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Abstract— In this paper, we study the problem of verifying
dynamic coverage in mobile sensor networks using certain
switched linear systems. These switched systems describe the
flow of discrete differential forms on time-evolving simplicial
complexes. The simplicial complexes model the connectivity of
agents in the network, and the homology groups of the simplicial
complexes provides information about the coverage properties of
the network. Our main result states that the asymptotic stability
the switched linear system implies that every point of the domain
covered by the mobile sensor nodes is visited infinitely often,
hence verifying dynamic coverage. The enabling mathematical
technique for this result is the theory of higher order Laplacian
operators, which is a generalization of the graph Laplacian
used in spectral graph theory and continuous-time consensus
problems.

I. I NTRODUCTION AND MOTIVATION

Recent years have witnessed a surge of research interest
in science and engineering of networked dynamic systems.
Due to the advances in computing, communication, sensing
and actuation technologies, networks composed of hundreds
or even thousands of inexpensive mobile sensing platforms
have become closer to reality. The field ofsensor networksis
undergoing a revolutionary transformation from a subject of
academic curiosity to a mature enabling technology in many
industrial and engineering solutions. Although, producing low
cost and tiny sensor nodes is still an active area of research, the
miniaturization and lowering of cost are understood to follow
from recent and future progress in the fields of MEMS and
NEMS. Thus, the main challenge in this area has now shifted
from the manufacturing of cheap hardware and deployment
tools to the development of analytical tools for predicting
and controlling the complexities arising in such large-scale
networks.

An interdisciplinary research area ofnetwork scienceis
emerging which combines disciplines such as communications
and networking, graph theory, statistical physics, probability
and statistics, social sciences, with robotics, optimization,
and control [1]. A major theme in the broad research topic
of network science is understanding of the emergence of
global behavior from local interactionsvia adaptation and
cooperation. Examples of such phenomena span domains from
biological sciences to systems and controls, and from statistical

† This work is supported by DARPA DSO # HR0011-07-1-0002 via the
project SToMP: Sensor Topology & Minimal Planning, and by ARO MURI
grant # W911NF-05-1-0381.

physics to computer graphics, where researchers have been
trying to develop an understanding of how a group of moving
objects (natural or man-made) can collectively reach a global
behavior such as flocking, synchronization or consensus with
local interaction rules [2].

A useful abstraction for modeling and analysis of such
complex systems has been developed using graph theory.
Typically interaction among agents is modeled with graphs
in which nodes represent agents and edges represent some
form of proximity or other binary relationships [3]. The term
graphtopologyis frequently used to denote the interconnection
structure among agents. The use of the term topology (which
is typically associated with a branch of mathematics involved
with studying sets, the nature of space, its fine structures, and
its global properties) is by no means an accident. In fact both
disciplines of graph theory and topology where born at the
same time, by the famous 1736 paper of Leonard Euler on
Seven Bridges of Knigsberg [4], even though algebraic or
combinatorial topology became a formal discipline as recent
as 1930s [5]. In fact, the very central question of inferring
global properties from local information (which is the main
goal of research in network science and networked dynamic
systems) is the realm of algebraic topology which deals with
topics like homology, homotopy, and in general topology of
discrete and combinatorial sets.

The philosophy underlying this paper is that meeting the
challenges of network science requires aminimalist thinking,
i.e. the development of abstractions that retain the essential
features of the system using minimum information to manage
the explosion of redundancies with scale. We believe that many
of these challenges aregeometricaland a minimalist approach
to solving geometrical problems in networks is essentially
topological. In this paper, we use this philosophy to obtain
low-cost, provably correct algorithms for the verification of
distributed coverage problems in mobile sensing networks.

II. PROBLEM FORMULATION

The primary task of a sensor is to detect, discern or
locate certain physical changes within its proximity. In many
situations, the environment where such physical changes are
expected to take place has such large physical dimensions
that it is impossible to monitor it with a single sensor. To
accomplish the task of monitoring such an environments, a
network of sensors can be deployed in which the individual



sensor nodes can process and communicate individual sensory
data collected in their proximities.

