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Abstract— Truly autonomous systems require the ability to
monitor and adapt their internal body scheme throughout their
entire lifetime. In this paper, we present an approach allowing
a robot to learn from scratch and maintain a generative model
of its own physical body through self-observation with a single
monocular camera. We represent the robot’s internal model as
a compact Bayesian network, consisting of local models that
describe the physical relationships between neighboring body
parts. We introduce a flexible Bayesian framework that allows to
simultaneously select the maximum-likely network structure and
to learn the underlying conditional density functions. Changes in
the robot’s physiology can be detected by identifying mismatches
between model predictions and the self-perception. To quickly
adapt the model to changed situations, we developed an efficient
search heuristic that starts from the structure of the best exjai-
ning memorized network and then replaces local components
where necessary. In experiments carried out with a real robot
equipped with a 6-DOF manipulator as well as in simulation, we

ShOW. that our system can qglckly a_ldapt to'cha_\nges Of. t_h(_a_body its own body-scheme using an external monocular camera anal wgrkers.
thS'O'Ogy n f_uII 3D space, In partlc_ular with “m'ted visibility, Upper right: After a different tool is placed in the robot’s end-effecttite
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|. INTRODUCTION observation has been detectedas 7.

Fig. 1. Upper left: Our 6-DOF robotic manipulator arm learns and monitors

Autonomous robots deployed in real world environments
have to deal with situations in which components chang®ility to learn a body scheme is important in the context of
their behavior or properties over time. Such changes can fopl use scenarios in which a robot has to identify the effect
example come from deformations of robot parts or materiaf its actions on the tool.
fatigue. Additionally, to make proper use of tools, a robot In this paper, we investigate how to equip autonomous
should be able to incorporate the tool into its own body saherrpbots with the ability to learn and adapt their own body
and to adapt the gained knowledge in situations in which tisshemes and kinematic models using exploratory actions and
tool is grabbed differently. Finally, components of the abb self-perception only. We propose an approach to learn a
might get exchanged or replaced by newer parts that no longigyesian network for the robot’s kinematic structure idahg
comply with the models engineered originally. the forward and inverse models relating action commands and
Kinematic models are widely used in practice, especially Body pose. More precisely, we start with a fully connected
the context of robotic manipulation [1, 2]. These models aretwork containing all perceivable body parts and avaglaiah-
generally derived analytically by an engineer [3] and ugualtion signals, perform random “motor babbling,” and iteraly
rely heavily on prior knowledge about the robots’ geometreduce the network complexity by analyzing the perceived
and kinematic parameters. As robotic systems become mbggly motion. At the same time, we learn non-parametric
complex and versatile or are even delivered in a completg§gression models for all dependencies in the network, fwhic
reconfigurable way, there is a growing demand for techniquedn later be used to predict the body pose when no perception
allowing a robot to automatically learn body schemes with ri§ available or to allow for gradient-based posture control
or only minimal human intervention. One of the major advantages of the approach presented in
Clearly, such a capability would not only facilitate the dethis paper is that it addresses all of the following prattica
ployment and calibration of new robotic systems but alsmall pProblems that frequently arise in robotic manipulatiorkéas
for autonomous re-adaptation when the body scheme chand@# single framework:
e.g., through regular wear-and-tear over time. Furtheentbe o Prediction: If both the structure and the CDFs of the



A similar direction has been explored by Deardsnal. [5],

who applied dimensionality reduction techniques to untrel
underlying structure of the body scheme. Similar to thiskyor
their approach is formulated as a model selection problem
between different Bayesian networks. Another instance of
approaches based on dimensionality reduction is the work by
Grimeset al.[6] who applied the principal component analysis
(PCA) in conjunction with Gaussian process regression for
learning walking gaits on a humanoid robot.

