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Abstract—In this paper, we study the problem of verifying physics to computer graphics, where researchers have been
dynamic coverage in mobile sensor networks using certain trying to develop an understanding of how a group of moving
switched linear systems. These switched systems describe th%bjects (natural or man-made) can collectively reach a global

flow of discrete differential forms on time-evolving simplicial behavi h flocki hronizati ith
complexes. The simplicial complexes model the connectivity of ehavior such as Tlocking, Synchronization or consensus wi

agents in the network, and the homology groups of the simplicial local interaction rules [2].
complexes provides information about the coverage properties of A useful abstraction for modeling and analysis of such

the network. Our main result states that the asymptotic stability complex systems has been developed using graph theory.

the switched linear system implies that every point of the domain ; ; ; ; ;
covered by the mobile sensor nodes is visited infinitely often, Typlcally interaction among agents is modeled with graphs

hence verifying dynamic coverage. The enabling mathematical in which ”09'6‘_5 represent f';\gents an_d Edges represent some
technique for this result is the theory of higher order Laplacian form of proximity or other binary relationships [3]. The term
operators, which is a generalization of the graph Laplacian graphtopologyis frequently used to denote the interconnection
used in spectral graph theory and continuous-time consensus structure among agents. The use of the term topology (which
problems. is typically associated with a branch of mathematics involved
with studying sets, the nature of space, its fine structures, and
its global properties) is by no means an accident. In fact both
Recent years have witnessed a surge of research intefﬁ§éip|ines of graph theory and topology where born at the
in science and engineering of networked dynamic systemgme time, by the famous 1736 paper of Leonard Euler on
Due to the advances in computing, communication, sensiggyen Bridges of Knigsberg [4], even though algebraic or
and actuation technologies, networks composed of hundre@binatorial topology became a formal discipline as recent
or even thousands of inexpensive mobile sensing platforgs 1930s [5]. In fact, the very central question of inferring
have become closer to reality. The fieldsgnsor networkss  gjopal properties from local information (which is the main
undergoing a revolutionary transformation from a subject gbal of research in network science and networked dynamic
academic curiosity to a mature enabling technology in maRrystems) is the realm of algebraic topology which deals with
industrial and engineering solutions. Although, producing |0‘&Spics like homology, homotopy, and in general topology of
cost and tiny sensor nodes is still an active area of research, gi@rete and combinatorial sets.
miniaturization and lowering of cost are understood to follow The philosophy underlying this paper is that meeting the
from recent and future progress in the fields of MEMS anghajlenges of network science requiresimimalistthinking,
NEMS. Thus, the main challenge in this area has now shifted the development of abstractions that retain the essential
from the manufacturing of cheap hardware and deploymeghtures of the system using minimum information to manage
tools to the development of analytical tools for predictinghe explosion of redundancies with scale. We believe that many
and controlling the complexities arising in such large-scalg these challenges ageometricaland a minimalist approach
networks. to solving geometrical problems in networks is essentially
An interdisciplinary research area ofetwork sciences topological In this paper, we use this philosophy to obtain
emerging which combines disciplines such as communicatiogy-cost, provably correct algorithms for the verification of

and networking, graph theory, statistical physics, probabilityistributed coverage problems in mobile sensing networks.
and statistics, social sciences, with robotics, optimization,

and control [1]. A major theme in the broad research topic Il. PROBLEM FORMULATION
of network science is understanding of the emergence ofrhe primary task of a sensor is to detect, discern or

global behaviorfrom local interactionsvia adaptation and |ocate certain physical changes within its proximity. In many
cooperation. Examples of such phenomena span domains figfations, the environment where such physical changes are
biological sciences to systems and controls, and from staﬂsﬂ@gbected to take place has such large physical dimensions

. . __that it is impossible to monitor it with a single sensor. To
t This work is supported by DARPA DSO # HR0011-07-1-0002 via the

project STOMP: Sensor Topology & Minimal Planning, and by ARO MURﬁccomp“Sh the task of monitoring Su_Ch an_ enwror_1m<_—mts, a
grant # W911NF-05-1-0381. network of sensors can be deployed in which the individual

