarity problem (DCP)

[4, 17]. The differential complementarity problem is solved

using a time-stepping scheme and the resultant system of equa-

tions to be solved at each step is a mixed (linear/nonlinear)

complementarity problem. Let u ∈ R
n1 , v ∈ R

n2 and let

g : R
n1 × R

n2 → R
n1 , f : R

n1 × R
n2 → R

n2 be two vector

functions and the notation 0 ≤ x ⊥ y ≥ 0 imply that x is

orthogonal to y and each component of the vectors are non-

negative.

Definition 1: The differential (or dynamic) complementar-

ity problem is to find u and v satisfying

u̇ = g(u,v), u, free

0 ≤ v ⊥ f(u,v) ≥ 0
Definition 2: The mixed complementarity problem is to

find u and v satisfying

g(u,v) = 0, u, free

0 ≤ v ⊥ f(u,v) ≥ 0
The three primary modeling approaches for multibody sys-

tems with unilateral contacts are based on three different as-

sumptions about the flexibility of the bodies. The assumptions

from most to least realistic (and most to least computationally

complex) are: 1) the bodies are fully deformable, 2) the bodies

have rigid cores surrounded by compliant material, 3) the

bodies are fully rigid. The first assumption leads to finite

element approaches, for which one must solve very large

difficult complementarity problems or variational inequalities

at each time step. The second assumption leads to smaller

subproblems that can be solved more easily [15, 13], but

suitable values of the parameters of the compliant layer are

difficult to determine. The assumption of rigid bodies leads

to the smallest subproblems and avoids the latter problem of

determining material deformation properties.

Independent of which underlying assumption is made, the

methods developed to date have one problem in common that

fundamentally limits their accuracy – they are not implicit with

respect to the relevant geometric information. For example,

at the current state, a collision detection routine is called

to determine separation or penetration distances between the

bodies, but this information is not incorporated as a function

of the unknown future state at the end of the current time

step. A goal of a typical time-stepping scheme is to guarantee

consistency of the dynamic equations and all model constraints



at the end of each time step. However, since the geometric

information at the end of the current time step is approximated

from that at the start of the time step, the solution will be in

error.

Early time-steppers used linear approximations of the local

geometry at the current time [16, 1]. Thus each contact was

treated as a point on a plane or a line on a (non-parallel) line

and these entities were assumed constant for the duration of

the time step. Besides being insufficiently accurate in some

applications, some unanticipated side-effects arose [5].

Increased accuracy can be obtained in explicit schemes by

including curvature information. This was done by Liu and

Wang [9] and Pfeiffer and Glocker [14] by incorporating kine-

matic differential equations of rolling contact (Montana [12]).

Outside the complementarity formalism, Kry and Pai [8] and

Baraff [2] also make use of the contact kinematics equations in

dynamic simulations of parametric and implicit surface objects

respectively.

The method of Tzitzouris [19] is the only geometrically

implicit method developed to date, but unfortunately it requires

that the distance function between the bodies and two levels of

derivatives be available in closed form. However, it is possible

that this method could run successfully after replacing the

closed-form distance functions with calls to collision detection

algorithms and replacing derivatives with difference approxi-

mations from multiple collision detection calls, but polyhedral

approximations common to most collision detection packages

would generate very noisy derivatives. To our knowledge,

such an implementation has not been attempted. One other

problem with Tzitzouris’ method is that it adapts its step

size to precisely locate every collision time. While this is

a good way to avoid interpenetration at the end of a time

step, it has the undesirable side-effect of forcing the step size

to be unreasonably small when there are many interacting

bodies [10]. The method we propose does not suffer from

this problem.