In previous work [7], we have presented an approach to deal
with the problem of learning a probabilistic self-model for
robotic manipulator. This approach, however, neither ceye
aspects of failure detection and life-long model revisi@r n
did it address partial observability of model components. |
this work, we give a more rigorous formulation of the the
body-scheme learning framework, we significantly exteral th
model toward life-long adaptation and self monitoring, avel

Fig. 2. Continued experiment from Figure 1. The robot sampléscal give experimenta| results in Comp|ex and realistic scesari
model as replacement for the mismatching comporent. 7. Left: The first

newly sampled modeldgp ) has high uncertainty, because of the missing

—T7

. . r Yoshikawaet al. [8] used Hebbian networks to discover the
dependency on actioms. Right: The second sampled modeh§” .) is a . . .
more suitable replacement for the mismatching component. body scheme from self-occlusion or self-touching sensatio
Later, [9] learned classifiers for body/non-body discriation
from visual data. Other approaches used for example nearest
Bayesian network are known, the robot is able to prediggighbor interpolation [10] or neural networks [11]. Retgn
for a given action command the expected resulting bodyng et al. [12] developed a Bayesian parameter identification
configuration. method for nonlinear dynamic systems, such as a robotic arm
« Control: Conversely, given a target body pose, our af @ 7-DOF robotic head.

proach is able to generate appropriate action commands _ . .
that will lead to this pose. The approach presented in this paper is also related to

« Model testing: Given both a prediction and an observatithe problem of self-calibration which can be understood as
on of the current body pose, the robot is able to estimafesubproblem of body scheme learning. When the kinematic

the accuracy of its own pose predictions. Model accura@Pdel is known up to some parameters, they can in certain
can, for example, be defined in terms of a distance metfeSes be efficiently estimated by maximizing the likelihoéd
or a likelihood function. the model given the data [13]. Genetic algorithms have been

. Leaming: Given a sequence of action signals and tH¢S€d by Bongaret al. [14] for parameter optimization when

corresponding body postures, the Bayesian network ah@ closed form is available. To a certain extend, such meathod
its parameters can be Iearneé from the data. can also be used to calibrate a robot that is temporarilygusin
« Discovering the network structure: When the structure & 100! [15]. In contrast to the work presented here, such

of the Bayesian network is unknown, the robot is able f@pproaches require a parameterized kinematic model of the
build it from the available local models which are mosfoPoL

I(;Zﬂﬁlrsc’etzrgtx:::)rgh:n(()jbriec)r(\j/glda?jztat.ation'When the ro- To achieve continuous self-modeling, Bongardal. [16]
* bot's phvsiol han th N : int qets bl I(racently described a robotic system that continuouslynkear
oS physiology changes, €.g., When & JOINt gets DIOCKGE. 4yyn structure from actuation-sensation relationships

ooy et oy e sl e aernating prases (modeing e, prdicnr

of the BZ esian network nee dyto be replaced %/stem generates new structure hypotheses using stachasti
y P ' optimization, which are validated by generating actiond an

by analyzing the following sensory input. In a more general

context, Bongardet al. [17] studied structure learning in

The problem of learning kinematics of robots has beegthitrary non-linear systems using similar mechanisms.
investigated heavily in the past. For example, Kolter and

Ng [4] enable a quadruped robot to learn how to follow om- In contrast to all the approaches described above, we
nidirectional paths using dimensionality reduction taghes propose an algorithm that both learns the structure as well
and based on simulations. Their key idea is to use the siotulaas functional mappings for the individual building blocks.
for identifying a suitable subspace for policies and then teurthermore, our model is able to revise its structure and
learn with the real robot only in this low-dimensional space&omponent models on-the-fly.

Il. RELATED WORK



IIl. A BAYESIAN FRAMEWORK FORROBOTIC BODY
SCHEMES

A robotic body scheme describes the relationship bet-
ween available action signalg, ..., a,), self-observations
(Y1,...,Y,), and the configurations of the robot's body parts
(X1,...,X,). In our concrete scenario, in which we consider
the body scheme of a robotic manipulator arm in conjunc-
tion with a stationary, monocular camera, the action sgnal
a; € R are real-valued variables corresponding to the joint
angles. Whereas th¥; € R® encode the 6-dimensional posesig. 3. Graphical model for two body parts; and X; as well as their
(3D Cartesian position and 3D Euler angles) of the bodigpendent variablesd denotes the set of independent action variables that
parts w.r.t. a reference coordinate frame, fiee RS are Ca‘ésga'_o_ca' ;@”Sfolrma““'ﬂiﬂj%andﬁ are the observed part locations,
generally noisy and potentially missing observations & R 's their relative geometric transformation.
body parts. Throughout this paper, we use capital letters to

denote 6D pose variables to highlight that these also uhjiqugee built from these local models that explains the whole
define homogeneous transformation matrices, which can @@ ot. In this work, we consider the single best solutionyonl

concatenated and inverted. Note that we do not assume dirged do not perform model averaging over possible alteraativ
feedback/proprioception telling the robot how well joinhas  stryctures.