I. INTRODUCTION AND MOTIVATION



sensor nodes can process and communicate individual senstayes with an average sleep period (much) longer than the
data collected in their proximities. active period. Other researchers have also examined the area
Thus, the first requirement for the deployment of a sensopverage of random sensor networks in bounded domains [13].
network is to ensure that the sensors reliaddyerthe environ- ~ The problem of dynamically covering an area of interest
ment in such a way that there are no gaps left in the coverabas been another subject of interest for various researchers in
Coverage problems for sensor networks have been extensivaptrol theory, networks and robotics. One aspect of bringing
studied in the literature [6]. When feasible, it is preferred tmobility into the picture is to design trajectories for network
provide a continual coverage to the environment by deployitigconfiguration in changing environments or in situations
a network of static sensing nodes. This is known asthaket where some areas of the environment are of more interest than
coverageproblem. In many cases, it is not feasible to deplogthers [14, 15, 16, 17]. The coverage provided by the network
a large number of static sensors for continual coverage.isf still blankef and the mobility of the nodes only cater to
ubiquitous coverage is not necessary, then one solution isatehanging surveillance domain. The dynamic coverage prob-
deploy amobile sensor networknade up of robotic sensinglems, as described above, are #veeepandbarrier coverage
platforms. The mobile agents patrol the environment in suctpgoblems. A variant of sweep coverage has been studied under
manner that each point of the environment is visited infinitelfre title of effectivecoverage for mobile agents in [18]. In
often, possibly with a certain frequency. As a result, no poifht9], sweep coverage schemes have been proposed and studied
remains undetected for ‘too long’, as depicted in Figure using a frequency coverage metric that measures the frequency
The problem of verifying such coverage is calledlynamic at which every-point in the environment is visited. Similarly,
coverageproblem. The dynamic coverage problems have bebarrier coverage has been studied [20], although for static
categorized by Gage in his survey [6] as fveeepandbarrier  sensors only, but the results can be extended to studying a
coverage problems. In barrier coverage, the objective is dgnamic barrier [6].
achieve a static arrangement of elements that minimizes théSuch geometrical approaches often suffer from the draw-
probability of undetected penetration through the barrier. back that they are too expensive to compute in real-time.
Moreover, they typically require exact knowledge of the lo-
cations of the sensing nodes. Although, this information can
be made available in real-time by a localization algorithm
or by fitting the sensors with localization sensors (such as
GPS), it can only be used most effectively in an off-line
pre-deployment analysis for large networks or when there
are strong assumptions about the geometrical structure of
the network and the environment. Due to the challenges in
designing effective distributed algorithms, there may be a mas-
sive accumulation of information at a small subset of nodes.
Furthermore, most computational geometry algorithms suffer
from a lack of robustness due to the required precision in exact
geometrical information. In addition, if the network topology
changes due to node mobility or node failure, a continuous
fhonitoring of the network coverage becomes prohibitive if
the algorithm is too expensive to run or is sensitive to location
uncertainty. Finally, localization equipment adds to the cost of
Coverage verification, whether static or dynamic is inhethe network.
ently a geometrical problem and needs some geometrical infor-To address these issues, we use a fresh approach for
mation about the nodes for computing a solution. Therefore diistributed coverage verification usimginimal geometryOur
is no surprise that many network coverage problems have begal here is to show that surprisingly simple, amihimal
studied in the computational geometry literature in variouspological information, such as the ID’s of nearest neighbors
other contexts. For example, that Gallery Problemis to can be used to this end. The geometrical information that is
determine the number of observers necessary to cover annatded for solving such problems is remarkably minimal: no
gallery (or an area of interest) such that every point in the arteans of measuring distance, orientation, or location of the
gallery is monitored by at least one observer. Inspired by thesedes in an environment are required. As described below, the
computational geometry results, many researchers in senisasic idea is to infer geometric proximity of other nodes by
networks have studied the blanket coverage for static nodedhie mere existence of radio communication (without any aid of
various settings [7, 8, 9, 10]. In [7], the authors have studied specialized localization equipment or refinement in proximity).
coveragewhether every point in the service area of the sensbrom this connectivity data alone, coverage for the entire
network is covered by at leasthumber of sensors. In [11, 12], network is verifiable using the tools of algebraic topology.
the authors consider network coverage using wireless sensor®ur approach is quite interdisciplinary in nature and com-
that conserve power by alternating between active and sldBpes recent advances in multiagent systems and control

Fig. 1. A dynamic coverage scenario : An area of interest (white) und
surveillance by a group of UAV's.



on agreement and consensus problems [2, 21], with recent
advances in coverage maintenance in sensor networks using
computational algebraic topology methods [22, 23, 24, 25].
to develop distributed algorithms that are computationally
inexpensive and robust to failures.

