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Abstract— Generating rich representations of environments such as cars, people, buildings, trees, and traffic lights.
can significantly improve the autonomy of mobile robotics. In|n this paper we introduce a novel approach to building ob-
this paper we introduce a novel approach to building object-type ject type maps of outdoor environments. Our approach applie

maps of outdoor environments. Our approach uses conditional tandard tchina techni to ali oD |
random fields (CRF) to jointly classify laser returns in a 2D Standard scan maiching techniques to align aser scans

scan map into seven object types (car, wall, tree trunk, foliage, collected by a vehicle driving through urban environments.
person, grass, and other). The spatial connectivity of the CRF We use conditional random fields (CRF) to classify each

model is determined via Delaunay triangulation of the laser map. |aser return into the seven object types: car, wall, treekiru
Our model incorporates laser shape features, visual appearaec foliage, person, grass, and other. In contrast to previaork w

features, structural information extracted from clusters of laser td biect . 18 del f ioint
returns, and visual object detectors trained on image data sets ©N outdoor object mapping [18], our model performs join

available on the internet. The parameters of the CRF are trained Classification of the laser returns. This is done by conngcti
from partially labeled laser and camera data collected by a car the nodes of the CRF based on a Delaunay triangulation of

moving through an urban environment. Our approach achieves the laser data. An important aspect of CRFs is their ability
91% accuracy in classifying objects observed along a 3 kilometer incorporate many features with arbitrary dependen@es.
trajectory. . . . .
model takes advantage of this ability by incorporating éarg

sets of laser shape features and visual appearance features
extracted from camera data. The parameters of our models

Generating rich representations of environments can briage learned from partially labeled laser and camera data. We
another level of autonomy to mobile robotics. Over the lashow that classification can be further improved by expjicit
decade, much of the research in map building has focusedmodeling within a CRF the information contained in the
the simultaneous localization and mapping (SLAM) problenarrangement of clusters of returns. We also present results
i.e, the problem of estimating the joint posterior distributio the incorporation of visual object detectors trained onliplyb
over the robot's location and the map of the environmerdvailable image data sets such as the LabelMe set [2].
Research in this topic has produced various techniquesitbat \We evaluate our technique on laser and camera data col-
able to build spatially consistent maps of large scale,icyclected by a vehicle navigating through an urban environment
environments [22]. Tested using ten-fold cross validation, objects obsenledga

More recently, several research groups extended SLAM3 kilometer long trajectory are identified with an accuracy
approaches to generate maps that describe environment®fif1%.
terms of object types and places. Such representations cafhis paper is organized as follows. Related work is dis-
be extremely valuable, since they enable robots to perforussed first, in Section Il. In Section Ill, we introduce the
high-level reasoning about their environments and theatbje probabilistic models underlying our mapping approach; fol
therein. For instance, in search and rescue tasks, a mololwed by a description of features used for classification.
robot that can reason about objects such as doors, and pldegserimental results are presented in Section V. Finally, w
such as rooms is able to coordinate with first respondersdonclude in Section VI.
a much more natural way, being able to accept commands
such as “Search the room behind the third door on the right Il. RELATED WORK
of this hallway”, and conveying information such as “There Object recognition is a long-standing problem in robotics
is a wounded person behind the desk in that room” [11]. Asd computer vision. Most of the approaches in computer vi-
another example, consider autonomous vehicles navigatingsion aim at recognizing objects from single images. Classifi
urban areas. While the recent success of the DARPA Urbare trained on labeled data and used to either classify isnage
Challenge [5] demonstrates that it is possible to devel@s containing or not an instance of the object, or to segment
autonomous vehicles that can navigate safely in consttairtbe object in the image. Examples are [8, 23, 25]. In robptics
settings, successful operation in more realistic, popdlatthe problem is different. Recognition can be performed in a
urban areas requires the ability to distinguish betweeraibj sequence of images, in many cases combined with other sensor