approached the requested target angle Please note that in theory, it would be straight-forward to
Formally, we seek to learn the probability distribution  keep multiple structure hypotheses and to average over them
ing B " rule. ntrol under structure uncertainty i
DXt X Ve Yo L), (1) using Bayes’ rule. Control under structure uncertainty is a

slightly more difficult problem. One would have to average
which in this form is intractable for all but the simplestover all possible structures and assess the individuab risk
scenarios. To simplify the problem, it is typically assumednd gains for possible actions. Then, the one action sequenc
that each observation variab#e is independent from all other should be selected that maximizes the overall gain while
variables given the true configuration; of the corresponding keeping all possible risks low [18].
body part and that they can thus be fully characterized by anln practice, we found that considering the most-likely stru
observation modeb(Y; | X;). Furthermore, if the kinematic ture only is sufficient for most relevant tasks. Our approach
structure of the robot was known, a large number of pair-wis@nservative in this respect since it requires a certairimah
independencies between body parts and action signals camlddel accuracy from all parts of the body scheme.
be assumed, which in turn would lead to the much S|mpl% Local Models

factorized model . ) ]
The local kinematic models are the central concept in

(X1, Xn|ar,... am) = (2) our body scheme framework. focal model M describes
Hp(Xi | parents(X;)) - p(parents(X;) | a1, .- ., am). the geometric relatlonshlpM(Zi_ﬂ | A;i—.;) between two
; observed body part¥; andY;, given a subset of the action
. Signal .Al_” C {al, ey an}.
Here, parents(X;) denotes the set of locations of body parts, “the probability distribution underlying a local model can
which are directly connected to body part  be defined in various ways. If an analytic model of the
The main idea behind this work is to make the factorizegyot exists from its specifications, it can be used directly
structure of the problem explicit b){ introducing (h|ddenio constructr(Zi—; | A;—.;). The standard way to describe
transformation variables\, .; := X, X; for all pairs of 4 geometric model for robot manipulators is in terms of the
body parts()l(i,Xj) as well as their observed counterpartgenayit-Hartenberg parameters [1, 19]. When available, the
Zij := Y;Y;. Here, we use the 6D pose vectaksand  a4vantages of these models are outstanding: they are exact
Y as their equivalent homogeneous transformation matricgs,q efficient in evaluation. In practice, however, such nwde

which means thath,.; reflects the (deterministic) relativenee to be calibrated carefully and often require re-cation
transformation between body parts; and X;. Figure 3 afier periods of use.

depicts alocal mode] which fully defines the relationship _ _ _
between any two body parts; and X; and their dependent B. Learning Local Models from Noisy Observations
variables, if all other body parts are ignored. On the real robotic platform used in our experiments, the
Since local models are easily invertiblA{_.; are homoge- actionsa; correspond to the target angle requested from joint
neous transformations), any setf- 1 local models which i and the observation§; are obtained by tracking visual
form a spanning tree over atl body parts defines a modelmarkers in 3D space including their 3D orientation [20] (see
for the whole kinematic structure. the top right image of Figure 1). Note that th€'s are
In the following, we explain (1) how to continuously learnnherently noisy and that missing observations are common,
local models from data and (2) how to find the best spannifigr example in the case of (self-)occlusion.



The probability distributionpa(Z;—.; | A,—;) of a local
model M can be learned from a sequence of observations
D = {(Zi—;, Ai—;) }1+. If we assume Gaussian white noise
with zero mean on the observations, the sensor model becomes
Y; ~ X; + N(0,04ens0r)- Note that we can connect the
two body partsX; and X; in Figure 3 either by lear-
ning pM(AZ*,] | AZ*}]) or pM(Zzﬂj | .Azg,j) The link
p(AiHj | Aiaj) = p(lelXj | ‘Al-ﬂj) is noise-free. It, Fig. 4. Inan early learning phase, the robot knows onlyeligtbout its body
however, requires inference starting frdrh and Y; through structure, i.e., all possible local models need to be consitlie parallel. From