IIl. BEYOND GRAPHS. SIMPLICIAL MODELS OF
NETWORKS

A. From graphs to simplicial complexes Fig. 3. (Left) Sensor coverage with disk footprints.(Right) The corresponding

. . . Cech complex. Coverage holes are represented by holes @eitte complex.
Graphs can be generalized to more expressive combinatorial
objects known as a simplicial complexes. For a thorough treat-

ment of simplicial complexes and their topological invariant§sshion to a graph’s adjacency matrix. The upper and lower
see for example [26]. While graphs model binary relation'aegree matrice®,, and D; are also defined similarly.

sjmpligial cqmplexes can bg used to mode_l higher order rela-s x is a finite simplicial complex, for each > 0, define
tionships. Given a set of poinis, ak-simplexis an unordered ¢ v tg pe the vector space whose basis is the set of oriented
set{vo, v1,---, vk} C V such thatw; # v; for all i # j. The k-simplices of X. We letCy(X) = 0, if k is larger than the
facesof the k-simplex {vo, v1. - -, vy} are defined as all the gimension of X. Each element of these vector spaces is a
(k —1)-simplices of the form{vo, - ,vj—1,vj+1,""* ¥} |inear combination of the basis elements. Over these vector
with 0 < j < k. A simplicial complexis a collection of gnaces thei-th boundary mapis defined to be the linear

simplices which is closed with respect to the inclusion Qfanstormationdy, : Ci(X) — Cy_1(X), which acts on the
faces. One can define amientationfor a simplicial complex pasis elements of its domain via ’

by defining an ordering on all of its-simplices. We denote

k

the k-simplex{vo, - - - , v} with an ordering byvo, - - - , vg], B j

where a change in the orientation corresponds to a chanéaé[vo"" k] = Zo(fl) [vo, 5 v, v k] (1)
in the sign of the coefficient &g, - - - ,v;, -+ ,v; -+ ,vg] = =

—[vo, - v, v k). Intuitively, the boundary ma@, operated on ak-simplex,

With these definitions, it is clear that a graph is a simplicigkturns a linear combination of itst-1 faces. In fact the zeroth
complex which its vertices and edges are in fact the 0- abdundary mapod; is nothing but the edge-vertex incidence
1-simplices respectively, and each vertex is a face of all isatrix of a graph which maps edges (1 simplices) to nodes
incident edges. An oriented simplicial complex is merely & simplices), mapping a simplex to its boundary (hence the
generalization of a directed graph name boundary map).

One can also generalize the concepts of adjacency andJsing (1), it is easy to show that the compositi@o 0y, 1
degree to simplicial complexes. Twe-simpliceso; and o; is uniformly zero for allk and as a result, we have J, C
areupper adjacen{denoted byo; ~ ;) if both are faces of Ker 9;_;. Then, thek-th homology groumf X is defined as
a (k + 1)-simplex in X. The two k-simplices are said to be
lower adjacent(denoted byo; -« ¢;) if both have a common

face (see Figure 2 below). Since the boundary operatoés map a simplex to a linear
combination of its faces (i.e. its boundary), the homology
‘ R groups can be used to distinguish topological spaces from one
. o % another. More precisely, the dimension of th¢h homology
0- Simplex [vy) 1- Simplex [vg, vi] A group (known as itBetti numbe) identifies the number of

Hk(X) = Ker 8k_1/lm 8k.

vy

k-dimensional “holes” in the given topological space. For
My example, the dimension df,(X) is the number of connected

G/A @ components of the 1-skeleton (or collection of 0 and 1 sim-
plices, i.e., nodes and edges) &f. On the other hand, the
2- Simplex [y, v1, v2) 3- Simplex [ug, v1, v2, v3] dimension of H;(X) is the number of its non-contractiBle

Fig. 2. (Left:) E les of 1,2, and 3 simpli Top Right): T d gycles orholes

thai are connorted by an edge. two edges that have a common face are uppk/oMOIOGY groups are used to distinguish topological spaces
adjacent. (Bottom Right) Two faces that share an edge and two tetrahedra th@m one another by identifying the number of ‘holes’ of

share a face are lower adjacent. various dimension, contained in these spaces. Each non-
) i ) . trivial homology class in a certain dimension helps identify

