
Automatic Scheduling for Parallel Forward
Dynamics Computation of Open Kinematic Chains

Katsu Yamane
Department of Mechano-Informatics

University of Tokyo
Email: yamane@ynl.t.u-tokyo.ac.jp

Yoshihiko Nakamura
Department of Mechano-Informatics

University of Tokyo
Email: nakamura@ynl.t.u-tokyo.ac.jp

Abstract— Recent progress in the algorithm as well as the
processor power have made the dynamics simulation of complex
kinematic chains more realistic in various fields such as human
motion simulation and molecular dynamics. The computation
can be further accelerated by employing parallel processing on
multiple processors. In fact, parallel processing environment is
becoming more affordable thanks to recent release of multiple-
core processors. Although several parallel algorithms for the
forward dynamics computation have been proposed in literature,
there still remains the problem of automatic scheduling, or load
distribution, for handling arbitrary kinematic chains on a given
parallel processing environment. In this paper, we propose a
method for finding the schedule that minimizes the computation
time. We test the method using three human character models
with different complexities and show that parallel processing on
two processors reduces the computation time by 35–36%.

I. INTRODUCTION

Dynamics simulation of kinematic chains is an essential tool
in robotics to test a mechanism or controller before actually
conducting hardware experiments. In graphics, such technique
can be applied to synthesizing realistic motions of virtual
characters and objects. Dynamics simulation of human body
models has a number of applications in biomechanics and
medical fields. Some algorithms have also been applied to
molecular dynamics to estimate the three-dimensional struc-
ture of chemical materials such as protein. In spite of the
recent progress in algorithms and processor power, realtime
simulation of highly complex systems (over 100 links) is still
a challenging research issue.

One of the possible ways to further improve the computation
speed is to employ parallel processing. In fact, several parallel
algorithms have been proposed for the forward dynamics
computation of kinematic chains [1]–[4]. These algorithms
have O(N) complexity on fixed number of processors and
O(log N) complexity if O(N) processors are available. These
algorithms therefore require huge number of processors to
fully appreciate the power of parallel computation, and it was
considered unrealistic to assume such computational resource
for personal use.

The situation has changed by the recent release of multiple-
core processors because they would significantly reduce the
cost for constructing a parallel processing environment. In
particular, the CellTM processor [5] used in PlayStation3
has 7–8 vector processing cores which function as parallel

processors with distributed memory. By optimizing the parallel
forward dynamics algorithms for this processor, we would be
able to considerably accelerate the computation for dynamics
simulation on low-cost hardware.

Another technical barrier towards practical parallel dynam-
ics simulation is finding the optimal scheduling, or load
distribution, for a given structure and number of processors. In
general, the total amount of floating-point operations increases
as the number of parallel processes increases. For example,
the total computational cost of a schedule that divides the
computation into four processes is greater than that of two
processes, and the computation time will not be reduced unless
the program runs on more than four processors. Another point
to be considered is that waiting time of the processors should
be kept minimum to maximize the effect of parallel processing.
These facts imply that the optimal schedule depends on the
number of available processors as well as the target structure.
For a dynamics simulator to be practical for personal use, it
should be able to automatically find the optimal schedule.

In this paper, we propose an automatic scheduling method
that can find the optimal schedule for any given open kinematic
chain and number of available processors. A* search algo-
rithm is applied to obtaining the best schedule. Although the
scheduling process only takes place during the initialization
or when the link connectivity has changed, we employ several
heuristics to find the solution in a reasonable time. Our method
is also applicable to fairly wide range of parallel forward dy-
namics algorithms. Although we have only tested our method
on Assembly-Disassembly Algorithm (ADA) proposed by the
authors [1], the same method can be applied to Divide-and-
Conquer Algorithm (DCA) [2] and Hybrid Direct-Iterative
Algorithm (HDIA) [3] with small modifications.

The rest of the paper is organized as follows. We first
provide the background information of this work in section II,
including a brief summary of the parallel forward dynamics
algorithm ADA [1]. Section III presents the automatic schedul-
ing method, which is the main contribution of this paper. The
performance of the scheduling method will be demonstrated
in section IV, followed by the concluding remarks.