' . i e J . the subset of valid local models, a minimal spanning tree carohsteicted
both observation models via the indirect Bayesian pathw@¥ich, in turn, forms a Bayesian network. This can subsedyiet used as
Y, — X; — Ai_,j — X; = Y. Thus, we propose to learna body scheme for prediction and control.
the model fOl’pM(Zi*,j | Aiﬂj) = pM(}/L_ly} | Aiﬂj)
directly. As the noise distributiorpa(Z;—; | Ai—;) is ) .
determined by integrating Gaussian random variables alof§ere C(M) € Z is the complexity of modelM and
X; > Y; — Z;_,; — Y; — X, it can nicely be approximated €prea(D | M) is the prediction error defined as

0LLQ0 0000

by a Gaussian [21]. 1

The problem of learning the probability distribution nowfpred(D | M) = D] Z €pred(Zimj | Aimjy M)
comes down to learning the functiofiv, : RIMi—il — (Ziwj, Aiej)€D
RS, A,_.; — Z;_;, from the training data. A flexible model ®)

for solving such non-linear regression problems given ynoisvith
observations is the popular Gaussian process (GP) approach
The main feature of the Gaussian process framework is, that epred(Zimj | Ainjy M) = / 1Zi~; — Z|| (6)
the observed data points are explicitly included the model ZZ, A a7 7
and, thus, no parametric form ¢fy, needs to be specified. P27 | Aisy) ' (7)
Data points can be added to the training set at any timeWe define a local modeM to be validn (D) given a set
which facilitates incremental and online learning. Due tof observations, if and only if its observed prediction erfi
space constraints, we refer the interested reader to work liBlow some threshold, i.e., €,,.q(D) < 6. Our experiments
Rasmussen [22] for technical details about GP regressmm. Fevealed that a good value féiis 30, whereo is the standard
simplicity, we assume independence between all 12 free codeviation of the sensor model.
ponents of fo4(A;—;) and consider the functional mapping 1) Bootstrapping: If no prior knowledge of the robot’s
for each component separately. Due to this simplificatios, vibody scheme exists, we initialize a fully connected network
cannot guarantee that the prediction corresponds to a,vatitbdel (see Figure 4), resulting in a total set%f”  (5) ()
homogeneous transformation matrix. In practice, howevédocal models. Given a set of self observations, the robot can
invalid transformations occur only rarely and they lie elds determine the validity of the local models by evaluating Eqg.
similar, valid transformations, such that a simple norgalon Certain ambiguities will, however, remain even after iriéty
step resolves the problem. many training samples: if, for examplga, (Z1-2 | a1) has
been determined to be a valid local model, then, (Z1—.2 |
ai,a2) will also be. AlthoughM; and M, might not be
We seek to find the best factorized model according ¥stinguishable regarding prediction accuracy, these atsod
Eqgn. 3 and, thus, require a suitable optimization criter8n  differ significantly in terms of complexity and therefore in
ven a training seD of independent, time-indexed actions an¢éhodel qualityq(D | M).
their corresponding observatior®, = {(Y;", Y/, A ))}/_1,  2) Finding the Network TopologyErom the superset of all
or, equivalently for our purpose$§(Z; . ;, A!_;)}/_,, the data valid local modelsM,q;;q = {M,...}, we seek to select
likelihood p(D | M) under a local modeM can directly be the minimal subsefM c M,,;, that covers all body part
computed from its probability distributiopr«(Z;—; | Ai—;) variables and simultaneously maximizes the overall model fi

C. Learning a Factorized Full Body Model

as (D | M) == [Tyema(D | M). It turns out thatM can
t be found efficiently by computing the minimal spanning tree
p(D| M) = HPM(Zf_,j | A (3)  of M,uuq taking the model quality measure of the individual
k=1 local models as the cost function. Such a body spanning tree
In practice, this product is highly sensitive to outliersyda needs to cover all body parfs,, ..., X,, but not necessarily
makes the comparison of different classes of models difficudll action components of, ..., a,. Note that, in order to

We therefore developed an alternative model quality meas@onnect alln body poses in the Bayesian network, exactly

q(D | M) that is proportional to both the prediction accuracyn — 1) local models need to be selected. This yields the
and a penalty term for model complexity: astronomical number oftsiuciures= (¥ 79 possible net-
work structures to be considered. In practice, howeverplgm

log g(D | M) := log(1/eprea(D | M)) + C(M) logf  (4)  search heuristics allow us to strongly focus the search en th