Having defined the adjacency, one can define the upper apdorresponding hole in that dimension. Crudely speaking, the
lower adjacency matrices}, and A; respectively, in a similar gimension off,(X) is the number of connected components

INote that this should not be confused with the notion of a hyper grar@'d'mens'onal holes) of'. the dimension offf, (X) is the

in which any subset of the power set of vertices could correspond to a hyper
edge. 2A space is contractible if it is homotopy equivalent to a single point.



number of non-contractable cycles iKi. For a surface, it sensors, one only needs to look at the homology groups (which
identifies the ‘punctures’ in that surface. For a graph it is threpresents holes) of the underlyiG@gch complex. If theCech
number of loops or circuitsH»(X) identifies the number of complex has no holes, neither does the sensor cover. However,

3-dimensional voids in a space and so on. computation of theCech complex is not an easy task, as it
. _ requires localization of each sensor as well as measurement
B. Cech and Rips complexes and coverage problems of distances in order to verify that sensor footprints overlap.

Since we aim to app|y the t0p0|ogica| properties of thEUrthermore, theCech Complex is very fragile with reSpeCt
simplicial complexes to the coverage problem and therefdi@ uncertainties in distance and location measurements [25].
dealing with union of disks, it would be useful to define wh&®n the other hand, the Rips complex can be easily formed by
is known as theCech or Nerve complex. Given a collectiodmerely communication with nearest neighbors, solely based
of setsif = {U4;}, the Cech complex o/ denoted byc(¢) is on local connectivity information. However, the Rips complex
the abstract simplicial complex whosesimplices correspond is unfortunately not rich enough to contain all the topological
to non-empty intersections df + 1 distinct elements ot/. and geometric information of théech complex and in general
This complex is simply formed by associating convex seg§es not tell us information about coverage holes. Recently,
(e'g_ d|sks) to each node, and then representing edgesﬂ'@' authors in [22] have shown that in certain cases, the RlpS
higher order simplices from the overlap of such sets. F&Pmplexdoescarry the necessary information. Namely, it is
example, given a network of sensors with disk footprint§hown that angCech complex’,, made from sensor footprints
we can construct th€ech complex(also known as the nerv®f disks of radius-., can be “sandwiched” between two Rips
complex) by book-keeping over lap of sensor footprints. Igomplexes formed from nearest neighbor communication with
the complex, nodes or zero simplices represent the senséf§adcast disk radius, = v/3r. from left andr;, = 2r. from
When two footprints overlap, we draw an edge or a 1-simpléight. In other words,
between two nodes ( see Figure 3). However, we also keep
track of further set overlaps by representing three disk overlaps
with faces or filled triangles and 4 set overlaps with tetrahgd\r\?nere R. is a Rips complex formed from broadcast disks
a_nd S0 forth. A closely related complex,.known as the.R|p87 radiuse, and C represents containment of one simplicial
Vietoris complex (hergafter called the Rips complex), 'S.th@omplex in another. Therefore, if the Rips complex with
natural anqlog of proximity graph; (also known' as ConneCtIV'B’roadcast disks of radiusg; is hole free, then so is the sensor
gra_lph_s, r-d|_sk graphs or geomedric graphs) which have b_eco Q/erage, and if the Rips complex with broadcast radius of
ubiquitous in networking, control theory and network SCIENCE . has holes, so does the coverage. In other words, this result
research. In such graphsl, nodes reprgsgnt the ager_lts Or SERXXR us a necessary and a a sufficient homological criterion
and edges represent distance proximity. There is an e Fcoverage verification
between two nodes if they are within a certain distance of eac

: . L . n principle, one can detect holes in a simplicial complex by
other. A Rips complex is just a generalization of this concept fgoking at the homology groups associated with that complex
higher order relations (see Figure 4). If 2 nodes are within th '

distance of each other, there is an edge between them. Whe[nO#Vever such linear algebra computation are generally cen-
ized [22]. In what follows, we resent our preliminary results

o . a
nodes are within a distance of each other then the three nodes : : . .
: - A on~detection of coverage holes in a decentralized fashion.
will form a face. If four nodes are within a certain distanc : . .
: : . . efore doing so, however, we need to introduce the machinery
they form a tetrahedron. While the Rips complex is the suitab . . ; L .
combinatorial Laplacians for simplicial complexes (which

abstraction for modeling nearest neighbor communications, the . - .
< : : aré again generalizations of the same notion for graphs).
Cech complex is suitable for coverage problems.