II. PARALLEL FORWARD DYNAMICS COMPUTATION

This section provides a brief summary of the parallel
forward dynamics algorithm ADA [1], [6]. We first review



fi

fj

ai

aj

...

i

j

Fig. 1. The concept of Articulated Body Inertia.

the concept of Articulated-Body Inertia and its inverse [7]
and then summarize the outline of ADA. After discussing the
computational cost of the algorithm, we introduce the concept
of schedule tree for representing a schedule to easily identify
its parallelism and computation time. We also show the results
of parallel processing experiments of a simple serial chain and
demonstrate the importance of finding the optimal schedule.

A. Articulated-Body Inertia

The concept of Articulated-Body Inertia (ABI) was first
proposed by Featherstone [7]. ABI is the apparent inertia of a
collection of links connected by joints (articulated body) when
a test force is applied to a link (handle) in the articulated body.
The equation of motion of a kinematic chain can be written
in a compact form by using ABI (see Fig. 1):

f i = IA
i ai + pA

i (1)

where IA
i is the ABI of the articulated body when link i is

the handle, f i is the test force, pA
i is the bias force, and ai

is the acceleration of link i. Note that the ABI of a kinematic
chain may change if a different link is chosen as the handle.
All the equations in this paper will be represented by spatial
notation [7].

Because ABI is symmetric and positive definite [7], Eq.(1)
is equivalent to

ai = Φif i + bi (2)

where Φi is the inverse of ABI and called Inverse Articulated
Body Inertia (IABI) [7] and bi is the bias acceleration.

The major advantage of using Eq.(2) instead of Eq.(1) is
that we can attach multiple handles to an articulated body.
For example, if we attach a new handle to link j in Fig. 1,
the accelerations of two handles i and j is written as

ai = Φif i + Φijf j + bi

aj = Φjif i + Φjf j + bj

where Φij and Φji(= ΦT
ij) are the IABIs representing the

coupling between the handles.

B. Outline of ADA

ADA computes the joint acceleration by the following two
steps:

1) assembly: starting from the individual links, recursively
add a joint one by one and compute the IABI of the
partial chains, and

2) disassembly: starting from the full chain, remove a joint
one by one in the reverse order of step 1) and compute
the joint acceleration of each removed joint.

j

k
cj

pk
pi ci

Fig. 2. Connecting partial chains A and B to assemble partial chain C.

Consider the case of Fig. 2, where partial chains A and B
are connected to form chain C through joint i. Partial chain
C will be connected to other partial chains through joints j
and k in the subsequent assembly operations. In general, each
partial chain can have any number of such joints and we shall
denote the set by Oi and the size of Oi by NOi. Oi is empty
for the joint lastly added in step 1). In the example of Fig. 2,
Oi = {j k} and NOi = 2.

In step 1), assuming that we know the IABI of chains
A and B, ΦA∗∗ and ΦB∗∗ respectively, as well as the bias
accelerations bA∗ and bB∗, we compute the IABIs and bias
accelerations of chain C by the following equations:

ΦCj = ΦAj −ΦAjiW iΦAij (3)

ΦCk = ΦBk −ΦBkiW iΦBik (4)

ΦCjk = ΦT
Ckj = ΦAjiW iΦBjk (5)

bCj = bAj −ΦAjiγi (6)

bCk = bBk + ΦBkiγi (7)

where

W i = NT
i V iN i

γi = W iβi + RT
i τ i.

N i ∈ R6×(6−ni) and Ri ∈ R6×ni are the matrices that repre-
sent the constraint and motion space of joint i respectively [8],
τ i ∈ Rni is the joint torque of joint i, ni is the degrees of
freedom of joint i, and

V i = (N i(ΦAi + ΦBi)NT
i )−1

βi = bAi − bBi − (ΦAi + ΦBi)RT
i τ i

where we omit the terms including the time derivatives of N i

and Ri for clarity of representation. The initial values for IABI
are the spatial inertia matrices of the rigid bodies.