Thus, the first requirement for the deployment of a sensor
network is to ensure that the sensors reliablycoverthe environ-
ment in such a way that there are no gaps left in the coverage.
Coverage problems for sensor networks have been extensively
studied in the literature [6]. When feasible, it is preferred to
provide a continual coverage to the environment by deploying
a network of static sensing nodes. This is known as theblanket
coverageproblem. In many cases, it is not feasible to deploy
a large number of static sensors for continual coverage. If
ubiquitous coverage is not necessary, then one solution is to
deploy amobile sensor networkmade up of robotic sensing
platforms. The mobile agents patrol the environment in such a
manner that each point of the environment is visited infinitely
often, possibly with a certain frequency. As a result, no point
remains undetected for ‘too long’, as depicted in Figure 1.
The problem of verifying such coverage is called adynamic
coverageproblem. The dynamic coverage problems have been
categorized by Gage in his survey [6] as thesweepandbarrier
coverage problems. In barrier coverage, the objective is to
achieve a static arrangement of elements that minimizes the
probability of undetected penetration through the barrier.

Fig. 1. A dynamic coverage scenario : An area of interest (white) under
surveillance by a group of UAV’s.

Coverage verification, whether static or dynamic is inher-
ently a geometrical problem and needs some geometrical infor-
mation about the nodes for computing a solution. Therefore, it
is no surprise that many network coverage problems have been
studied in the computational geometry literature in various
other contexts. For example, theArt Gallery Problem is to
determine the number of observers necessary to cover an art
gallery (or an area of interest) such that every point in the art
gallery is monitored by at least one observer. Inspired by these
computational geometry results, many researchers in sensor
networks have studied the blanket coverage for static nodes in
various settings [7, 8, 9, 10]. In [7], the authors have studiedk-
coverage: whether every point in the service area of the sensor
network is covered by at leastk number of sensors. In [11, 12],
the authors consider network coverage using wireless sensors
that conserve power by alternating between active and sleep

states with an average sleep period (much) longer than the
active period. Other researchers have also examined the area
coverage of random sensor networks in bounded domains [13].

The problem of dynamically covering an area of interest
has been another subject of interest for various researchers in
control theory, networks and robotics. One aspect of bringing
mobility into the picture is to design trajectories for network
reconfiguration in changing environments or in situations
where some areas of the environment are of more interest than
others [14, 15, 16, 17]. The coverage provided by the network
is still blanket, and the mobility of the nodes only cater to
a changing surveillance domain. The dynamic coverage prob-
lems, as described above, are thesweepandbarrier coverage
problems. A variant of sweep coverage has been studied under
the title of effectivecoverage for mobile agents in [18]. In
[19], sweep coverage schemes have been proposed and studied
using a frequency coverage metric that measures the frequency
at which every-point in the environment is visited. Similarly,
barrier coverage has been studied [20], although for static
sensors only, but the results can be extended to studying a
dynamic barrier [6].

Such geometrical approaches often suffer from the draw-
back that they are too expensive to compute in real-time.
Moreover, they typically require exact knowledge of the lo-
cations of the sensing nodes. Although, this information can
be made available in real-time by a localization algorithm
or by fitting the sensors with localization sensors (such as
GPS), it can only be used most effectively in an off-line
pre-deployment analysis for large networks or when there
are strong assumptions about the geometrical structure of
the network and the environment. Due to the challenges in
designing effective distributed algorithms, there may be a mas-
sive accumulation of information at a small subset of nodes.
Furthermore, most computational geometry algorithms suffer
from a lack of robustness due to the required precision in exact
geometrical information. In addition, if the network topology
changes due to node mobility or node failure, a continuous
monitoring of the network coverage becomes prohibitive if
the algorithm is too expensive to run or is sensitive to location
uncertainty. Finally, localization equipment adds to the cost of
the network.

To address these issues, we use a fresh approach for
distributed coverage verification usingminimal geometry. Our
goal here is to show that surprisingly simple, andminimal
topological information, such as the ID’s of nearest neighbors
can be used to this end. The geometrical information that is
needed for solving such problems is remarkably minimal: no
means of measuring distance, orientation, or location of the
nodes in an environment are required. As described below, the
basic idea is to infer geometric proximity of other nodes by
the mere existence of radio communication (without any aid of
specialized localization equipment or refinement in proximity).
From this connectivity data alone, coverage for the entire
network is verifiable using the tools of algebraic topology.

Our approach is quite interdisciplinary in nature and com-
bines recent advances in multiagent systems and control



on agreement and consensus problems [2, 21], with recent
advances in coverage maintenance in sensor networks using
computational algebraic topology methods [22, 23, 24, 25].
to develop distributed algorithms that are computationally
inexpensive and robust to failures.