R\/grc g Crc g RZrcv

C. Combinatorial Laplacians

A\ ‘ The graph Laplacian [28] has various applications in image
\" v segmentation, graph embedding, dimensionality reduction for

large data sets, machine learning , and more recently in con-
i o o sensus and agreement problems in distributed control of multi
gzegp.ic‘ti.on Qf ft‘;”tgffotlg’g ggagggfeﬁr]é Etrisgrf{tfs complex [center left] and &, 0 ¢ systems [2, 21]. We now define the Laplacian matrix of
a graph and its generalizations to simplicial complexes.
If the vertex-by-edge-dimensional matiiXis the incidence
. A well-known result in algebraic topology known as thenatrix of a graphg, then its Laplacian matrix is defined as
Cech theorem [27] implies that if collection of séts= {{/;} [ = BBT. As it is evident from the definitionl, is a positive
and their non-empty finite intersections are contractible ( i.&emi-definite matrix. Also it is well-known that the Laplacian

the sets themselVGVS have no holes and their intersections hﬂwrix can be written in terms of the adjacency and degree
no holes) then th&ech complexC has the same homotopymatrixes ofG as well:

type as the union of/;s. The above result indicates that
in order to verify coverage in a given domain by a set of L=D-A,



which implies that the-th row of the Laplacian matrix only component [27]. The locally constant functions are precisely

depends on the local interactions between vernteand its the harmonic functiongredicted by Hodge theory.

neighbors. Let us turn our attention to consensus algorithms for multi-
A similar operator can be defined for simplicial complexeagent systems that are based on the graph Laplacian. :|f

using the boundary maps [29]. The operafyr: C(X) — v; — R is a scalar function on vertex, then the state vector

Ci(X) defined as x(t) = [z1(t) x2(t)...2,(t)]T can be used to model the

. . evolution of the system,
Ek’ = ak+18k+1 + (9kak (2)

is called thek-th combinatorial Laplacianof the simplicial
complex X, where the operators have simple matrix repréd which £, captures the connectivity between the nodes
sentations and); is the adjoint operator of),. Note that in the graph. If the underlying graph is connected, then
the expression fol’, reduces to the definition of the graphlim;—.c x(t) = c1, wherec is a constant that depends =(0).
Laplacian matrix. Also similar to the case of graph Laplaciar,hus connectedness is a sufficient condition for consensus.
the combinatorial Laplacians can be represented in terms ofn [2], the authors have proven consensus under a weaker
the adjacency and degree matrices as follows [30]: condition ofjoint connectednes#\ collection of finite graphs
is said to be jointly connected if their union is a connected
Ly =Dy — A+ (k+ 1)1+ A k>0, ®) graph. The basic idea is to model the dynamics under changes

where I is the identity matrix of the proper sized,; is in the graph topology as a switched linear system by

the lower adjacency matrix betweeksimplices and A, x(t) = —Eg(t)x(t),

is the corresponding upper adjacency matrix. This equation

indicates thatl;, is a positive semi-definite matrix, whosewhereo : [0,00) — P is a switching signal that indexes the
kernel represents the cohomology grotf9]. This is merely appropriate graph topology at each switch. The main result in
extension of the fact that in the case of graphs, the kernel[8f says that consensus is possible even under the (weaker)
the Laplacian matrix represents the connected componentsq@adition of joint connectedness of the graphs encountered in
dimensional holes). Moreover, (3) implies that as in the cad8 infinite sequence of contiguous bounded time-intervals.

of the graph Laplacian, theth row of £, only depends on Based on these results, one can ask if the consensus dynam-
the local interactions between tii¢h k-simplex and its upper ics can be generalized to some switched linear systems that
and lower adjacent simplices. As a result, to verify a hole-frégodels the flow of thé-Laplacian under switching topologies.
coverage in the plane, one needs to verify that the kernel Mpreover, if the underlying simplicial complexes are Rips
the k-Laplacian of the Rips complex with radiug; above complexes, the topologies change due to the motion of the
is zero. This property makes the combinatorial Laplacian@des and one can replace the generalize the concept of joint
suitable tool for distributed coverage verification. In the ne@onnectedness to the absence of holes (homology) in certain
section we study dynamic coverage verification based on théiéte unions of Rips complexes, one can hope to study the

and other observations. sweep coverage problem using the stability properties of that
switched linear system. We make these concepts concrete in
IV. MoOBILE NETWORKS AND DYNAMIC COVERAGE the following section.