In step 2), assuming that we know the forces applied joints
j and k, we can compute the constraint force at joint i by

ni = V iN i(ΦAijf j −ΦBikfk + βi) (8)

and then compute the joint acceleration by

q̈i = Ri((ΦAi+ΦBi)NT
i ni−ΦAijf j +ΦBikfk−βi). (9)

Finally f i, the total joint force at joint i which will be used
in the subsequent computations, is computed by

f i = NT
i ni + RT

i τ i. (10)

The total computational cost for assembling and disassem-
bling joint i in Fig. 2 depends on two factors: (1) ni, the



degrees of freedom of joint i, and (2) NOi, number of joints in
Oi. The cost can be approximated by the following formulae:

Ci(NOi, ni) = αN2
Oi + βNOi + γni + δ (11)

where the first term represents the cost for computing the
N2

Oi IABIs, the second term for computing the NOi bias
accelerations and one joint acceleration from NOi external
forces, the third term for computing W i, the last term for
computing the inertia matrices of the individual links, and
α, β, γ and δ are constants. Because only NOi can be modified
by changing the schedule, Eq.(11) indicates that smaller NOi

would lead to less total floating-point operations.
The constants could be determined by counting the number

of floating-point operations as a function of NOi and ni;
however, we chose to determine them by actually measuring
the computation time for various mechanisms and schedules.
The advantage of this method is that it can take into account
the implementation-specific optimizations and that it would be
possible to write a code to automatically determine the values
for other forward dynamics algorithms.

C. Schedule Tree

ADA can be executed on multiple processes in parallel
because of the following reasons:

• in the example shown in Fig. 2, the computations of the
IABIs of partial chains A and B can be performed in
parallel, and

• similarly, the accelerations of the joints included in partial
chains A and B can be computed in parallel.

In addition, ADA allows any sequence of joints in step 1), and
the parallelism and computational efficiency depends on the
sequence. Scheduling can therefore be regarded as the problem
of finding the best sequence of joints for step 1). However, it
is difficult to identify the number of processes required to
perform the schedule by looking only at the sequence.

We propose to represent a schedule by a binary tree where
each node denotes a joint and every joint is included once.
We refer to this tree as schedule tree. Figure 3 shows the
three schedule trees derived from different assembly sequences
(a)–(c) for a simple four-joint serial chain shown on the top
of Fig. 3. The concept is similar to assembly tree [2] where
each node of the tree represents a partial chain, while in our
schedule tree it represents a joint to clarify the relationship
between the joints and processors.

In a schedule tree, each node has zero to two direct
descendants. If a node has two descendants as node 2 in
schedules (b) and (c) of Fig. 3, the joint connects two partial
chains composed of all the subsequent descendants of each
direct descendant. A node with one descendant connects a
rigid link and a partial chain, and a node without a descendant
connects two rigid links. The recursive process to compute
the IABIs starts from the leaves towards the root, while the
process to compute the joint accelerations propagates from the
root towards the leaves.

A schedule tree is useful for identifying which joints can
be processed in parallel and estimating the total computation

1

3 2 1 0

0

0 2 3

1

2

3

0

2

3

(a) 1 3 2 0(b) 31 20(c)

1 0

2

13

0 0 0

0 1

1

0

0 1

0

0

0

Fig. 3. Three schedule tree examples for different assembly orders of the
four-joint serial chain on the top.

time. The two descendants of a node in a schedule tree can
obviously be processed in parallel. For example, the numbers
at the lower-left corner of each node in Fig. 3 indicates the
process in which the node is handled when two processors
numbered 0 and 1 are available. If the number of available
processors is greater than the number of the leaves of the
tree, the height of the schedule tree gives a rough estimate of
the computation time. For example, the computation time for
schedule (a) in Fig. 3 would be four times longer than that of
processing a single joint, while those for schedules (b) and (c)
would be approximately equivalent to processing three joints
if more than two processors are available.

D. Parallel Processing Experiments

We implemented ADA for parallel processing using C++
programming language and MPICH2 [9] for inter-process
communication. The codes were compiled by gcc version
4.0.2. All the examples, including the ones in section IV, were
executed on a cluster consisting of dual Xeon 3.8GHz servers
running Linux operating system.

Figure 4 shows the performance of parallel forward dynam-
ics computation of a 200-joint serial chain with fixed root
link. The solid line represents the computation times on two
processors with various schedules. The schedule trees were
constructed manually by first choosing a joint as the root,
whose index is indicated by the horizontal axis of Fig. 4, and
then sequentially appending the joints of each of the partial
chains divided by the chosen joint, the joints next to the root
being the direct descendants. The assembly process starts by
assembling the joints at the both ends in parallel, and ends
at the root of the schedule tree. Schedule (c) in Fig. 3 is an
example of such schedule for the four-joint chain with root
index 2.