III. DYNAMIC MODEL FOR MULTIBODY SYSTEMS

In complementarity methods, the instantaneous equations

of motion of a rigid multi-body system consist of five

parts: (a) Newton-Euler equations, (b) Kinematic map

relating the generalized velocities to the linear and angular

velocities, (c) Equality constraints to model joints, (d)
Normal contact condition to model intermittent contact, and

(e) Friction law. Parts (a) and (b) form a system of ordinary

differential equations, (c) is a system of (nonlinear) algebraic

equations, (d) is a system of complementarity constraints,

and (e) can be written as a system of complementarity

constraints for any friction law that obeys the maximum work

dissipation principle. In this paper we use an elliptic dry

friction law [18]. Thus, the dynamic model is a differential

complementarity problem. To solve this system of equations,

we have to set up a discrete time-stepping scheme and

solve a complementarity problem at each time step. We

present below the continuous formulation as well as a Euler

time-stepping scheme for discretizing the system. To simplify

the exposition, we ignore the presence of joints or bilateral

constraints in the following discussion. However, all of the

discussion below holds in the presence of bilateral constraints.

To describe the dynamic model mathematically, we first

introduce some notation. Let qj be the position and orientation

of body j in an inertial frame and νj be the concatenated

vector of linear velocities v and angular velocities ω. The

generalized coordinates, q, and generalized velocity, ν of

the whole system are formed by concatenating qj and νj

respectively. Let λin be the normal contact force at the ith
contact and λn be the concatenated vector of the normal

contact forces. Let λit and λio be the orthogonal components

of the friction force on the tangential plane at the ith contact

and λt, λo be the respective concatenated vectors. Let λir

be the frictional moment about the ith contact normal and

λr be the concatenated vector of the frictional moments. The

instantaneous dynamic model can then be written as follows.

Newton-Euler equations of motion:

M(q)ν̇ = Wnλn+Wtλt+Woλo+Wrλr+λapp+λvp (1)

where M(q) is the inertia tensor, λapp is the vector of external

forces, λvp is the vector of Coriolis and centripetal forces,

Wn, Wt, Wo, and Wr are dependent on q and map the

normal contact forces, frictional contact forces, and frictional

moments to the body reference frame.

Kinematic Map:

q̇ = G(q)ν (2)

where G is the matrix mapping the generalized velocity of

the body to the time derivative of the position and orientation.

The Jacobian G may be a non-square matrix (e.g., using a

unit quaternion to represent orientation) but GT G = I.

Nonpenetration Constraints: The normal contact con-

straint for the ith contact is

0 ≤ λin ⊥ ψin(q, t) ≥ 0 (3)

where ψin is a signed distance function or gap function

for the ith contact with the property ψin(q, t) > 0 for

separation, ψin(q, t) = 0 for touching, and ψin(q, t) < 0
for interpenetration. The above gap function is defined in the

configuration space of the system. Note that there is usually

no closed form expression for ψin(q, t).
Friction Model:

(λit, λio, λir) ∈ argmax{−(vitλ
′
it + vioλ

′
io + virλ

′
ir) :

(λ′it, λ
′
io, λ

′
ir) ∈ Fi(λin, µi)}

where vi is the relative velocity at contact i and the friction

ellipsoid is defined by Fi(λin, µi) = {(λit, λio, λir) :
(

λit

eit

)2

+
(

λio

eio

)2

+
(

λir

eir

)2

≤ µ2
iλ

2
in} where eit, eio and eir

are given positive constants defining the friction ellipsoid and

µi is the coefficient of friction at the ith contact.

We use a velocity-level formulation and an Euler time-

stepping scheme to discretize the above system of equations.

Let tℓ denote the current time, and h be the time step.



Use the superscripts ℓ and ℓ + 1 to denote quantities at the

beginning and end of the ℓth time step respectively. Using

ν̇ ≈ (νℓ+1 − νℓ)/h and q̇ ≈ (qℓ+1 − qℓ)/h, and writing

in terms of the impulses we get the following discrete time

system.

Mνℓ+1 = Mνℓ + h(Wnλℓ+1
n + Wtλ

ℓ+1
t + Woλ

ℓ+1
o

+ Wrλ
ℓ+1
r + λℓ

app + λvp)

qℓ+1 = qℓ + hGνℓ+1

0 ≤ hλℓ+1
n ⊥ ψn(qℓ+1) ≥ 0

h(λℓ+1
it , λℓ+1

io , λℓ+1
ir ) ∈ argmax{−(

(

vℓ+1
it

)

λ′it +
(

vℓ+1
io

)

λ′io

+
(

vℓ+1
ir

)

λ′ir)

: h(λℓ+1
it , λℓ+1

io , λℓ+1
ir ) ∈ Fi(hλin, µi)}

(4)