A. Graph Laplacian, Consensus and Homology B. k-Laplacian Flows on Simplicial Complexes

_ The dimension of the null space of this graph Laplaciaf rixed Network Topology
is well known to be equal to the the number of connected The d ical 4 h de level i
components of the graph [28]. Therefore, it is no coincidence e dynamical system (4) runs at the node level in a qgt-
that ker Lo = Ho(X) also counts the number of connecteavork' Assume that the nod_es are f|>_<ed, so that the connectivity
components ofX. Moreover, when the graph is connecteoé,JralIOh G of the network |s_alsp fixed. Let us now run a
the vector1 = [1 1...1)7 is always an eigenvector ofdynamical system on thé-simplices of a network, as &

Ly corresponding to the eigenvalue Again, this can be Laplacian flow on the corresponding Rips complgx We

explained in terms of the dual space to homology, i.e. t scribed in [30], how to interpret this flow correctly using

cohomology. Note that the zero dimensional cohomology -lge Ianguage_ of _di_screte differen;iial form;. We denote/the
rms on a simplicial complex a8*(R), to indicate that they

an equivalence class of functions on the vertices [27]. T 2 . i
vector1 corresponds to the zero cohomology class of constdlif dual to the chainS(R). We study the dynamical system

functions on the vertices. Any non-zero vector in the span dw(t) B &
of 1 represents a constant function in this conomology class. o = L), w0)=w eCH(R).  (3)

If there are more than one connected components, thererig equilibrium points of this dynamical system are the set
a cohomology class of locally constant functions for eaqh.;(£,). The stability of this dynamical system is described

S . bg/ the following results, proven in [30].
Strictly speaking, cohomology groups are dual spaces of homology group: P " IV-D: The d ical fE . 5
For the sake of our discussion however, this distinction is immaterial as either roposition IV-D: e dynamical system of Equation 5 Is

one represent k dimensional holes in the simplicial complex. semi-stable.



This implies that the system always converges to to tld Corollary IV-E, one can hope that if we are ensured that
set ker(L;) in the limit. Note that the condition thateach simplicial complex encountered during the evolution is
dimker(L;) = 0 is equivalent to saying that the-th co- hole-free, i.e.Hy(R(Go(,))) = 0, then the switched linear

homology group (or the respectiveth homology group) is system may show asymptotic stability. We will show below

zero. Therefore, we have the following corollary. that we can prove the asymptotic stability of the switched
Corollary IV-E: [30] The system in Equation 5 is asymp-system under an even weaker condition, whereby the simpli-
totically stable if and only ifH,(R) = 0. cial complexes encountered in bounded, non-overlapping time

Thus the asymptotic stability of the system is an indicator @ftervals argointly hole-free.The proof of this result closely
an underlying trivial topology of the complex. These result®llows the presentation in [2]. As explained later, this will
also prove that for any initiab(0), the trajectoryw(t),¢ > 0 be a key result in generalizing the previous blanket coverage
always converges to some point ker L. In other words, criteria of [22, 23] to a sweeping coverage criterion. Let us
the dynamical system is a mechanism for producing discreive the following definition.
harmonick-forms on simplicial complexes from any arbitrary Definition IV-G: Let { X!, X2 ..., X™} be a finite collec-
k-forms [30]. tion of simplicial complexes. Then, they are said to be jointly
hole-free in dimensiork if
F. Dynamic Network Topology
Let us now consider the case when the nodes are mobile, H, (U X’) >~
giving rise to a switching connectivity graph structure. This
also gives rise to a switching structure for the induced Rips
complex. Following the presentation in [2], let us write the <l <> \ZA
flow on this changing simplicial complex using a piece-wise
constant switching signat : [0,00) — P, whereP indexes
the set of connectivity graphs on vertices, emerged by /BD 4 <D
the motion of the nodes. We assume that under reasonable
assumptions on the smoothness of the trajectories, there are a @
finite number of switches in a bounded interval of time. We
will further assume that switching periods cannot be smaller