I. INTRODUCTION



modalities. Alternatively, object recognition can be regd on A. Conditional Random Fields

a full map, as addressed in this paper. Conditional random fields (CRF) are undirected graphical
Within the robotics community, recent developments havgodels developed for labeling sequence data [12]. CRFs

created representations of the environment integratingeM@jirectly model p(x|z), the conditional distribution over the

than one sensor modality. In [17], a 3D laser scanner affiden variablesx given observationz. In our framework,

loop closure detection based on photometric informati@ ag is the set of object types to be estimated, a hidden state

brought together into the Simultaneous Localization ang-Mapeing instantiated for each laser return. The observations

ping (SLAM) framework. This approach does not generatgrrespond to shape and appearance features extracted from

a semantic representation of the environment which can Rger and vision data, respectively. A CRF can be formulated
obtained from the same multi-modal data using the approagd follows:

proposed here.

I'r} [20], a robust .Iandmar'k represenftation is created py-probp(x|z) — %exp wa ZA(“’ z) +w; ZI("’E’%”Z) 1)
abilistic compression of high-dimensional vectors cariteg p -
laser and camera information. This representation is used i _ o
a SLAM system and updated on-line when a landmark is re-Here, the terml/Z is a normalization factor. The func-
observed. However, it does not reason about landmark slasi@ns A and I are the association and interaction potentials,
and therefore does not support the higher-level objectdete respectively. In our framework, an association potendals
described in this work. instantiated as a logitboost classifier [9] and estimates th

Object recognition based on laser and video data h@ject type of node; using the set of observatiosbut does
been demonstrated in [15]. Using a sum rule, this approa@ft take into account information contained in the struetur
combines the outputs of two classifiers, each of them beiffthe neighborhood. An interaction potentiaiis a function
assigned to the processing of one type of data. More recenfiySociated to each edgef the CRF graph, where. andz.
Posner and colleagues combine 3D laser range data vi§ the nodes connected by edgéntuitively, interaction po-
camera information to classify surface types such as bridRntials measure the compatibility between neighboringeso
concrete, grass, or pavement in outdoor environments [B8!d act as smoothers by correlating the estimation acress th
19]. The authors classify each laser scan return indepégdeR€twork. . S _
which can disregard important neighborhood information. A [N our system, the first step of the CRF training is learning
other researchers have shown, classification results cantfi@ l0gitboost classifiert _Wthh IS.perforr_neq as |n_[7]. The
improved by jointly classifying laser beams using techewju second step of thg learning consists in finding optimal \&alue
such as associative Markov networks [24] or conditiond®r the set of weightsu, and w; based on a labeled data
random fields [7]. set. Depending on the connectivity structure of the network

In [3], a Markov Random Field is used to segment objecfQ be_trained, the system uses exact or approximate learning
from 3D laser scans. The model is trained discriminativefgchniaues. For non-cyclic networks, the systems uses a Max

using a max-margin objective function. The features usdgdum Likelihood approach since inference can be performed

were simple geometric features capturing plane propert@$actly. For networks containing cycles, the system uses th

of groups of points. The authors considered four class@PProximate version of this technique which is known as

ground, building, tree and shrubbery. Friedman and calieag MaXimum Pseudo-Likelihood learning [4]. _

introduced Voronoi Random Fields, which generate semantic>NCe the values of the Igcal potentla'l 'functuahare ob-

place maps of indoor environments by labeling the points é@ined as the output of a logitboost classifier, our appréach

a Voronoi graph of a laser map using conditional randoHiNiNg can be seen as an extension of boosting to strutture

fields [10]. classification tasks. As a result, this approach is verytile?q
The key contribution of this paper is a methodology to buil nd powerful. It not only leams the wellghts .Of the potestlal_

maps of objects in which accurate classification is achiéyed ut also selgcts the subset of dlm'e'nsu.)ns in the observation

exploiting the ability of CRFs to represent spatial cortielas vectorsz which are useful for classification [10, 13].

and to model the structural information contained in clisste .In this work, th? maximum pseudo-likelihood Iearnmg IS
of laser returns slightly extended in such a way that the labels of neighbor

nodes are not required, allowing training to be performed
on partially labeled data. This is achieved by optimizing th

[1l. M APPINGIN CONDITIONAL RANDOM FIELDS D7 . )
pseudo-likelihood written as:

To augment geometric maps with semantic information, N N
we have developed three approaches corresponding to thréé(xz) = [[p(ziMB(xi),7) o [ [ exp(waA(xi, 2))
different models. All these models are based on the framewor i=1 i=1
provided by conditional random fields. Before describingrho H exp(wrl(z;,xr,z) + waA(zk, z))
these models are built from laser and camera data, we provide keMB(x;)

background on learning and inference in conditional randomwhere the last equation is obtained by breaking the expo-
fields. nential in Eq. 1 into two terms (the full derivation is not giv



here due to space constraintd) refers to the number of nodesis encoded, for example: neighbor nodes should have the same

in the network and/ B(x;) is the Markov blanket of node;. label. Such links are appropriate in very structured pdrth®

The parameters to be adjusted to find the maximum value erfvironment but may over-smooth in areas where the density

the pseudo-likelihood are 4, andw;. In this formulation, the of objects increases.

usually required neighbor labels are replaced by the etiina In order to model more than one type of node-to-node rela-

distribution over the neighbor’s labedxp(w4A(xy,z)). Via tionships, the network is augmented with an additional node

this formulation, the learning algorithm can use the unledbe T for every pair of nodegz;,z;} as displayed in Fig. 1. The

nodes in the neighborhood of each labeled node and dtete of this node specifies which type of link is instantlate

performed on partially labeled data. For this second type of network, we consider two types of
Inference in CRFs estimates either the marginal distwiouti links encoding the following node-to-node relationshifik)

of each hidden variable; or the most likely configuration of neighbor nodes have the same label, (2) neighbor nodes have

all hidden variablex (i.e, MAP estimation), based on theira different label. Node T receives an observation S which is

joint conditional probability (Eq. 1). We solve both tasksng the output of a logitboost classifier learned to estimatetiadre

belief propagation (BP) for non-cyclic networks. For cgclinode z; and z; are similar based on their respective local

networks, we use the approximate version of BP called Loopyservatior; andz;. The observation S is a direct observation

Belief Propagation (loopy BP) [16]. of the state of node T.

Since this second type of network contains loops, training

B. From Laser Scans to Conditional Random Field . : :
) ) ) ) . and inference are also performed with maximum pseudo-
The input to our system is a collection of spatially al'gneﬁkelihood and loopy BP, respectively
laser scans obtained by performing scan matching with the ' '

iterative closest point (ICP) algorithm [27#] In this section,
we present three types of CRFs which will be compared in

order to better understand how to model the spatial coivelsit e e e ‘/ Association e e e
in a semantic map. We show how the three different models @

can be instantiated from aligned laser data and indicatetwhi ) @ /
learning and inference techniques are used in each case. For"" \ Interaction ° 6

these three networks, the hidden state for each node ranges Potential
over the seven object types: car, trunk, foliage, peopldl, wa
grass, and other (any other object type).

1) D_elf”\unay .CRF:ln this first tyPe of network, each Iase.rFig. 1. Representation of the additional infrastructuiguieed in a Delaunay
return is instantiated as one node in the CRF. The connecti@RF to perform link selection.
between the nodes are found using the Delaunay triangnlatio