The argmax formulation of the friction law has a useful

alternative formulation obtained from the Fritz-John optimality

conditions [18]:

E2
tUpn ◦ WT

t νℓ+1 + pt ◦ σ = 0

E2
oUpn ◦ WT

o νℓ+1 + po ◦ σ = 0

E2
rUpn ◦ WT

r νℓ+1 + pr ◦ σ = 0

(Upn) ◦ (Upn) −
(

E2
t

)−1
(pt ◦ pt) −

(

E2
o

)−1
(po ◦ po)

−
(

E2
r

)−1
(pr ◦ pr) ≥ 0

(5)

where the impulse p(·) = hλ(·), the matrices Et, Eo, Er,

and U are diagonal with ith diagonal element equal to

ei, eo, er, and µi respectively, σ is a concatenated vector

of the Lagrange multipliers arising from the conversion from

the argmax formulation and σi is equal to the magnitude of

the slip velocity at contact i, and ◦ connotes the Hadamard

product.

The above subproblem at a time step is either an LCP

or an NCP depending on the time evaluation of W(·) the

approximation used for ψn(qℓ+1), and the representation of

the friction model. If W(·) are evaluated at ℓ, and we use a first

order Taylor series expansion for ψn(q) and a linearized rep-

resentation of the friction ellipsoid, we have an LCP. However,

the approximations involved introduce numerical artifacts as

discussed in Section I. Moreover, the linear approximation of

the friction ellipsoid also leads to certain artifacts. In contrast,

if we evaluate W(·) at ℓ + 1, use a quadratic friction law

(Equation (5)), and use ψn(qℓ+1), we have an NCP. We call

this formulation a geometrically implicit formulation because

it ensures that the contact conditions are satisfied at the end of

the time step. However, evaluating ψn(qℓ+1) is possible only

if we have a closed form expression for the distance function,

which we do not have in general. Instead, we propose to define

the gap function in terms of the closest points between the two

objects and provide a set of algebraic equations for finding

these closest points during the time step. The next section

discusses this approach in detail and proves that the conditions

will enforce satisfaction of contact constraints at the end of

the time step.

IV. CONTACT CONSTRAINT

In this section we rewrite the contact condition (Equation 3)

as a complementarity condition in the work space, combine

it with an optimization problem to find the closest points,

and prove that the resultant system of equations ensures that

the contact constraints are satisfied. Let us consider the ith
contact. For ease of exposition, we assume here that each

object is a convex object described by a single implicit surface.

A more general formulation where each object is described by

an intersection of implicit surfaces is given in Appendix A. Let

the two objects be defined by convex functions f(ξ1) ≤ 0 and

g(ξ2) ≤ 0 respectively, where ξ1 and ξ2 are the coordinates

of points in the two objects. Let a1 and a2 be the closest

points on the two objects. The equation of an implicit surface

has the property that for any point x, the point lies inside the

object for f(x) < 0, on the object surface for f(x) = 0, and

outside the object for f(x) > 0. Thus, we can define the gap

function in work space as either f(a2) or g(a1) and write the

complementarity conditions as either one of the following two

conditions:

0 ≤ λin ⊥ f(a2) ≥ 0

0 ≤ λin ⊥ g(a1) ≥ 0
(6)

where a1 and a2 are given by

argmin {‖ξ1 − ξ2‖
2 : f(ξ1) ≤ 0, g(ξ2) ≤ 0} (7)

It can be shown easily from the Karush-Kuhn-Tucker (KKT)

conditions of Equation 7 that a1 and a2 are the solutions of

the following system of algebraic equations.

a1 − a2 = −l1∇f(a1) = l2∇g(a2)

f(a1) = 0, g(a2) = 0
(8)

where l1 and l2 are the Lagrange multipliers. The geometric

meaning of the first two equations is that the normals to the

two surfaces at their closest points are aligned with the line

joining the closest points. The solution to Equation 8 gives

the closest point when the two objects are separate. However,

when a1 = a2, the solution is either the touching point of the

two surfaces or a point lying on the intersection curve of the

two surfaces 2. Thus, as written, Equations 8 and 6 do not

guarantee non-penetration. However, note that the distinction

f(x) <= 0

g(x) <= 0

f(x) <= 0

f(x) <= 0

g(x) <= 0
g(x) <= 0

Fig. 2. Three Contact cases: (left) Objects are separate (middle) Objects are
touching (right) Objects are intersecting.

between touching points and intersecting points is that the

normals to the two surfaces at the touching points are aligned

while it is not so for intersection points. When a1 = a2, we

lose the geometric information that the normals at the two

points are aligned if we write our equations in the form above.