X = UX

than a finite dwell timerp. Fig. 5. Jointly hole-free simplicial complexes in dimensiorand 1. Note
i ; that the complexes amot jointly hole-free in dimensior2 due to the hollow
Let the switching times be,, t,.... If G,.), Gogs), tetrahedron P the right plart O%

are the graphs encountered along a certain evolution,
then the corresponding Rips complexes are denoted by

R(Go(10))s R(Coiy)) respectively. Let For an example, see Figure 5. We now state the following
0 ) o(l1 AR ] .
result:
R = UR(GU(M). Proposition IV-H: Let X = {X! X2 ... X™} be a finite

collection of simplicial complexes, whose unionis Let the
Since the Rips complex of a complete graph orvertices k—llc_apI‘aC|an.operator off* be given byL; : C*(X') —
is ann — 1-simplex, denoted byA™~, it follows thatR ¢ € (X*), which kcan be ziro-padded appropriately to get the
A1 We next order thek-simplices "ofR in the order of OPEratorfj : C*(X) — C*(X). If X is jointly hole-free in
their appearance in time and thus produce the spaé¢g). dimensionk, then
Thus C*(R(G,,))) € C*(R), so the dynamical system m B
() ker £}, = {0}.

dw(t) i k =
g = Ll W) € CR(Gau)) TElbtin): pooe eirgt note thater Li > ker L} @ F' = H),(X') @ FY,
can also be written as a zero-padded system where ' is the space spanned by the eigenvectors corre-
sponding to the ‘fake’ zero eigenvalues, due to zero-padding.
M - —Z};w(t)7 w(t;) € CE(R), t € [ti,tip1). Therefore, the zero-padding does not present an obstruction
ot in analyzing the intersection of the kernels and is only there

Here ﬁ}c is a zero- padded matrix representaﬂon@f This for proper comparlson For notational convenience, let us also
lets us write the flow for alt > 0 as a switched linear systemwrite £;, as £i(X?). It is easy to see that

20— frow,  w@ecrm®. @  OEFLED = LATOXD + LXTUXT),
We want to study the conditions under which this switche\efhlch can be generalized to the relation
linear system is asymptotically stable. From the observation m m—1 i
that _ D LX) = <U XZ) + Y L (X X
ker £}, = Hy(R(Go(t,))) ; i=1 i=1 =



Since the zero-paddedl-Laplacians are all positive semi-Now let ®(¢;,t;11) be the product of the individual flows
definite, ak-form w € C*(X) which is harmonic for each exp(—iz(t“")(tjmﬂ —t;,)) between switches, during this

L}, also satisfies interval. By the semi-stability of each individual flow,
m lexp(—£79)(t; 11 — ;)| < 1 for eachm. Therefore,
Ly, (U X’>w0. [®(t;,t541)] < 1.
i=1 Let T" be an upper bound on the lengths of the intervals
Therefore, [ti+1,t;), and M be the smallest positive integer such that
m m m M > T/7p. Now, by considering all sequenced’ of Rips
ﬂ ker £5,(X?) C ker Ly, (U Xi> = H, (U Xl’) complexes of length at most/ that can occur within an
i=1 im1 im1 interval of length bounded by, and are jointly-hole free one

Since by the given conditiod’ is jointly hole-free, it imme- can define,
diately follows that

p= max . max max|exp(—L;7)..exp(—LN )|
m ~ T1€lrp,T] TNElrp.T] sM
i _
ﬂkefﬁk =1{0}. where N < M. It can be shown that® (¢, t.41)|| < p < 1.
3 ti+ H
i=1

Furthermore, the repeated application of this inequality across
a sequence of intervals yield8®(t,, tp+1) ... D(t1,t2)| <
Given the trajectoriegx;(t)} of the nodes, the switched» < 1. From these contractions, it is can be inferred that the
linear system (6) for a fixed, captures the evolution of thesystem is asymptotically stable ™
Rips complexes as well as thelLaplacian flow on them.
We can now state the following result, whose proof has beg_n

included in the appendix. . o .
Theorem IV-I: The following are equivalent The consequences of this theorem for verifying dynamic

1) The switched linear system (6) is globally asymptotigoverage are now easy to explain. The property of being jointly

hole-free guarantees that in contiguous bounded time-intervals,

Dynamic Coverage Verification

cally stable. ) - i
2) There is an infinite sequence of switching time&he union of the Rips complexes has no hole. As mentioned
to,t1,..., such that across each intenval, ¢,.1), the in Section IlI-B, the topology of the Rips complex can be

sed to infer blanket coverage (or coverage loss) from network

hole-free in dimensiork. oles. In the same way, the topology of the Rips complexes

Proof: encountered during the dynamic evolution of a network may
nﬂ?— used to infer dynamic coverage of the sensors.