procedure [6] which efficiently finds a triangulation withmo 3) Tree based CRF:The previous two types of network
overlapping edges. The system then removes links which &htain cycles, which implies the use of approximate leayni
longer than a pre-defined threshold (50 cm in our applictiogng inference algorithms. We now present a third type of
since distant nodes are not likely to be strongly correlategetwork which is cycle free and does not require the use of
The resulting network is displayed as a set of blue edgesgpproximate techniques. To design non-cyclic networks we
Fig. 2. start from the following observation: laser returns in ansca
Since a Delaunay CRF contains cycles, training and ifyap are naturally organized into clusters. These clustams c
ference are performed with maximum pseudo-likelihood am jgentified by analysising the connectivity of the Delauna
loopy BP, respectively. _ _graph and finding its disconnected sub-components. Discon-
2) Delaunay CRF with link selectionGenerally speaking, nected components appear when removing longer links of
structured classification as performed by CRFs is expecigf original triangulation. In Fig. 2, the extracted clustare
to improve on local classification since independence is nghicated by green rectangles.
assumedi.e., neighborhood information is modelled through §nce the clusters are identified, the nodes of a particular
interaction potentialis. However, as iIIust.rated by thgeekp cluster are connected by a tree of depth one. A root node
mental results, the first type of CRF previously describeesdojg jnstantiated for each cluster and each node in the cluster
not improve on local classification. A too coarse modellingecomes a leaf node. The trees associated to the clusters in
of the spatial correlations is responsible f.or th_is .resijhe Fig. 2 are represented by green volumes. A tree-based CRF
term exp(w; 1 (i, zx,2)) of Eq. 1 is learnt in this first type goes not encode node-to-node smoothing but rather performs
of network as a constant matrix instantiated at each of tig50thing based on the identified clusters of laser returns.
links. This gives the network a smoothing effect on top of the The root node does not have an explicit state. It allows
local classification. Since all the links are representeth Wiy,q jhgtantiation of a network which does not contains aycle
the same matrix, only one type of node-to-node relationship,pjing learing and inference to be performed exactlyhWi

1In spatially more complex data sets containing loops, cerstist aligned t.hIS. third type of network, t.he system ) uses a ma.XImum
scans can be generated using various existing SLAM techgif22] likelihood approach for learning and belief propagation fo

Node T Defines

The Interaction Potential Type
Delaunay CRF



inference. The possibility of using exact learning andriefee fangle Or angle features are computed as angles formed by
is a strong advantage compared to the absence of theoretigalous configurations of neighbor returns:
results in terms of convergence of maximum pseudo-likeltho ,
learning and loopy belief propagation. fangle (1, k. 1, 24) = || £ (Fai=rzai, Zaizair)ll .- ()
wherek and! vary from —10 to +10. These two first types
of features provide information about the local shape of the
scan around returil

f,or Or out of range features count the number of “out
of range” beams between pairs of successive returns. These
features allow the representation of open areas betweéh val
beams of the laser scan.

fouster CONSists of various features computed to describe
a cluster of laser returns. Cluster of returns within a gngl
scan are extracted based on a simple distance criteria and
characterized through the following quantities: geodksigth
of the cluster, length of its two principal components, erro
generated by the fit of a spline to the cluster points. Note tha
two returns in the same cluster have the sdmeg.., vector.

The aim of thef, features is to capture the organization
Fig. 2. Representation of a Tree based CRF in one region afharenerated cluster P 9

from data. The trajectory of the vehicle is displayed in genLaser returns of ObJeCtS at the scale of one laser scan.
are instantiated as nodes in the network and connected tisn@elaunay
triangulation. Nodes and edges are plotted in dark and kiyfe;, respectively. B. Visual Features

Identlfle_d clusters are indicated by the green rectangleba\_/rmot nodes are In addition to laser range scans, our system incorporates
plotted in green. Root nodes are connected to all nodes inltis¢er but for | RO .
clarity this is represented by a rectangle enclosing thstetu visual appearance by projecting the laser returns into came
images collected by a calibrated camera mounted on the
vehicle, similar approach to [7, 19].
IV. FEATURESFOR OBJECTMAPPING The CRF learned with a logitboost based algorithm can

As formulated in Eq. 1, the computation of the posteric{}m only integrate geometric information but also any other

probability requires the set of observationasIn this work, ype of data and, in particular, visual features extractechf

. . . . monocular color images. As a consequence, the system ex-
z consists of high-dimensional feature vectdrscomputed g d y

for each scan returnf results from the concatenation Oftracts features in a region of interest (ROI) defined arotned t

three types of features, geometric features, visual featand projection of each return into the corresponding image. The
features extracted frorr’1 on-line datasets- ' parameters required to carry out the projection are defined

through the camera laser calibration procedure developed i
£ = [£h00 Frisus Furw ], ) [26]. The size of the ROI is changed depending on the range
of the return. This provides a mechanism to deal with changes
Geometric and visual features are first described. We thienscales across images. It was verified that the use of a size
show how on-line labeled datasets freely available on tlarying ROI improves classification accuracy 4.