Rewriting the above equations in terms of the unit vectors

allows us to avoid this problem.

a1 − a2 = −‖a1 − a2‖
∇f(a1)

‖∇f(a1)‖

∇f(a1)

‖∇f(a1)‖
= −

∇g(a2)

‖∇g(a2)‖

f(a1) = 0, g(a2) = 0

(9)

Proposition: Equation 6 and 9 together represent the con-

tact constraints, i.e., the two objects will satisfy the contact

constraints at the end of each time step if and only if

Equation 6 and 9 hold together.

Proof: As discussed above.

Note that since the first two vector equations are equating unit

vectors, there are only two independent equations for each, and

the above system has 6 independent equations in 6 variables.

We can now formulate the mixed NCP for the geometrically-

implicit time-stepper. The vector of unknowns z can be parti-

tioned into z = [u, v] where u = [ν, a1, a2, pt, po, pr]
and v = [pn, σ]. The equality constraints in the mixed NCP

are:

0 = −Mνℓ+1 + Mνℓ + Wℓ+1
n pℓ+1

n + Wℓ+1
t pℓ+1

t

+ Wℓ+1
o pℓ+1

o + Wℓ+1
r pℓ+1

r + pℓ
app + pℓ

vp

0 = (aℓ+1
1 − aℓ+1

2 ) + ‖aℓ+1
1 − aℓ+1

2 ‖
∇f(aℓ+1

1 )

‖∇f(aℓ+1
1 )‖

0 =
∇f(aℓ+1

1 )

‖∇f(aℓ+1
1 )‖

+
∇g(aℓ+1

2 )

‖∇g(aℓ+1
2 )‖

0 = f(aℓ+1
1 )

0 = g(aℓ+1
2 )

0 = E2
tUpℓ+1

n ◦ (WT
t )ℓ+1νℓ+1 + pℓ+1

t ◦ σℓ+1

0 = E2
oUpℓ+1

n ◦ (WT
o )ℓ+1νℓ+1 + pℓ+1

o ◦ σℓ+1

0 = E2
rUpℓ+1

n ◦ (WT
r )ℓ+1νℓ+1 + pℓ+1

r ◦ σℓ+1

(10)

The complementarity constraints on v are:

0 ≤

[

pℓ+1
n

σℓ+1

]

⊥

[

f(aℓ+1
2 )
ζ

]

≥ 0 (11)

where

ζ = Upℓ+1
n ◦ Upℓ+1

n −
(

E2
t

)−1 (

pℓ+1
t ◦ pℓ+1

t

)

−
(

E2
o

)−1 (

pℓ+1
o ◦ pℓ+1

o

)

−
(

E2
r

)−1 (

pℓ+1
r ◦ pℓ+1

r

)

In the above formulation, we see u ∈ R
6nb+9nc , v ∈ R

2nc , the

vector function of equality constraints maps [u,v] to R
6nb+9nc

and the vector function of complementarity constraints maps

[u,v] to R
2nc where nb and nc are the number of bodies and

number of contacts respectively. If using convex bodies only,

the number of contacts can be determined directly from the

number of bodies, nc =
∑nb−1

i=1 i.

V. ILLUSTRATIVE EXAMPLES

In this section we present three examples to validate our

technique against known analytical results and previous ap-

proaches. The first example is the same example of a disc

rolling without slip on a plane that we studied in Section I. The

second example, taken from [18], consists of a sphere spinning

on a horizontal surface that comes to rest due to torsional

friction. The time taken by the sphere to come to a complete

stop is known analytically and we demonstrate that the results

of our simulation agree with the analytical predictions. The

final example consists of a small ball moving in contact with

two larger fixed balls. We include it here to compare our

solutions with those based on earlier approaches [18, 9]. All

of our numerical results were obtained by PATH [6], a free

solver that is one of the most robust complementarity problem

solvers available.