Suppose that the switched dynamical system (6) is asy . _ : ;
totically stable. Now, suppose to the contrary that there doesO"€ €xample is to verify network coverage in which sensors

not exist a sequence of switching times, such that the Comgernate between active and sleep states to conserve power, as

plexes encountered during the intervals are jointly hole-fre@€Picted in Figure 6. Several constructive schemes have been

Then there exists a finit&, such that fort > T there exists ProP0osed by various researchers [11, 12, 31, 32, 33, 34]. In or-
a non-zerok-form 6 in the intersection of the kernels of allder to verify these schemes in real time, we run the dynamical
complexes encountered aftét In other wordsﬁge — (0 for System (6) as a cheap distributed verification method. Since
¢ > T. Without loss of generality pic = 0. The evolution the node are stationary (even though the network topology is
of_(6) can be written as changing), the Rips complexes generated during each change
- in the topology (via wake-ups or sleeping of the nodes) can be
i compared for the joint hole-free condition. If the Rips com-
= —Lp (i1 — t; . . .. .
w(®) (E) P ( Lieltia m)) «(0) plexes are indeed jointly hole-free, then the dynamical system

, o i . will converge to zero, thus indicating dynamical coverage.
Now letw(0) = 6, then by virtue of being in the intersectiong,.,, 4 scenario has been depicted in Figure 6
of the kernelsw(t) = 6 for all t > 0. Therefore, we have an '

initial condition that does not converge to zero. But it is given
that the system is asymptotically stable. Therefore, we have a
contradiction and the implication is true.

For the converse, Consider the time-interigl¢; ). By
assumption on the switching sequence, there are a finite num-
ber of switches in this interval. Let those switching times be
given byt;, t;,,...,t;,. The Rips complexes encountered dur-
ing the interval areR(Go(t,)): R(Got,,))s - - - R(Got;,))-

By assumption, they are jointly hole-free so that

encountered collection of Rips complexes are jointlg

5o (t;) N so(t;) Fig. 6. Sensor wake-up/sleep scheme in a sensor network for providing
ker Ek N m ker Ek ‘ = {0} dynamic coverage of the area under surveillance.

i=1



In the case of dynamic nodes, the above mentioned resyltg C. F. Hsin and M. Liu, “Network coverage using low duty-cycled
are still applicable but the implementation need further wozrl.z
Due to the changes in node locations, the Rips comple eg
generated during the evolution cannot be compared directly
for a joint hole-free condition. In fact, such a comparison can
lead to misleading interpretations of coverage. To fix this, or[nles]
can use fixed landmarks in the surveillance domain and thjasj
compare the complexes in which the landmarks serve as the

nodes and the S|mpI|ces are generated by the visitation of I’ﬂﬁ M. Batalin and G. Sukhatme, “Sensor coverage using mobile robots and

agents to each landmark. The details of this method will be

given in a future work.

(16]

Finally, we should mention that our results on dynamic cov-
erage are similar in spirit but quite different in technique to the7)
results on pursuit-evasion problem in [22]. In [22], the authors
present a homological criterion for detecting wandering holes;
in time-varying Rips complexes. The notion of a wandering

hole is different from the loss of sweep coverage (one c
have sweep coverage with wandering holes). Moreover,
emphasis on decentralized methods results in a technique

N
19]
ur

which is quite different as compared to the method of prisf0l
complexes provided in [22].

In this paper, we have used the flows &fLaplacian

[21]
V. CONCLUSIONS

[22]

operators on time-varying simplicial complexes for verifying
dynamic coverage in mobile sensor networks. The verificati®#$]

has been shown to be equivalent to the asymptotic stability[

9%

the switched linear systems that describe those flows.kFhe
Laplacians are a natural generalization of the graph Laplaci&?l

The techniques used for proving consensus under the condition

of joint connectedness of switching graphs have been utilized,
for this coverage problem. This approach gives new insigh#s]
into the working of consensus algorithms. It also allows us t98
view algebraic graph theory as a special case of the spec ra1
theory of simplicial complexes. This viewpoint has provef?9]

useful in the context of networked sensing and control.
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