III. B EYOND GRAPHS: SIMPLICIAL MODELS OF

NETWORKS

A. From graphs to simplicial complexes

Graphs can be generalized to more expressive combinatorial
objects known as a simplicial complexes. For a thorough treat-
ment of simplicial complexes and their topological invariants,
see for example [26]. While graphs model binary relations,
simplicial complexes can be used to model higher order rela-
tionships. Given a set of pointsV , ak-simplexis an unordered
set{v0, v1, · · · , vk} ⊂ V such thatvi 6= vj for all i 6= j. The
facesof the k-simplex{v0, v1, · · · , vk} are defined as all the
(k − 1)-simplices of the form{v0, · · · , vj−1, vj+1, · · · , vk}
with 0 ≤ j ≤ k. A simplicial complexis a collection of
simplices which is closed with respect to the inclusion of
faces. One can define anorientation for a simplicial complex
by defining an ordering on all of itsk-simplices. We denote
the k-simplex{v0, · · · , vk} with an ordering by[v0, · · · , vk],
where a change in the orientation corresponds to a change
in the sign of the coefficient as[v0, · · · , vi, · · · , vj · · · , vk] =
−[v0, · · · , vj , · · · , vi · · · , vk].

With these definitions, it is clear that a graph is a simplicial
complex which its vertices and edges are in fact the 0- and
1-simplices respectively, and each vertex is a face of all its
incident edges. An oriented simplicial complex is merely a
generalization of a directed graph1

One can also generalize the concepts of adjacency and
degree to simplicial complexes. Twok-simplicesσi and σj

areupper adjacent(denoted byσi a σj) if both are faces of
a (k + 1)-simplex in X. The twok-simplices are said to be
lower adjacent(denoted byσi ` σj) if both have a common
face (see Figure 2 below).

0- Simplex [v0] 1- Simplex [v0, v1]

2- Simplex [v0, v1, v2] 3- Simplex [v0, v1, v2, v3]

v0
v0

v1

v0 v1

v2

v2

v0

v1

v3

Fig. 2. (Left:) Examples of 1,2, and 3 simplices. (Top Right): Two nodes
that are connected by an edge; two edges that have a common face are upper
adjacent. (Bottom Right) Two faces that share an edge and two tetrahedra that
share a face are lower adjacent.

Having defined the adjacency, one can define the upper and
lower adjacency matrices,Au andAl respectively, in a similar

1Note that this should not be confused with the notion of a hyper graph
in which any subset of the power set of vertices could correspond to a hyper
edge.
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Fig. 3. (Left) Sensor coverage with disk footprints.(Right) The corresponding
Čech complex. Coverage holes are represented by holes in theČech complex.

fashion to a graph’s adjacency matrix. The upper and lower
degree matricesDu andDl are also defined similarly.

If X is a finite simplicial complex, for eachk ≥ 0, define
Ck(X) to be the vector space whose basis is the set of oriented
k-simplices ofX. We let Ck(X) = 0, if k is larger than the
dimension ofX. Each element of these vector spaces is a
linear combination of the basis elements. Over these vector
spaces thek-th boundary mapis defined to be the linear
transformation∂k : Ck(X) → Ck−1(X), which acts on the
basis elements of its domain via

∂k[v0, · · · , vk] =
k∑

j=0

(−1)j [v0, · · · , vj−1, vj+1, · · · , vk]. (1)

Intuitively, the boundary map∂k operated on ak-simplex,
returns a linear combination of itsk+1 faces. In fact the zeroth
boundary map∂1 is nothing but the edge-vertex incidence
matrix of a graph which maps edges (1 simplices) to nodes
(0 simplices), mapping a simplex to its boundary (hence the
name boundary map).

Using (1), it is easy to show that the composition∂k ◦∂k−1

is uniformly zero for allk and as a result, we haveIm ∂k ⊂
Ker ∂k−1. Then, thek-th homology groupof X is defined as

Hk(X) = Ker ∂k−1/Im ∂k.

Since the boundary operators∂i map a simplex to a linear
combination of its faces (i.e. its boundary), the homology
groups can be used to distinguish topological spaces from one
another. More precisely, the dimension of thek-th homology
group (known as itsBetti number) identifies the number of
k-dimensional “holes” in the given topological space. For
example, the dimension ofH0(X) is the number of connected
components of the 1-skeleton (or collection of 0 and 1 sim-
plices, i.e., nodes and edges) ofX. On the other hand, the
dimension ofH1(X) is the number of its non-contractible2

cycles orholes.
Homology groups are used to distinguish topological spaces

from one another by identifying the number of ‘holes’ of
various dimension, contained in these spaces. Each non-
trivial homology class in a certain dimension helps identify
a corresponding hole in that dimension. Crudely speaking, the
dimension ofH0(X) is the number of connected components
(0-dimensional holes) ofX. the dimension ofH1(X) is the

2A space is contractible if it is homotopy equivalent to a single point.



number of non-contractable cycles inX. For a surface, it
identifies the ‘punctures’ in that surface. For a graph it is the
number of loops or circuits.H2(X) identifies the number of
3-dimensional voids in a space and so on.