internet can provide additional binary features. The visual feature vector associated to each return has a
_ dimensionality of1239 and results from the concatenation of
A. Geometric Features 51 multi-dimensional features computed in the ROI. Due to

Geometric features capture geometric properties of tHElited space, we only describe the most important of these
objects in the laser returns. The feature vector computed fgatures:
one scan return has a dimensionalityz_dﬁ_and rfasults from £isu (i) = [foyr, frgp, fhsv, Fhaar, fedges, fiines, fsite, - -], (6)
the concatenation of 38 different multi dimensional feasur

Due to limited space we only present a subset of these featuféhere index: refers to the ROI associated to retutn
below: f,,x returns texture information encoded as a vector con-

taining the steerable pyramid [21] coefficients of ROhs

foeo (i, 24) = [faist, fangle, foor, fetuster, - ], () well as the minimum and the maximum of these coefficients.
These extrema are useful to classify cars which from most
point of views have a relatively low texture maxima due to
their smooth surface.

f.op andfi, return a 3D histogram of the RGB and HSV
4) data in ROIi.

fLaar returns Haar features of RQI computed using the

wherek varies from—10 to +10. integral image approach proposed in [25].

wherei indexes one of the returns in scap.
f4ist Or distance features are computed for each returp
in scanA as its distance to other points in scdn

faise (4, k,24) = |24, — 24,i4k]|



Length vehicle | # scans| # nodes

feqges Uses a Canny edge detector to extract the number of trajectory total total
pixels within ROl recognized as belonging to an edge. _ labeled | labeled
fiines Processes the whole image with the line detector [1] Training set| 26 km sl B
and extracts the number of lines intersecting R@k well as Testing set 290 m 427 7511
the maximum length of this subset of lines. 8 274
f.i¢ counts the number of Sift features [14] found in ROI TABLE |

PROPERTIES OF THETRAINING AND TESTING SETS
C. Using On-line Datasets

In our datasets, some of the classes such as the class peBpl€lassification Performance
have no more than one hundred training samples. This can berhis section presents the classification performances ob-

detrimental to the accuracy of the classifier. To COMPENSale a4 with the three models presented in Sec. IlI-B. Result

for the lack of training data, we have used binary featurgs, .| cjassification are first presented in order to pieva
computed with classifiers trained on on-line datasets. $&rq ) <jine for comparison

the web, large labeled datasets such as the LabelMe dagset f;l) Local Classification:A seven-class logitboost classifier

can .be used to learn binary classifiers on Ie.xrge. amount;ofieamed and instantiated at each node of the network as

training data. We used the LabelMe data to train binary ijet?le association potentiad (Eq. 1). Local classificationi,e.,

detectors for e.ac'h of the ten classes: car, tree trunk'gm“‘"‘classification which does not take neighborhood infornmatio

pede_strlan, building, grass, road, pole, fence and road_; 4hAto account is performed with the confusion matrix presdnt

a_pphed these detectors to our data_\ to generate an additiofarapie 11, This confusion matrix displays a strong diagona

binary fez_at_ure VeClOfy O.f d|men§|onallty1(). . . which corresponds to an accuracy of 90.4%. A compact
In addition to an algorithm which can be trained With,, 5 erization of the confusion matrix is given by priecis

partially labeled data, the use of on-line labeled data S&fd recall values. These are presented in Table Ill. Average

ge:re"?‘ie the Iabellln?l;ffort.fThe resulrt]s repr:)rteq r']n S(ecaover the seven classes, the classifier achieves a precision o
4 with respect to thef., features show the right trendgg o4 and a recall of 98.1%.

while no significant improvement has been obtained yet. This

part of the work is preliminary and aims at introducing thé Tun\infered | Car | Trunk | Foliage | People | Wall | Grass | Other
; : e s Car 1967 1 7 10 3 0 48
|de_a of generat!ng additional feature; as output of clmsm. TrK T 165 15 o T o T
trained on on-line datasets. We believe that understanding Foliage 25 8 1451 0 24 0 71
the requirements for features to be portable from standard P\m'e 2 g 221 135 5‘;3 2 ??9
datasets to a given robotics application is crucial fordasgale Grass 0 0 1 1 1 146 7
autonomy and this paper opens up this direction of research. Other 54 S 123 3 24 0 811
TABLE I