relevant parts of the structure space. Recall that the tgualparts of its experience over time, allowing it to discrimima
measureq(D | M) for a local model is composed of thebetween earlier and more recent observations. This entifges
(data-dependent) prediction accuracy and a (data-indepgn robot to detect changes in its physiology by testing theditgli
complexity penalty. If we consider two valid local modelg,j of its local models at different points in time and at diffetre
With €prea (D | Myj2) < 6, then by the definition of(D | M), temporal scales.
the quality of a model with lower complexity is always higher It might even be useful for the robot to maintain multiple
compared to a local model with higher complexity for @By body schemes at different time scales. Consider, for exampl
ie., a robot that uses an accurate pre-programmed model over a
long period of time, but simultaneously is able to create and
C(Mi) < C(Mz) <= VD : ¢(D | M1) > (D | M2) . use a short-term model that takes over as soon as the body
Thus, it is sufficient to evaluate only the firstcomplexity Structure of the robot changes occur (which could be as littl
layers of local models iV, 44 until @ minimal spanning tree @s the displacement of one visual marker). From a formaltpoin
is found for the first time. This spanning tree then corresison©f view, time is simply another dimension in the model space

to the g|oba| maximum of overall model qua”ty_ which can be included in the definition of local models.
A temporal local modelM” describes the geometric re-
D. Prediction and Control lationshipp’(Zi—, | Ai—;,T) between two observed body
Thekinematic forward modsek directly available by noting partsY; andY}, given a subset of the action signd}_.; C
{ai,...,a,} and a particular time intervar.
p(Yis-o Yo [ar,. o am) However, the size of the learning problem in the boot-
= Hp(Y; | parents(Y;))p(parents(Y;) | a1,...,a,,) Strapping case now grows exponentially in time yielding the
i immense upper bound oF;" (%) (')2/7! local models to be
= p(Yioot) H i Zij | Aij) 8) considered. As it would be practically infeasible to evédua

MEM all of these local models even for small periods of time, g¢hre
. . , . ._additional assumptions can be made such that an efficient
where Y;,., is the position of the robots trunk, which Isalgorithm for real-time application can be devised:

serving as the coordinate origin of all other body parts. In : .
practice, instead of a probability distributigi{Yy,...,Y,, | 1 rce?;ir:/%?; r:;ebg\;jgmghysmlogy can be assumed to be

ai,...,an,), we rather require the maximum likelihood (ML) 2) Changes in physiology most probably happen incremen-
estimate of the resulting body posture given an action signa tally 9 phy 9y P y happ
T.h's can be cor_nputed efﬂc.:ler!tl.y by concat.enatmg Fhe geome—3) Whatever local models were useful in the past, it is likely
tric transformations of the individual mapping functiofig,;, . - .
. . . . O that similar (or maybe even the same) local models will
Although theinverse kinematic modedan in principle be

derived by applying the rules of Bayes be useful in the_ future, S
' Because of the first assumption it is not necessary to

p( Xy, o, Xn | ar, .o am) consider new local models as long as the current body scheme
p(X1,...,X,) still yields a high prediction accuracy. Only when one of the
= mp(ah-.-,am | X1, Xy) local models of the current body scheme becomes invalid,

incremental learning (assumption 2) has to be triggerednTh

o plan, - am [ X, Xn), ©) according to assumgpt(ion 3, ifis realonable to be%?n thelsear
it is in general difficult to determine the maximum likelilebo for new models that are similar to previously useful models.
(ML) estimate for the action signal, . . . , a,, that is supposed To incorporate these assumptions in the quality measure for
to generate a given target body postife, ..., X,,. Since all local models, we first define the concept of relative compyexi
individual functions f,, are continuous, and so is the MLof a local modelM; given a previously used modgH, as

osture estimatg’ of the forward kinematic model, we can .

Eompute the Jagobia‘ﬁf(a) of the forward model as CMz | M) i= d(Ma, M),

T
Vi) = 9f(a) of(a)]" (10)

whered(-, ) is a (data-independent) similarity metric between
two local models andC(Ms | Mi) € Z. In practice,
Oa; 7 Oam, d(-,-) can for example be defined as the ratio of shared

A gradient descent algorithm can then be used to minimif‘é’qeS betwgen two local models.in the Bayesian network. The
f(a) and thereby to iteratively control the manipulator to itkefined version of the mo_del qu_allty measyseD | M, M)
target position [7]. of some recent observatioi3 given a newly sampled model

M, as a replacement for an invalidated previous motél
E. Failure Awareness and Life-Long Model Adaptation can then be defined as