The horizontal dashed line in Fig. 4 represents the compu-
tation time on single processor when the links were assembled
sequentially from the end link to the root, which results in the
minimum number of floating-point operation and therefore is
the best schedule for serial computation.

As intuitively expected, parallel computation shows the
best performance when the computational load is equally dis-
tributed to the two processors, which reduces the computation
time by 33%. However, the performance degrades if inappro-



0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

index of the root joint of the schedule tree

co
m

p
u
ta

ti
o
n
 t

im
e 

(m
s)

Fig. 4. Computation time of the forward dynamics of a 200-joint serial
chain on two processors with various schedules. The dashed horizontal line
represents the computation time on single processor.

priate schedule is used and becomes even worse than serial
computation due to the communication cost. This experiment
demonstrates the importance of selecting appropriate schedule
to fully extract the advantage of parallel processing. We
also need an algorithm for automatically finding the optimal
schedule for more general cases, e.g. for branched chains
or when more processors are available, because the optimal
schedule is not trivial any more.

III. AUTOMATIC SCHEDULING

A. Overview

The purpose of the automatic scheduling process is to
automatically find the best schedule, or the best assembly
order, that minimizes the computation time for the given
mechanism and number of available processes. As described
in the previous section, the forward dynamics algorithms we
consider in this paper allow any assembly order. The number
of all possible orders therefore becomes as large as N ! for
a mechanism with N joints. We employ several heuristics to
avoid the search in such a huge space.

The first observation is that different assembly orders may
lead to the same schedule tree. This fact can be easily
illustrated by using the examples shown in Fig. 5 for the same
serial chain as in Fig. 3. In Fig. 5, the two schedules (a) and (b)
result in the conceptually equivalent schedule trees. The order
of adding joints 1 and 3 obviously does not affect the schedule
tree because the resulting partial chains are independent of
each other. We can reduce the search space by eliminating
such duplicated assembly orders.

The second observation is that, as described in section III-D,
the best schedule can be determined without further running
the search process if the number of processes assigned to a
partial chain becomes one. This fact implies that the cost for
the search depends more on the number of processors rather
than the number of joints. We can considerably reduce the
search time because practical parallel processing environments
usually have far less processors than the number of joints.

0

2

3

1 3 2 0(a) 3 1 2 0(b)

1

0

2

3 1

Fig. 5. Different assembly orders resulting in the same schedule tree.

0

0

0 0 0 0

1

1

2

3

2 3

1

1

1

1

1

1

1 1

1

2 3

2 2

2 2

2 2

2

2

3

3 3

3 3

3

3

3

S

..
.

..
.

..
.

schedule trees

search tree

Fig. 6. Search and schedule trees.

B. Search Algorithm

The problem of finding the optimal schedule can be viewed
as a travelling salesman problem where the joints are the cities
to visit and the cost function is the time to cover all cities.
The difference in multiple-processor case is that more than one
salesmen are working in parallel and each city is visited by
only one of them. We also have the constraint that a city should
be visited later than some other cities due to the dependencies
between the IABI of partial chains.

We apply A* search [10] to our problem of finding the op-
timal schedule. The general form of A* search is summarized
in the Appendix. The following three functions for a node x
have to be customized for our problem:

• x.NextNodes(): returns the set of descendant nodes of
x

• x.Cost(): returns the cost to add x to the search tree
• x.AstarCost(): returns an underestimation of the cost

from x to a goal

One point to note here is the relationship between the
schedule tree and the tree constructed during the search (called
the search tree hereafter). Each path from the root node to a
leaf node of a search tree is associated with a schedule tree. We
depict an example of the search tree and associated schedule
trees in Fig. 6 for the simple serial chain in Fig. 3, where the
node marked “S” is a dummy start node.

We describe the three functions customized for our problem
in the rest of this subsection.