V. EXPERIMENTAL RESULTS ]
LocAL CLASSIFICATION: CONFUSIONMATRIX

A. Experimental Setup

Experiments were performed using outdoor data collected
with a modnjed car traveling at O.to 40 .km/h along a — o Tk [ Tolage | People | Wal | Grass | Ofer
3km long trajectory. The car drove in a university campus precision | 96.6 | 817 | 913 901 | 875 | 954 | 795
which has structured areas with buildings, walls and cars, Recall | 97.9 | 99.3 | 964 | 997 | 985 ] 999 | 954
and unstructured areas with bush, trees and lawn fields. The TABLE Il
overall dataset contains 4500 images representing 20 esnut LOCAL CLASSIFICATION: PRECISION AND RECALL
of logging. Laser and vision data was acquired at a frequency
of 4Hz. The laser sensor used belongs to the family of SICK
devices and the camera was a high-resolution wide angle2) Delaunay CRF classification:
Hanvision camera. a) CRF without built-in link selection:the accuracy
The evaluation of the classifier was performed on a ten-folthieved by this first type of network is 90.3% providing
cross validation setup which involves training each cfassi no improvements on local classification. As developed in
on nine tenth of the trajectory and testing it on the remanirSec. 11I-B.2, the modelling of the spatial correlation ito
one tenth. These two operations are repeated ten timescowrse since it contains only one type of link which cannot
changing the testing and training sets accordingly. Thelt®s accurately model the relationships between neighbor nddes
presented below are averaged over the cross validation rumsconsequence, the links end up representing the predominan
Each set of scans was converted into a probabilistic netwaeiationship in the data. In our application the predominan
as described in Sec. llI-B. Training and testing sets wertlypa neighborhood relationships are of the type “neighbor nodes
hand labeled to provide labels to the learning algorithm andpossessing the same label”. The resulting learned linksreaf
ground truth to evaluate classification accuracy. this “same-to-same” relationship across the network tegadi
The properties of the training and testing sets averaged ot@ over smooth estimates and explaining why this class of
the ten tests are provided in Table I. networks fails to improve on local classification. To veriifiat




a better modelling of the CRF links improves the classifarati the ROI size. Our approach consist in using features which
performance, we now presents results generated by thedsecare distributions (e.g. an histogram with a fixed number of
proposed type of CRF, characterized by a built-in link sgd&c  bins) and whose dimensionality is constant (e.g. equal ¢o th
process. number of bins in the histogram). A larger ROI leads to a
b) CRF with built-in link selection: the accuracy better sampled distribution (e.g. a larger number of sample
achieved by this second type of network is 91.4% whidin the histogram) and the actual feature dimensionalityaiem
corresponds to 1.0% improvement in accuracy. Since theariant.
local accuracy is already high, the improvement brought by The use of these additionfl.,., features slightly improves
the network may be better appreciated when expressed ahe local classification accuracy from 90.4% to 90.6%. We
reduction of the error rate of 10.4%. This result validates t believe that there is no further increase in accuracy due to
claim that a set of link types encoding a variety of node-tdhe fact that the lighting conditions in the two datasetsedif
node relationships is required to exploit the spatial datiens significantly (our urban dataset contains images which are o
in the laser map. average much darker than the ones in the LabelMe dataset).
3) Tree based CRF classificationthe two types of net- In the context of preliminary investigations, these resualte
works evaluated in the previous section contain cycles amdcouraging and future tests will involve datasets with enor
require the use of approximate learning and inference tedimilar lighting conditions.
niques_. The tree bas_ed CRFs presented in S_ec. III—B.S av@q Map of Objects
these issues by allowing the use of exact learning and iméere . . . o .
procedures. This section presents a y|suallzqt|on qf the mapping result
This third type of network achieves an accuracy of 91.14h follows the lay out of Figure 3 in which the vehicle was
which is slightly below the accuracy given by a CRF witffravelling frorn_ right to Ie_ft. . . .
link selection while still improving on the CRF without link AF the Iocatlo.n of the first '”?et' the vehlgle was going up a
selection. However, the major improvement brought by th raight road with a fence on its left and right, and, from th'e
third type of network is in terms of computational time_oreground to the backgroun_d, another fence, a car, ?‘_'@”"”
Since the network has the complexity of a tree of dep eter and bush. All these objects were correctly classifigu w

one, learning and inference, in addition to being exact, ¢ ¢ fences and the parking meter identified as other.