B. Čech and Rips complexes and coverage problems

Since we aim to apply the topological properties of the
simplicial complexes to the coverage problem and therefore
dealing with union of disks, it would be useful to define what
is known as theČech or Nerve complex. Given a collection
of setsU = {Ui}, theČech complex ofU denoted byC(U) is
the abstract simplicial complex whosek-simplices correspond
to non-empty intersections ofk + 1 distinct elements ofU .
This complex is simply formed by associating convex sets
(e.g. disks) to each node, and then representing edges or
higher order simplices from the overlap of such sets. For
example, given a network of sensors with disk footprints,
we can construct thěCech complex(also known as the nerve
complex) by book-keeping over lap of sensor footprints. In
the complex, nodes or zero simplices represent the sensors.
When two footprints overlap, we draw an edge or a 1-simplex
between two nodes ( see Figure 3). However, we also keep
track of further set overlaps by representing three disk overlaps
with faces or filled triangles and 4 set overlaps with tetrahedra
and so forth. A closely related complex, known as the Rips-
Vietoris complex (hereafter called the Rips complex), is the
natural analog of proximity graphs (also known as connectivity
graphs, r-disk graphs or geometric graphs) which have become
ubiquitous in networking, control theory and network science
research. In such graphs, nodes represent the agents or sensors
and edges represent distance proximity. There is an edge
between two nodes if they are within a certain distance of each
other. A Rips complex is just a generalization of this concept to
higher order relations (see Figure 4). If 2 nodes are within the
distance of each other, there is an edge between them. When 3
nodes are within a distance of each other then the three nodes
will form a face. If four nodes are within a certain distance,
they form a tetrahedron. While the Rips complex is the suitable
abstraction for modeling nearest neighbor communications, the
Čech complex is suitable for coverage problems.

Fig. 4. A connectivity graph [left], its Rips complex [center left] and a
depiction of its topology as a sphere [right].

A well-known result in algebraic topology known as the
Čech theorem [27] implies that if collection of setsU = {Ui}
and their non-empty finite intersections are contractible ( i.e.,
the sets themselves have no holes and their intersections have
no holes) then thěCech complexC has the same homotopy
type as the union ofUis. The above result indicates that
in order to verify coverage in a given domain by a set of

sensors, one only needs to look at the homology groups (which
represents holes) of the underlyingČech complex. If thěCech
complex has no holes, neither does the sensor cover. However,
computation of theČech complex is not an easy task, as it
requires localization of each sensor as well as measurement
of distances in order to verify that sensor footprints overlap.
Furthermore, theČech complex is very fragile with respect
to uncertainties in distance and location measurements [25].
On the other hand, the Rips complex can be easily formed by
merely communication with nearest neighbors, solely based
on local connectivity information. However, the Rips complex
is unfortunately not rich enough to contain all the topological
and geometric information of thěCech complex and in general
does not tell us information about coverage holes. Recently,
the authors in [22] have shown that in certain cases, the Rips
complexdoescarry the necessary information. Namely, it is
shown that any̌Cech complexCrc made from sensor footprints
of disks of radiusrc, can be “sandwiched” between two Rips
complexes formed from nearest neighbor communication with
broadcast disk radiusrb1 =

√
3rc from left andrb2 = 2rc from

right. In other words,

R√3rc
⊆ Crc ⊆ R2rc ,

whereRε is a Rips complex formed from broadcast disks
of radius ε, and⊆ represents containment of one simplicial
complex in another. Therefore, if the Rips complex with
broadcast disks of radiusrb1 is hole free, then so is the sensor
coverage, and if the Rips complex with broadcast radius of
rb2 has holes, so does the coverage. In other words, this result
gives us a necessary and a a sufficient homological criterion
for coverage verification

In principle, one can detect holes in a simplicial complex by
looking at the homology groups associated with that complex.
However such linear algebra computation are generally cen-
tralized [22]. In what follows, we resent our preliminary results
on detection of coverage holes in a decentralized fashion.
Before doing so, however, we need to introduce the machinery
of combinatorial Laplacians for simplicial complexes (which
are again generalizations of the same notion for graphs).