A. Example 1: Disc on a Plane

In this example we revisit the unit disc example from

Section I. For illustrative purposes, we explain the formulation

of the full dynamic model in detail. The normal axis of the

contact frame n̂ always points in the inertial y-axis direction

and tangential axis t̂ always coincides with the x-direction.

The mass matrix, M is constant and the only force acting on

the body is due to gravity. The equation of the disc is given by

f1(x, y) = (x− qx)2 + (y− qy)2 − 1, where q is the location

of the center of the disc in the inertial frame. Let a1 be the

closest point on body 1 (the disc) to the x-axis. Similarly, let

a2 be the closest point on the x-axis to body 1 (a2y
= 0 and

can be removed from the system of unknowns). Given this

information, the matrices for this system can be shown to be:

M = diag(m,m, 0.5m) papp = [0,−9.81 ·m · h, 0]T .

Wn =

[

n̂
ra1 ⊗ n̂

]

Wt =

[

t̂
ra1 ⊗ t̂

]

∇a1
f1(a

ℓ+1
1 ) =

[

2(aℓ+1
1x − qx)

2(aℓ+1
1y − qy)

]

where ra1 is the vector from the center of gravity of the disc

to a1 and ⊗ connotes the 2D analog of the cross product.

There are 9 unknowns for this system: z =
[ν, a1, a2x

, pn, pt, σ] We can now formulate the

entire system of equations for this simple model:

0 = −Mνℓ+1 + Mνℓ + Wℓ+1
n pℓ+1

n + Wℓ+1
t pℓ+1

t + papp

(12)

0 = aℓ+1
2 − aℓ+1

1 + ||aℓ+1
2 − aℓ+1

1 ||n̂ (13)

0 =
∇a1

f1(a
ℓ+1
1 )

||∇a1
f1(a

ℓ+1
1 )||

+ n̂ (14)

0 = f1(a
ℓ+1
1 ) (15)

0 ≤ f1(a
ℓ+1
2 ) (16)

0 = µpℓ+1
n (WT

t

ℓ+1
νℓ+1) + σℓ+1pℓ+1

t (17)

0 ≤ µ2pℓ+1
n pℓ+1

n − pℓ+1
t pℓ+1

t (18)

where equations 13 and 14 each provide one independent

equation.

The initial configuration of the disc is q = [0, 1, 0], initial

velocity is ν = [−3, 0, 3], mass is m = 1, and µ = 0.4.



Figure 1(a) shows the kinetic energy of the disc for our

implicit representation along with the Stewart-Trinkle LCP

implementation using various levels of discretization as it rolls

along the horizontal surface. When using an implicit curve

representation to model the disc and our formulation we get

no energy loss (within the numerical tolerance of 10−6 used

for our simulations) as seen by the horizontal line. When using

the LCP formulation we have energy loss as discussed earlier.

B. Example 2: Sphere on a Plane

Here we consider a sphere spinning on a plane about the

normal of the plane. The initial configuration of the sphere is

q = [0, 0, 1, 1, 0, 0, 0]T where the first three elements

are the position of the center of the sphere and the last 4
are the unit quaternion representing the orientation. The initial

generalized velocity is ν = [0, 0, 0, 0, 0, 1.962]T , the first

three elements are the linear terms, the last three elements the

angular. The friction parameters used were et = 1, eo = 1,

er = 0.4 and µ = 0.2. A step size of h = 0.07 seconds was

chosen.

From the initial conditions given, the sphere should rotate in

place with a constant deceleration due to the torsional friction.