Until now, we have assumed that the robot's physiology 1og g, (D | M1, M,) := log(1/error prediction (D))
remains unchanged during its whole life-time. It is cleax; h 4+ CO(Ms | Mi)log8

wever, that in real-world applications, the robot will clgenin
the course of time. This insight requires that the robotsewi + log [T, - (11)
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Fig. 5. Attt = 100, a joint gets blocked, which causes the initial localFig. 6. The absolute prediction error of the combined kinetnatbdel

model pengineered (Z6—7 | a4) to produce substantially larger predictionp(Z1 .7 | a1,. .., as) of our 6-DOF manipulator. This model is composed of
errors. Att = 126, the robot samples a new local moggly, i (A6 — 7) 6 individual local models of which one is replaced by a newbrteed model
as replacement. att = 126 (cmp. Figure 5). As can be seen from the plot, the prediction

accuracy recovers quickly after each of the three extevetts.

Please note that, by construction, the quality measure of _ _ _
two local models with different relative complexity have ngnodule [20]. Per image, the system perceives the unfiltered
Over|apping ranges in model qua“ty independent'y of tl'@D poses of all detected markers. The standard deviation of

observation datd, i.e., the camera no_ise was measured.rtgw'km = 44mm in 3D
space, which is acceptable considering that the camera was
C(My | M) < C(M2 | Ms)) located two meters apart from robot.

<= VD :q(D| M1) > q(D| Ms) . (12) We averaged the prediction error over a test set of the latest
S ) - |Diesting| = 15 data samples. New local models were trained
It is, like in the static case, sufficient to sample and ev&luayjth Diraining] = 30 succeeding training samples after the
only the firstk complexity layers of local models until amode| was instantiated. In order for a local model to be valid

minimum spanning tree is found. By definition of the qualitys translational and rotational error on the test set nebéalée
function, this minimum spanning tree is then by construttioge|ow a threshold 00 1ams = 30 1rans = 150mm andé

the global maximum of overall model quality.

rot —

300t = 45°, With 044ns @ndo . as the standard deviation of

the translational and rotational observation noise, retspy.

New local models were only sampled when no valid spanning
We tested our approach in a series of experiments, both ge could be constructed f¢P,.n,| Succeeding time steps,

a real robot and in simulation. The goal of our experiments this is the time it takes to replace most if not all (because

IV. EXPERIMENTS

was to verify that of possibly missing observations) data samples of the st s
1) physiological changes are detected confidently (block&pte that otherwise it could happen that available local efed
joints / deformations), cannot be selected because the test set temporarily coonsist
2) the body scheme is updated automatically without hdata Sar_nples partly observed just before and partly after a
man intervention, and change in physiology.
3) the resulting body scheme can be used for accurate )
prediction and control. A. Evaluation of Model Accuracy

The robot used to carry out the experiments is equippedTo quantitatively evaluate the accuracy of the kinematic
with a 6-DOF manipulator composed of Schunk PowerCulseodels learned from scratch as well as the convergence be-
modules. The total length of the manipulator is aroturzdm. havior of our learning approach, we generated random action
With nominal noise values ofo{,;,+s = 0.02°), the reported sequences and analyzed the intermediate models using a 2-
joint positions of the encoders were considered to be sufffOF robot of which the kinematic model is perfectly known.
ciently accurate to compute the ground truth positions ef th Figure 7 gives the absolute errors of prediction and control
body parts from the known geometrical properties of the tob@fter certain numbers of observations have been processed.
Visual perception was obtained by using a Sony DFW-SX9@0reference, we also give the average observation noise, i.e
FireWire-camera at a resolution of 1280x960 pixels. On tdpe absolute localization errors of the visual markers.
of the robot’s joints, 7 black-and-white markers were dtegt ~ As can be seen from the diagram, the body scheme con-
(see Figure 1), that were detectable by the ARToolkit visiorerges robustly within the first 10 observations. After abou



300 ——— . The first and the third block were sampled from the initial ypod

3 observation noise e shape, while the second and the fourth block were sampled
250 || 1 prediction error —— | from the log-file where the joint got blocked.
b control error - Figure 5 shows the prediction error of the local models
= 200 r 1 predicting the end-effector pose. As expected, the priedict
= 3 error of the engineered local model increases significafter
'g 150 | ] the end-effector joint gets blocked at= 100. After a few
utJ 100 | ) samples, the robot detects a mismatch in its internal model
e and starts to learn a new dynamic model (arodnd 130),
50 SRR NIRRT which quickly reaches the same accuracy as the original,
% : % % 4 - engineered local model. At = 200, the joint gets repaired
0 SR (unblocked). Now the estimated error of the newly learned