C. Combinatorial Laplacians

The graph Laplacian [28] has various applications in image
segmentation, graph embedding, dimensionality reduction for
large data sets, machine learning , and more recently in con-
sensus and agreement problems in distributed control of multi
agent systems [2, 21]. We now define the Laplacian matrix of
a graph and its generalizations to simplicial complexes.

If the vertex-by-edge-dimensional matrixB is the incidence
matrix of a graphG, then its Laplacian matrix is defined as
L = BBT . As it is evident from the definition,L is a positive
semi-definite matrix. Also it is well-known that the Laplacian
matrix can be written in terms of the adjacency and degree
matrixes ofG as well:

L = D −A,



which implies that thei-th row of the Laplacian matrix only
depends on the local interactions between vertexi and its
neighbors.

A similar operator can be defined for simplicial complexes
using the boundary maps [29]. The operatorLk : Ck(X) →
Ck(X) defined as

Lk = ∂k+1∂
∗
k+1 + ∂∗k∂k (2)

is called thek-th combinatorial Laplacianof the simplicial
complex X, where the operators have simple matrix repre-
sentations and∂∗k is the adjoint operator of∂k. Note that
the expression forL0 reduces to the definition of the graph
Laplacian matrix. Also similar to the case of graph Laplacian,
the combinatorial Laplacians can be represented in terms of
the adjacency and degree matrices as follows [30]:

Lk = Du −Au + (k + 1)I + Al k > 0, (3)

where I is the identity matrix of the proper size,Al is
the lower adjacency matrix betweenk-simplices andAu

is the corresponding upper adjacency matrix. This equation
indicates thatLk is a positive semi-definite matrix, whose
kernel represents the cohomology groups3 [30]. This is merely
extension of the fact that in the case of graphs, the kernel of
the Laplacian matrix represents the connected components (0-
dimensional holes). Moreover, (3) implies that as in the case
of the graph Laplacian, thei-th row of Lk only depends on
the local interactions between thei-th k-simplex and its upper
and lower adjacent simplices. As a result, to verify a hole-free
coverage in the plane, one needs to verify that the kernel of
the k-Laplacian of the Rips complex with radiusrb1 above
is zero. This property makes the combinatorial Laplacian a
suitable tool for distributed coverage verification. In the next
section we study dynamic coverage verification based on these
and other observations.

IV. M OBILE NETWORKS AND DYNAMIC COVERAGE

A. Graph Laplacian, Consensus and Homology

The dimension of the null space of this graph Laplacian
is well known to be equal to the the number of connected
components of the graph [28]. Therefore, it is no coincidence
that kerL0

∼= H0(X) also counts the number of connected
components ofX. Moreover, when the graph is connected,
the vector 1 = [1 1 . . . 1]T is always an eigenvector of
L0 corresponding to the eigenvalue0. Again, this can be
explained in terms of the dual space to homology, i.e. the
cohomology. Note that the zero dimensional cohomology is
an equivalence class of functions on the vertices [27]. The
vector1 corresponds to the zero cohomology class of constant
functions on the vertices. Any non-zero vector in the span
of 1 represents a constant function in this cohomology class.
If there are more than one connected components, there is
a cohomology class of locally constant functions for each

3Strictly speaking, cohomology groups are dual spaces of homology groups.
For the sake of our discussion however, this distinction is immaterial as either
one represent k dimensional holes in the simplicial complex.

component [27]. The locally constant functions are precisely
the harmonic functionspredicted by Hodge theory.

Let us turn our attention to consensus algorithms for multi-
agent systems that are based on the graph Laplacian. Ifxi :
vi → R is a scalar function on vertexvi, then the state vector
x(t) = [x1(t) x2(t) . . . xn(t)]T can be used to model the
evolution of the system,

ẋ(t) = −L0x(t), (4)

in which L0 captures the connectivity between the nodes
in the graph. If the underlying graph is connected, then
limt→∞ x(t) = c1, wherec is a constant that depends onx(0).
Thus connectedness is a sufficient condition for consensus.