; o . . In the second inset, the vehicle was coming into a curve

be implemented very efficiently. As displayed in Table IV, . ; ' .
a tree based CRF is 80% faster at training and 90% fas{%fmg a parkmg_ .lOt and bush on the s'de. of the road. Four
urns misclassified as other can be seen in the backgrdund o

at testing than a Delaunay CRF. Since both network typres

use as their association potential the seven classes dogitb f/vk?i |Ln;slge. T?sl class oéhs ' trre]gl,ldla:q);ngfigerﬁterﬁga:si Emrlltlk
classifier, they require the same features extracted froocam s ch 1S possibly caused by the dominating number ot rg

and its associated image in 1.2 secs on average. As showr?‘allwp:gz Ig:hlsa?;iscsﬁvaiﬁsstgazsn of ;i'twe'g:gmt?.égmh?ho ¢
Table 1, the test set contains 7511 nodes on average whicd"P Ny Ining w ied withou

suggests that the tree based CRF approach is in its currd ificant improvements.

; i . . hile reaching the third inset, a car driving in the opposite
state is very close to real time, feature extraction beirgy t}a. . . ) . o
main bottleneck. irection came into the field of view of our vehicle’s sensors

The trace let by this car in the map appears in the magnified

Feature Extraction] Learning | Inference inset as a set of blue dots along side our vehicle’s trajgctor
DelaEy CRF (per scan) | (raining set) | (test set Dynamic objects are not explicitly considered within this
(with link selection) work. They are assumed to move at a speed which does
Tree based CRF 1.2 secs 1.5mins | 10.0 secs not prevent ICP from performing accurate registration.he t
TABLE IV campus areas where the data was obtained, this assumption
COMPUTATION TIMES has proven to be valid. In spite of a few miss-classifications

in the bush on the left side of the road, the pedestrians on the
ide walk are correctly identified and the wall of the buitglin
recognised.

4) Using on-line data sets for trainingBased on the
LabelMe set, 10 binary object detectors are trained usieg

logitboost algorithm. The 10 classes considered are: czg, t Entering the fourth inset, our vehicle was facing a second

trugk, fc(;hasgle, per::i eitrfr}iwbugdmg' grass, roa(.j,. po(;ncé car, scene which appears in the map as a blue trace inteigecti

and road. Ince t € Labeivie .ataset contains vision aya OrHur vehicle’s trajectory. Apart from one miss-classifietlire

these binary classifiers are vision based detectors andgdér o n one of the pedestrians, and one miss-classified returineon t

g)oulse trlle'r %u_tput af] _addmon?I featuk:es,(;/ve run tfrl]emsmon tﬁge in the right of the image, the inferred labels are adeura
s selected in each image of our urban dataset (the €Clote that the first right return is correctly classified ithaging

of th_es_e ROIs is performed as described iﬂ Sec. IV-B). the accuracy of the model at the border between objects.
Within our urban dataset as well as within the LabelMe

dataset, the size of the selected ROIs are not constant which VI. CONCLUSIONS
requires designing the various vision features in such a wayThis paper introduces a novel approach for object mapping
that the dimensionality of the vectdy;s, is independent of in outdoor environments. Our technique applies conditiona
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Fig. 3. Visualization of 750 meters long portion of the estiettmap of objects with total length of 3km. The map was generated) uhe tree based CRF
model. The legend is indicated in the bottom left part of the@&ne. The color of the vehicle’s trajectory is specifiedhie bottom right part of the same
plane. The coordinate in the plane of the map are in meters. iBaehis magnified and associated to an image displayed witmfeeed labels projected
back onto the original returns. The location of the vehislstiown in each magnified patch with a square and its orientatiticated by the arrow attached
to it. The laser scanner mounted on the vehicle can be seem ibattom part of each image.
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