1) NextNodes(): A naive way to implement this function is
to add all unvisited joints as the descendants. However, this
approach may yield duplicated schedules as observed in the



1

11

0

00

0

0

0

0

2 3

2

2

2

2

2

23

3

3

3

3

3

1

0

2 3

23

(1)

(a)

(a)

(b)

(2)

(b) (a) (a) (b) (b) (a) (b)

schedule trees

search tree

Fig. 7. Search tree by naive version of NextNodes() (1) and improved version
(2).

previous subsection.
In order to reduce the number of nodes in the search tree,

we select the descendants such that the corresponding schedule
tree can be effectively extended. When we try to extend the
search tree by adding descendants to node i associated with
joint i, we construct the (incomplete) schedule tree derived
from the joint sequence up to node i, and look for nodes which
have only 0–1 descendants. Let us denote the index of such
joint in the highest layer of the schedule tree by j. Cutting
joint j generates two partial chains: one on the root side and
the other on the end link side. If joint j has no descendants,
the joints on the root side will be added as direct descendants
of joint i in the search tree, which will eventually add the first
descendant of joint j in the schedule tree. If joint j has one
descendant, which means that the joints on the root side have
already been added, we add the joints on the end link side.

Figure 7 shows the comparison between the naive version
of NextNode() and our improved version, using the part of the
search tree in Fig. 6 under node 1 directly below the start
node. Although the naive version generates the large search
tree (1), each of them results in one of the schedule trees (a)
and (b). Using the improved version (2), on the other hand,
the tree only includes necessary nodes.

The search tree (2) is constructed as follows. Suppose we are
extending the search tree by adding descendant(s) to node 1.
Because the corresponding schedule tree also has only one
node associated with joint 1, we try to add the descendants to
this node. Joint 1 divides the chain into two partial chains
composed of the joints {0} (towards the root) and {2, 3}
(towards the end). We therefore add joint 0 as the descendant
of node 1 of the search tree. In the next step, because node 1
in the schedule tree has only one descendant, we try to find
the second, which should be either joint 2 or 3. Two branches
are therefore added to node 0 in the search tree.

2) Cost(): The cost of a node is defined as the total
computation time increased by adding the joint. At each node
in the search tree, we maintain the total active time of each
process. The computation time for processing a node is added
to the total active times of all the processes assigned to the

node. The actual computation time is obtained by looking for
the maximum active time among the processes. The cost of
a node is then obtained by subtracting the total cost of its
ascendant from its own total cost.

3) AstarCost(): We first compute the minimum costs to
assemble the two partial chains generated by cutting the
corresponding partial chain at the joint, using the method
described in section III-D. We then take the larger cost and
divide it by the number of processors available at the node.
This is guaranteed to be an underestimate because a schedule
for multiple processors results in more total floating-point
operations than the one for single processor.

C. Assigning Processes

Once we have a schedule tree, we then assign the processes
to each node. The point to be considered here is that the time
for communication between the processes (in shared-memory
environments, the time for waiting for the permission to access
the memory) should be kept minimum. Strictly speaking, the
amount of data to be passed also affects the communication
time and should be considered in the scheduling process.
However, we ignore the data size because it is usually small
(288 bytes for each IABI) and the delay for invoking the
communication is a more serious issue in most communication
devices.

Let us denote the number of all available processes by NP ,
which are numbered 0 . . . NP − 1. Here we assume that NP

is a power of 2. The basic approach is to assign a group
of processes to a node in the schedule tree, and divide the
group into two if the node has two descendants. We denote the
range of processes assigned to node i of the schedule tree by
[aPi, bPi) which means that processes aPi, aPi +1, . . . bPi−1
are assigned to node i. The actual computations for assembling
and disassembling joint i take place at process aPi.

The procedure for assigning processes to the nodes is
described as follows:

1) Initialize aPr = 0 and bPr = NP where r is the index
of the root node.

2) At node i

a) If bPi− aPi = 1, or if node i has one descendant,
set the same range for the descendant(s).

b) If node i has two descendants m and n, and bPi−
aPi > 1, set aPm = aPi, bPm = aPn = bPi +
(bPi − aPi)/2, bPn = bPi.

3) Recursively call step 2) for all descendants.
The communication cost is minimized by ensuring that one
of the descendants is handled at the same process, therefore
requiring no communication.

D. Optimal Schedule for Single Process

The optimal schedule for single process is the one that
minimizes the number of floating-point operations. As Eq.(11)
and the subsequent discussion imply, we have to keep NOi

at every joint as small as possible. To realize this, for each
joint we divide the joints in Oi into two groups by checking
whether they exists towards the root side or end side of the



10

2

3
4

10

2

3
4

handles

2

4

3

1

0

2

4

3

1

0

root end

Fig. 8. Examples of partial chains and their optimal schedule for single
process, with different Oi.

joint. Let us denote the number of joints in the two groups
by Nr

Oi and Ne
Oi respectively. If Nr

Oi ≤ Ne
Oi we put the joint

at the lower layer of the schedule tree, i.e. processed earlier
in the assembly step, because we can keep NOi smaller than
in the reverse order. This principle defines the sequence of
adding joints where there is no branches. At branches, we
count the number of joints included in Oi in each branch
and then process the branches in the ascending order of the
number.