In [2], the authors have proven consensus under a weaker
condition of joint connectedness. A collection of finite graphs
is said to be jointly connected if their union is a connected
graph. The basic idea is to model the dynamics under changes
in the graph topology as a switched linear system by

ẋ(t) = −Lσ(t)
0 x(t),

whereσ : [0,∞) → P is a switching signal that indexes the
appropriate graph topology at each switch. The main result in
[2] says that consensus is possible even under the (weaker)
condition of joint connectedness of the graphs encountered in
an infinite sequence of contiguous bounded time-intervals.

Based on these results, one can ask if the consensus dynam-
ics can be generalized to some switched linear systems that
models the flow of thek-Laplacian under switching topologies.
Moreover, if the underlying simplicial complexes are Rips
complexes, the topologies change due to the motion of the
nodes and one can replace the generalize the concept of joint
connectedness to the absence of holes (homology) in certain
finite unions of Rips complexes, one can hope to study the
sweep coverage problem using the stability properties of that
switched linear system. We make these concepts concrete in
the following section.

B. k-Laplacian Flows on Simplicial Complexes

C. Fixed Network Topology

The dynamical system (4) runs at the node level in a net-
work. Assume that the nodes are fixed, so that the connectivity
graph G of the network is also fixed. Let us now run a
dynamical system on thek-simplices of a network, as ak-
Laplacian flow on the corresponding Rips complexR. We
described in [30], how to interpret this flow correctly using
the language of discrete differential forms. We denote thek-
forms on a simplicial complex asCk(R), to indicate that they
are dual to the chainsCk(R). We study the dynamical system

∂ω(t)
∂t

= −Lkω(t), ω(0) = ω0 ∈ Ck(R). (5)

The equilibrium points of this dynamical system are the set
ker(Lk). The stability of this dynamical system is described
by the following results, proven in [30].

Proposition IV-D: The dynamical system of Equation 5 is
semi-stable.



This implies that the system always converges to to the
set ker(Lk) in the limit. Note that the condition that
dimker(Lk) = 0 is equivalent to saying that thek-th co-
homology group (or the respectivek-th homology group) is
zero. Therefore, we have the following corollary.

Corollary IV-E: [30] The system in Equation 5 is asymp-
totically stable if and only ifHk(R) = 0.
Thus the asymptotic stability of the system is an indicator of
an underlying trivial topology of the complex. These results
also prove that for any initialω(0), the trajectoryω(t), t ≥ 0
always converges to some point inkerLk. In other words,
the dynamical system is a mechanism for producing discrete
harmonick-forms on simplicial complexes from any arbitrary
k-forms [30].

F. Dynamic Network Topology

Let us now consider the case when the nodes are mobile,
giving rise to a switching connectivity graph structure. This
also gives rise to a switching structure for the induced Rips
complex. Following the presentation in [2], let us write the
flow on this changing simplicial complex using a piece-wise
constant switching signalσ : [0,∞) → P, whereP indexes
the set of connectivity graphs onn vertices, emerged by
the motion of the nodes. We assume that under reasonable
assumptions on the smoothness of the trajectories, there are a
finite number of switches in a bounded interval of time. We
will further assume that switching periods cannot be smaller
than a finite dwell timeτD.

Let the switching times bet1, t2, . . .. If Gσ(t0), Gσ(t1), . . .
are the graphs encountered along a certain evolution,
then the corresponding Rips complexes are denoted by
R(Gσ(t0)),R(Gσ(t1)), . . ., respectively. Let

R =
⋃

i

R(Gσ(ti)).

Since the Rips complex of a complete graph onn vertices
is an n − 1-simplex, denoted by∆n−1, it follows thatR ⊆
∆n−1. We next order thek-simplices ofR in the order of
their appearance in time and thus produce the spacesCk(R).
ThusCk(R(Gσ(ti))) ⊆ Ck(R), so the dynamical system

∂ω(t)
∂t

= −Li
kω(t), ω(ti) ∈ Ck(R(Gσ(ti))), t ∈ [ti, ti+1),

can also be written as a zero-padded system

∂ω(t)
∂t

= −L̃i
kω(t), ω(ti) ∈ Ck(R), t ∈ [ti, ti+1).

Here L̃i
k is a zero-padded matrix representation ofLi

k. This
lets us write the flow for allt ≥ 0 as a switched linear system

∂ω(t)
∂t

= −L̃σ
kω(t), ω(0) ∈ Ck(R). (6)

We want to study the conditions under which this switched
linear system is asymptotically stable. From the observation
that

kerLi
k
∼= Hk(R(Gσ(ti)))

and Corollary IV-E, one can hope that if we are ensured that
each simplicial complex encountered during the evolution is
hole-free, i.e.Hk(R(Gσ(ti))) ∼= 0, then the switched linear
system may show asymptotic stability. We will show below
that we can prove the asymptotic stability of the switched
system under an even weaker condition, whereby the simpli-
cial complexes encountered in bounded, non-overlapping time
intervals arejointly hole-free.The proof of this result closely
follows the presentation in [2]. As explained later, this will
be a key result in generalizing the previous blanket coverage
criteria of [22, 23] to a sweeping coverage criterion. Let us
give the following definition.