2 4 6 8 10 12 14 16 18 20 local model quickly increases while the estimated errotef t
engineered local model decreases rapidly towards itsainiti
accuracy. Later, at = 300, the joint gets blocked again in the
Fig. 7. Prediction and control errors for a kinematic modet fedearmed S@me position, the accuracy of the previously learned local
from scratch. Already after 7 samples, the average prediettoor is lower model increases significantly, and thus the robot can re-use
than the average localization error of the visual markers. this local model instead of having to learn a new one.

The results for 20 reruns of this experiment are given in

. , Figure 6. The hand-tuned initial geometrical model evasat
15 training samples, the accuracy of the predicted bo an averaged error at the end-effector of apprBmm.

pzrt pos!tlonsTehve? outperformedkthts)al accurlacy _Of tg;‘d'r%er the joint gets blocked at= 100, the error in prediction
oltiervaglorl}si. Ie at(tjerl IS a rtlamar Zfe resuFas 'Lm S_'tincreases rapidly. Aftet = 115, a single new local models
aithough afl local models are fearned 1rom noisy o .s.ematlo gets sampled, which already is enough to bring down the over-
the resulting model is able to blindly predict positionstth

. . : _ Il error of the combined kinematic model to approximately
are more accurate than immediate perception. The figure m. Training of the new local model is completed at around
gives the accuracy of the gradient-based control algorithrin: 135
Here, we used an additional marker for defining a target
location for the robot's end effector. We learned the fultipo

scheme model from scratch as in the previous experiment

used the gradient_-based control _algorithm to bring the R an already known local model requires much fewer data
effector to the desired target location. The average [wsitg samples than learing a new model (see Table I} At300,

error Is In the orQer of th_e perception noise (approx. S0nwe, Sthe same quick adaption can be observed when the joint gets
Figure 7), i.e. slightly higher than the prediction erroorad. blocked again

Training samples

Later att = 200, when the joint gets un-blocked, the error
estimate of the combined kinematic model increases sjightl
returns much faster to its typical accuracy: switchiagk

B. Scenario 1: Joint stuck C. Scenario 2: Deformed limb

We generated a large sequence of random motor commandg, 3 second experimehtwe changed the end-effector limb
{a1,...,an). Before accepting a pose, we checked that thength and orientation and applied the same evaluationeproc
configuration would not cause any (self-)collisions, anatthqyre as in the previous subsection. This was accomplished by

the markers of interestX; and X7) would potentially be placing a tool with an attached marker in the robot's gripper
visible on the camera image. This sequence was sent to fgjifferent locations (see Figure 1).

robot and after each motion command, the observed marker

positions (Y7,...,Y,) were recorded. In the rare case of a A demonstration video of this experiment can be found on the in-
anticipated or a real (self-)collision during executidme robot termnet at http://www.informatik.uni-freiburg.de/ ~ sturm/
stopped and the sample was rejected. Careful analysis of figia/resources/public/zora-7dof-demo.avi

recorded data revealed that, on average, the individudtersar

were visible only in86.8% of the time with the initial body TABLE |

layout. In a second run, we blocked the robot’'s end-effect@vaLuation oF THE RECOVERY TIME REQUIRED AFTER BEING EXPOSED
joint a4, such that it could not move, and again recorded a l0grFo DIFFERENT TYPES OF FAILURESIN EACH OF THE4 x 20 RUNS, FULL

file. Note that we allow arbitrary 3D motion (just constraine RECOVERY WAS AFTER EACH EVENT ROBUSTLY ACHIEVED

by the geometry of the manipulator) and thus do not assume

T Visibility Failure Recovery time after
full visibility of the markers. rate type failure | repair | same failure
An automated test procedure was then used to evaluate thes1.9% | Joint blocked | 16.50 0.45 0.65
performance and robustness of our approach. For each of the _ +£120| +£08 | £115
20 runs, a new data set was sampled from the recorded log- ' >-°% Limb deformed | 20.20 11.10 12.10
, p g +1.96 +083| +164

files, consisting of 4 blocks witlv' = 100 data samples each.



range observations and learning for fully unobservabldspar
of the robot.
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