Figure 3 shows a plot of the velocities for the sphere given by

the time-stepping formulation. The analytical solution for this

problem predicts that all velocities except ωz should be zero,

and wz should be decreasing linearly to 0 with a slope of -

1.962, reaching 0 at exactly t = 1 seconds. The plot shows that

we agree with the analytical solution except that we reach zero

velocity at t = 1.05, since we are using a fixed time step and

the time at which spinning stops is in the middle of the time

step. The friction forces (Figure 4) also follow the analytical

solution. The tangential component of friction force is 0. The

tangential moment does not drop to 0 at 1.05 s, since we are

using an impulse-based time-stepping formulation with a fixed

time step and there is a torsional moment between 0.98 to 1
second which contributes to the impulse. Our results match

those of the Tzitzouris-Pang and Stewart methods presented

in [18].
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Fig. 3. Linear and angular velocities for Example 2. All velocities except
ωz are zero throughout the simulation.
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Fig. 4. Forces for Example 2. The tangential forces are both 0 for the
entire simulation, and the torsional force transitions to zero when the sphere
switches from a sliding contact to sticking.

C. Example 3: Sphere on Two Spheres

This example consists of a small ball rolling and sliding on

two larger balls, and is chosen to compare our model with

those presented in [18] and [9]. Figure 5 shows a small unit

sphere in simultaneous contact with two larger fixed spheres.

The sphere of radius 10 units is located at (0, 0, 0) in the

inertial frame and the sphere of radius 9 units is located

at (0, 11.4, 0). There is also a constant force of λapp =
[1.0, 2.6, −9.81, 0, 0, 0]T applied to the small sphere. With

this force, the sphere initially has one of its contacts rolling

while the other contact is simultaneously sliding, the rolling

contact transitions to sliding, and both contacts eventually

separate. It is important to emphasize that all these transitions

are captured using a fixed time step implementation.

Fig. 5. A small sphere in contact with two large spheres.

The initial configuration of the small sphere is q =
[0, 6.62105263157895, 8.78417110772903, 1, 0, 0, 0]T .

The initial velocity is ν = [ 0, 0, 0, 0, 0, 0]. The friction

parameters are: et = 1, eo = 1, er = 0.3, and µ = 0.2. There

were a total of 28 unknowns in our NCP formulation. We used

a step size h = 0.01 (Tzitzouris-Pang use h = 0.1).

The generalized velocity of the sphere is shown in Fig-

ure 6. The smooth velocity profile agrees well with the

nonlinear Tzitzouris-Pang formulation [18]. The Liu-Wang

formulation [9] experienced non-smooth velocity jumps when

the small sphere separated from the larger fixed spheres,



which they attributed to an explicit time-stepping scheme. In

the LCP Stewart-Trinkle implementation, the velocity profiles

were very non-smooth. These results further confirm our

belief that both linearization and explicit time-stepping lead

to inaccuracies.
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Fig. 6. Velocities of small moving sphere.

The fidelity of our method is further emphasized by Fig-

ures 7 and 8 that show the forces and sliding speed magnitudes

at the two contacts. Contact 1 starts as a sliding contact

and we see the sliding speed increases as the normal force

decreases. Also, the magnitude of the friction force is equal

to µλ1n, consistent with our friction law for a sliding contact.

At approximately 3.2 seconds, the small sphere separates from

the large sphere at this contact, and all forces acting at contact

1 and the sliding speed drop to zero. Contact 2 on the other

hand starts out as a rolling contact until approximately t = 3
seconds when it transitions to sliding. During the rolling phase

the frictional magnitude is bounded by µλ2n as required by

the friction law, and the sliding speed is 0. At the transition

to sliding, the magnitude of the friction force becomes equal

to µλ2n and the sliding speed begins to increase. Finally, at

approximately t = 3.6 seconds, the contact breaks and all

forces at this contact and the sliding speed drop to zero.
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Fig. 7. Force and sliding speed at contact 1. Contact 1 is always sliding
until separation, hence the µ normal force curve and friction magnitude curve
overlap for the duration. The value of µ = 0.2

Unlike the other approaches, we modeled the spheres as

special cases of an ellipsoid:

f(x, y, z) =
(x

a

)2

+
(y

b

)2

+
(z

c

)2
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Fig. 8. Force and sliding speed at contact 2. The value of µ = 0.2

where we set a = b = c = 1 for a unit sphere centered at

the origin. This flexibility allows us to test various shapes by

altering the 3 parameters, while the more difficult dynamical

equations remain unaltered. For example, changing the a, b, c
parameters would allow us to model ellipsoids rolling on

ellipsoids; the Tzitzouris-Pang formulation cannot be applied

since there is no analytical gap function.