Definition IV-G: Let {X1, X2, . . . , Xm} be a finite collec-
tion of simplicial complexes. Then, they are said to be jointly
hole-free in dimensionk if

Hk

(
m⋃

i=1

Xi

)
∼= 0.

X1
X2

X3 X4

X = ∪iXi

Fig. 5. Jointly hole-free simplicial complexes in dimension0 and 1. Note
that the complexes arenot jointly hole-free in dimension2 due to the hollow
tetrahedron in the right part ofX.

For an example, see Figure 5. We now state the following
result:

Proposition IV-H: Let X = {X1, X2, . . . , Xm} be a finite
collection of simplicial complexes, whose union isX. Let the
k-Laplacian operator ofXi be given byLi

k : Ck(Xi) →
Ck(Xi), which can be zero-padded appropriately to get the
operatorL̃i

k : Ck(X) → Ck(X). If X is jointly hole-free in
dimensionk, then

m⋂

i=1

ker L̃i
k = {0}.

Proof: First note thatker L̃i
k
∼= kerLi

k⊕F i ∼= Hk(Xi)⊕F i,
where F i is the space spanned by the eigenvectors corre-
sponding to the ‘fake’ zero eigenvalues, due to zero-padding.
Therefore, the zero-padding does not present an obstruction
in analyzing the intersection of the kernels and is only there
for proper comparison. For notational convenience, let us also
write L̃i

k as L̃k(Xi). It is easy to see that

L̃k(Xp) + L̃k(Xq) = L̃k(Xp ∩Xq) + L̃k(Xp ∪Xq),

which can be generalized to the relation

m∑

i=1

L̃k(Xi) = L̃k

(
m⋃

i=1

Xi

)
+

m−1∑

i=1

L̃k


Xi+1 ∩




i⋃

j=1

Xj





.



Since the zero-paddedk-Laplacians are all positive semi-
definite, ak-form w ∈ Ck(X) which is harmonic for each
L̃i

k, also satisfies

L̃k

(
m⋃

i=1

Xi

)
ω = 0.

Therefore,
m⋂

i=1

ker L̃k(Xi) ⊂ ker L̃k

(
m⋃

i=1

Xi

)
= Hk

(
m⋃

i=1

Xi

)
.

Since by the given conditionX is jointly hole-free, it imme-
diately follows that

m⋂

i=1

ker L̃i
k = {0}.

Given the trajectories{xi(t)} of the nodes, the switched
linear system (6) for a fixedk, captures the evolution of the
Rips complexes as well as thek-Laplacian flow on them.
We can now state the following result, whose proof has been
included in the appendix.

Theorem IV-I: The following are equivalent
1) The switched linear system (6) is globally asymptoti-

cally stable.
2) There is an infinite sequence of switching times

t0, t1, . . ., such that across each interval[tj , tj+1), the
encountered collection of Rips complexes are jointly
hole-free in dimensionk.

Proof:
Suppose that the switched dynamical system (6) is asymp-

totically stable. Now, suppose to the contrary that there does
not exist a sequence of switching times, such that the com-
plexes encountered during the intervals are jointly hole-free.
Then there exists a finiteT , such that fort ≥ T there exists
a non-zerok-form θ in the intersection of the kernels of all
complexes encountered afterT . In other words,L̃σ

kθ = 0 for
t ≥ T . Without loss of generality pickT = 0. The evolution
of (6) can be written as

ω(t) =

( ∞∏

i=0

exp
(
−L̃i

k(ti+1 − ti)
))

ω(0).

Now let ω(0) = θ, then by virtue of being in the intersection
of the kernels,ω(t) = θ for all t ≥ 0. Therefore, we have an
initial condition that does not converge to zero. But it is given
that the system is asymptotically stable. Therefore, we have a
contradiction and the implication is true.