Figure 8 shows two examples of optimal schedules for a
partial chain composed of joints 0–4, with different Oi. In both
cases, Oi includes one joint represented by the gray circle.
The branch neighboring the joint in Oi should be processed
later in the assembly process regardless of the hierarchy in the
structure. The joints in that branch are therefore placed near
the top of the schedule tree.

IV. EXPERIMENTS

A. Setup

We used the same computer environment as in section II-
D and determined the constants in Eq.(11) as α = 1.6, β =
1.0, γ = −1.0, and δ = 14.4, which gives the total compu-
tation time in µs for assembling and disassembling a joint.
The negative value for γ is because the computation of V i

involves the inversion of a (6 − ni) × (6 − ni) matrix. The
coefficients for n3

i and n2
i turned out to be too small to be

identified by this method, and therefore practically negligible.

B. Serial Chains

We applied the method to finding the optimal schedule
for handling serial chains on two- and four-processor envi-
ronments. In the two-processor case, the optimal schedule is
trivial as shown in Fig. 4: the root of the schedule tree is the
joint at the middle of the chain, and other joints are added
sequentially towards the ends. We therefore only confirm that
the method can find the trivial solution. The four-processor
case is no longer trivial. Dividing the chain into four equal-
length partial chains and assigning one process to each partial
chain is not the optimal schedule because the two partial chains
in the middle requires more computations than those at the
ends because of larger NOi(= 2).

a b

c d

0 0

a+1

c+1 d+1

b+1

a+2

N-1 N-1

a-1

c-1 d-1

b-1

a-2

..
.

..
.

..
.

..
.

..
.

..
.

(1) (2)

Fig. 9. Optimal schedules for handling N -joint serial chain on two processors
(1) and four processors (2).

TABLE I

THE VALUES OF a, b, c AND d FOR THE SCHEDULE TREES IN FIG. 9.

DOF 2 processes 4 processes
N a b c d
16 7 7 3 11
32 15 15 8 22
64 31 31 17 45

The scheduling algorithm derived the schedule trees for
handling N -joint serial chain on two and four processors
shown in Fig. 9, where the actual indices a, b, c and d were
the values shown in Table I for N = 16, 32 and 64. The
schedules for two processors match the trivial solutions. Those
for four processors also reasonable because the internal two
partial chains are slightly shorter than the others.

C. Branched Chains

We applied the method to finding the optimal schedule for
handling branched chains on two processors. The scheduling
is not trivial as in the case of serial chains. We used three
human figures with different complexities (Fig. 10): 40 DOF,
52 DOF, and 161 DOF composed of 1 DOF rotational, 3 DOF
spherical, and 6 DOF free joints. In all models, the method
selected a joint in the backbone near the neck as the root of
the schedule tree. Table II shows the computation time on
one to four processors, and the ratios of speedup. Parallel
computation reduced the computation time by 38–43% for two
processors and 39–54% for four processors. The speedup gain
is comparable to that of Fig. 4 which is the ideal load balance
case. The effect of parallel computation was more prominent
in complex models.

Fig. 10. Three human character models for test; from left to right: 40 DOF,
52 DOF, and 161 DOF.



TABLE II

COMPUTATION TIMES FOR SERIAL AND PARALLEL COMPUTATIONS (MS)

AND RATIO OF SPEEDUP.

DOF 40 52 161
� of joints 15 19 53

1 process 0.249 0.301 0.773
2 processes 0.155 0.186 0.443
(speedup) (38%) (38%) (43%)

4 processes 0.153 0.177 0.356
(speedup) (39%) (41%) (54%)

V. CONCLUSION

In this paper, we proposed a method for automatically
scheduling the parallel forward dynamics computation of open
kinematic chains. The conclusion of the paper is summarized
as follows:

1) We proposed an efficient method for applying A* search
algorithm to the scheduling problem.

2) We proposed a systematic method for assigning proces-
sors to the partial chains considering the communication
cost.