VI. CONCLUSION

We presented the first geometrically implicit time-stepping

scheme for objects described as intersections of convex in-

equalities. This approach overcomes stability and accuracy

problems associated with polygonal approximations of smooth

objects and approximation of the distance function for two ob-

jects in intermittent contact. We developed a new formulation

for the contact constraints in the work space which enabled

us to formulate a geometrically implicit time-stepping scheme

as an NCP. We demonstrated through example simulations the

fidelity of this approach to analytical solutions and previously

described simulation results.

We see several directions for future work. We would like to

address the question of existence and uniqueness of solutions

of the NCP we formulate. We will perform more extensive

numerical experimentation, and compare these solutions with

solutions obtained when the closest distance is computed

through a function call. We plan to precisely quantify the

tradeoffs between the computation speed and physical accu-

racy of simulations for different object representations (e.g.,

polyhedral, implicit, spline), friction approximations, and the

choice between geometrically explicit or implicit methods.

Although we have restricted our discussion to convex objects,

we believe that this framework can be extended to non-convex

objects described as unions of convex objects as well as

parametric surfaces. Finally, we want to incorporate different

impact laws to simulate a broader class of problems.
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APPENDIX

CONTACT CONDITIONS FOR OBJECTS REPRESENTED AS

INTERSECTIONS OF CONVEX INEQUALITIES

We present here the contact conditions for the general case

where each convex object is defined as an intersection of

convex inequalities. Let fj(ξ1) ≤ 0, j = 1, . . . ,m, gj(ξ2) ≤

0, j = m+1, . . . , n, be convex functions representing the two

convex objects. Since the closest point is outside the object

if it is outside at least one of the intersecting surfaces, the

complementarity conditions for nonpenetration can be written

as either one of the following two sets of conditions:

0 ≤ λin ⊥ max{fj(a2)} ≥ 0 j = 1, . . .m

0 ≤ λin ⊥ max{gj(a1)} ≥ 0 j = m+ 1, . . . n
(19)

where a1 and a2 are the closest points on the two bodies and

are given by the KKT conditions

a1 − a2 = −

m
∑

i=1

li∇fi(a1) =

n
∑

j=m+1

lj∇gj(a2)

fi(a1) + si = 0

gj(a2) + sj = 0

lisi = ljsj = 0

si ≥ 0, sj ≥ 0

(20)

where si, sj are the slack variables. At the optimal solution

only some of the constraints are active. Thus the optimality

conditions can be written as the following set of nonlinear

equations:

a1 − a2 = −
∑

i∈I∩{i}

li∇fi(a1) =
∑

j∈I∩{j}

lj∇gj(a2)

fk(a1) = 0 k ∈ I ∩ {i}

gk(a2) = 0 k ∈ I ∩ {j}

(21)

where I is the index set of active constraints. Equations 19

and 21 together represent the contact constraints as long as

a1 6= a2. Using arguments similar to the single surface

case in Section IV we can see that it is not possible to

distinguish between touching points and intersecting points

using the above formulation. In this case also, we can rewrite

Equation 21 suitably by equating unit vectors to eliminate the

intersection point solutions. Without loss of generality, we can

set one of the Lagrange multipliers to be 1 and scale the others

and rewrite Equation 21 as

a1 − a2 = ‖a1 − a2‖(
∇fk1

(a1)

‖∇fk1
(a1)‖

+
∑

k∈{I\k1}∩{i}

lk
∇fk(a1)

‖∇fk(a1)‖
)

∇fk1
(a1)

‖∇fk1
(a1)‖

+
∑

k∈{I\k1}∩{i}

lk
∇fk(a1)

‖∇fk(a1)‖

=
∇gk2

(a2)

‖∇gk2
(a2)‖

+
∑

k∈{I\k2}∩{j}

lk
∇gk(a2)

‖∇gk(a1)‖

fk(a1) = 0 k ∈ I ∩ {i}

gk(a2) = 0 k ∈ I ∩ {j}
(22)

Proposition: Equation 19 and 22 together represent the non-

penetration constraints, i.e., the two objects will satisfy the

contact constraints at the end of each time step if and only if

Equation 19 and 22 hold together.