For the converse, Consider the time-interval[tj , tj+1). By
assumption on the switching sequence, there are a finite num-
ber of switches in this interval. Let those switching times be
given bytj , tj1 , . . . , tjN

. The Rips complexes encountered dur-
ing the interval areR(Gσ(tj)),R(Gσ(tj1 )), . . . ,R(Gσ(tjN

)).
By assumption, they are jointly hole-free so that

ker L̃σ(tj)
k ∩

(
N⋂

i=1

ker L̃σ(tji
)

k

)
= {0}.

Now let Φ(tj , tj+1) be the product of the individual flows
exp(−L̃σ(tjm )

k (tjm+1 − tjm)) between switches, during this
interval. By the semi-stability of each individual flow,
‖ exp(−L̃σ(tjm )

k (tjm+1 − tjm
))‖ ≤ 1 for eachm. Therefore,

‖Φ(tj , tj+1)‖ ≤ 1.
Let T be an upper bound on the lengths of the intervals

[ti+1, ti), and M be the smallest positive integer such that
M ≥ T/τD. Now, by considering all sequencesSM of Rips
complexes of length at mostM that can occur within an
interval of length bounded byT , and are jointly-hole free one
can define,

µ = max
τ1∈[τD,T ]

.. max
τN∈[τD,T ]

max
SM

‖ exp(−L̃s1
k τ1).. exp(−L̃sN

k τN )‖.

whereN ≤ M . It can be shown that‖Φ(tj , tj+1)‖ ≤ µ < 1.
Furthermore, the repeated application of this inequality across
a sequence of intervals yields,‖Φ(tp, tp+1) . . . Φ(t1, t2)‖ ≤
µp < 1. From these contractions, it is can be inferred that the
system is asymptotically stable

J. Dynamic Coverage Verification

The consequences of this theorem for verifying dynamic
coverage are now easy to explain. The property of being jointly
hole-free guarantees that in contiguous bounded time-intervals,
the union of the Rips complexes has no hole. As mentioned
in Section III-B, the topology of the Rips complex can be
used to infer blanket coverage (or coverage loss) from network
holes. In the same way, the topology of the Rips complexes
encountered during the dynamic evolution of a network may
be used to infer dynamic coverage of the sensors.

One example is to verify network coverage in which sensors
alternate between active and sleep states to conserve power, as
depicted in Figure 6. Several constructive schemes have been
proposed by various researchers [11, 12, 31, 32, 33, 34]. In or-
der to verify these schemes in real time, we run the dynamical
system (6) as a cheap distributed verification method. Since
the node are stationary (even though the network topology is
changing), the Rips complexes generated during each change
in the topology (via wake-ups or sleeping of the nodes) can be
compared for the joint hole-free condition. If the Rips com-
plexes are indeed jointly hole-free, then the dynamical system
will converge to zero, thus indicating dynamical coverage.
Such a scenario has been depicted in Figure 6.

Fig. 6. Sensor wake-up/sleep scheme in a sensor network for providing
dynamic coverage of the area under surveillance.



In the case of dynamic nodes, the above mentioned results
are still applicable but the implementation need further work.
Due to the changes in node locations, the Rips complexes
generated during the evolution cannot be compared directly
for a joint hole-free condition. In fact, such a comparison can
lead to misleading interpretations of coverage. To fix this, one
can use fixed landmarks in the surveillance domain and then
compare the complexes in which the landmarks serve as the
nodes and the simplices are generated by the visitation of the
agents to each landmark. The details of this method will be
given in a future work.

Finally, we should mention that our results on dynamic cov-
erage are similar in spirit but quite different in technique to the
results on pursuit-evasion problem in [22]. In [22], the authors
present a homological criterion for detecting wandering holes
in time-varying Rips complexes. The notion of a wandering
hole is different from the loss of sweep coverage (one can
have sweep coverage with wandering holes). Moreover, our
emphasis on decentralized methods results in a technique
which is quite different as compared to the method of prism
complexes provided in [22].

V. CONCLUSIONS

In this paper, we have used the flows ofk-Laplacian
operators on time-varying simplicial complexes for verifying
dynamic coverage in mobile sensor networks. The verification
has been shown to be equivalent to the asymptotic stability of
the switched linear systems that describe those flows. Thek-
Laplacians are a natural generalization of the graph Laplacian.
The techniques used for proving consensus under the condition
of joint connectedness of switching graphs have been utilized
for this coverage problem. This approach gives new insights
into the working of consensus algorithms. It also allows us to
view algebraic graph theory as a special case of the spectral
theory of simplicial complexes. This viewpoint has proven
useful in the context of networked sensing and control.
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