3) The method was applied to three human character mod-
els with different complexity and reduced the computa-
tion time by up to 43% on two processors and 54% on
four processors.

The method is applicable to parallel forward dynamics
algorithms which can be physically interpreted as successive
connection of two partial chains described as schedule trees,
e.g. [1]–[3]. The coefficients of Eq.(11) should be modified
accordingly.

Future work includes extension to closed kinematic chains.
This problem can be partially solved by the following proce-
dure: (1) cut the loops by removing some joints and apply the
method described in this paper to the resulting open chain, and
(2) insert the removed joints to the root of the schedule tree,
although the resulting schedule may not be optimal. Another
issue is the relationship between the schedule and numerical
accuracy. If the schedule affects the accuracy, it would be
possible and beneficial to optimize the accuracy as well in
the automatic scheduling process.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) and the New
Energy and Industrial Technology Development Organization
(NEDO), Japan.

REFERENCES

[1] K. Yamane and Y. Nakamura, “Efficient Parallel Dynamics Computation
of Human Figures,” in Proceedings of the IEEE International Confer-
ence on Robotics and Automation, May 2002, pp. 530–537.

[2] R. Featherstone, “A Divide-and-Conquer Articulated-Body Algorithm
for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part1:
Basic Algorithm,” International Journal of Robotics Research, vol. 18,
no. 9, pp. 867–875, September 1999.

[3] K. Anderson and S. Duan, “Highly Parallelizable Low-Order Dynamics
Simulation Algorithm for Multi-Rigid-Body Systems,” AIAA Journal on
Guidance, Control and Dynamics, vol. 23, no. 2, pp. 355–364, March-
April 2000.

[4] A. Fijany, I. Sharf, and G. D’Eleuterio, “Parallel O(log N) Algorithms
for Computation of Manipulator Forward Dynamics,” IEEE Transactions
on Robotics and Automation, vol. 11, no. 3, pp. 389–400, 1995.

[5] IBM Research, “The Cell Project at IBM Research,” online,
http://www.research.ibm.com/cell/.

[6] K. Yamane and Y. Nakamura, “O(N) Forward Dynamics Computation
of Open Kinematic Chains Based on the Principle of Virtual Work,”
in Proceedings of IEEE International Conference on Robotics and
Automation, 2001, pp. 2824–2831.

[7] R. Featherstone, Robot Dynamics Algorithm. Boston, MA: Kluwer
Academic Publishers, 1987.

[8] K. Yamane and Y. Nakamura, “Parallel O(log N) Algorithm for Dy-
namics Simulation of Humanoid Robots,” in Proceedings of IEEE-
RAS International Conference on Humanoid Robotics, Genoa, Italy,
December 2006, pp. 554–559.

[9] Mathematics and Computer Science Division, Argonne
National Laboratory, “MPICH2 Home Page,” online,
http://www.mcs.anl.gov/mpi/mpich2/.

[10] Steven M. LaValle, Planning Algorithms. New York, NY: Cambridge
University Press, 2006.

APPENDIX

Algorithm 1 shows the general form of A∗ search [10],
where T is the search tree, Q is a list of nodes sorted in the
ascending order of priority cost of each node. The following
operations are predefined for list Q and search tree T :

• Q.GetF irst(): extract the first node in Q
• Q.Insert(x): insert node x to Q such that the nodes are

aligned in the ascending order of x.priority cost
• T.SetRoot(x): set node x as the root of T
• T.AddDescendant(x, x′): add x′ to T as a descendant

of x

while the actions of the following methods for node x should
be customized to fit the particular problem:

• x.NextNodes(): returns the set of descendant nodes of
x

• x.Cost(): returns the cost to add x to the search tree
• x.AstarCost(): returns an underestimation of the cost

from x to a goal

Algorithm 1 General A* Search
Require: the initial node xI and set of goal nodes XG

1: xI .total cost← 0
2: xI .priority cost← 0
3: Q.Insert(xI)
4: T.SetRoot(xI)
5: while Q not empty do
6: x← Q.GetF irst()
7: if x ∈ XG then
8: return x
9: end if

10: for all x′ ∈ x.NextNodes() do
11: T.AddDescendant(x, x′)
12: x′.total cost← x.total cost + x′.Cost()
13: x′.priority cost← x′.total cost + x′.AstarCost()
14: Q.Insert(x′)
15: end for
16: end while
17: return NULL


