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Abstract— This paper proposes a local collision avoidance
method for non-strictly convex polyhedra with continuous veloc-
ities. The main contribution of the method is that non-strictly U
convex polyhedra can be used as geometric models of the robot L)
and the environment without any approximation. The problem 'y 0
of the continuous interaction generation between polyhedra is re- i “‘ |
duced to the continuous constraints generation between polygah V’
faces and the continuity of those constraints are managed by the E
combinatorics based on Voronoi regions of a face. A collision-free
motion is obtained by solving an optimization problem defined by d ,
an objective function which describes a task and linear inequality o P
constraints which do geometrical constraints to avoid collisions.
The proposed method is examined using example cases of simple
objects and also applied to a humanoid robot HRP-2.

I. INTRODUCTION

.

Detecting and avoiding collisions is fundamental for th
development of robots that can be safely operated in human
environments. This issue has given rise to contributions in Fig. 1. “Pick up an object under the table” example
the 1980’s in the context of robotic manipulators. One of the
most famous and most used contribution in this domain is
certainly [1]. [1] proposes a method which plans a motiofite minimum distance. [10] combines three methods to detect
by minimizing an error between a desired velocity and th€lf-collisions online, (1) table look-up to detect setfiisions
planned velocity under inequality constraints to avoidlicol between adjacent joints and (2) reduction of pairs of lirks t
sion. The robot and the environment must consists of strictPe checked using heuristics, and (3) collision check uspig a
convex objects. [2] extends this method to avoid local mainProximated shapes by convex hulls. [11] approximates shape
by modifying the task description in heavily cluttered eom- Py spheres and swept sphere lines and used the minimum
ment. [3] proposes another approach for avoiding colligipn distances between them to avoid self-collision. [12] cotepu
following the distance gradient. The robot is approximatgd @ strictly convex bounding volume called STP-BV by patching
a set of strictly convex objects (ellipsoids). spheres and toruses for each body of a humanoid robot and
Recent developments of humanoid robots have made thélds collision-free postures.
issue of collision detection and avoidance very criticading ~ Many works have focused on approximating the robot by
[4] proposes a path planning method which computes dstrictly convex objects but to our knowledge, very few has
namically stable and collision-free trajectories. It megs been done to deal with non-strictly convex objects without
a set of statically stable postures in advance and findsg@ometric approximation.
path by exploring it with RRT-connect[5]. And the path is In this paper, we extend the method described in [1] to
transformed into a dynamically stable trajectory by apmlyi non-necessarily convex polyhedral objects, in such a waly th
a dynamics filter[6]. [7] proposes a fast method to ensure thhe resulting velocity of the robot is continuous. The basic
there is no self-collision in a trajectory. Shapes of theotobframework is same as in [1]. The robot velocity is computed
are approximated by convex hulls and the minimum distancleg minimizing difference between the desired task veloc-
between them are tracked using V-Clip[8]. [9] proposes allodty and the planned one under linear inequality constraints
collision avoidance method using repulsion fields defined lyplied by pairs of objects close to each other. The main



difference is the way of generating constraints. In the case
of strictly convex objects, one constraint over the velocit
of the closest points between two objects is enough. The
minimum distance and the closest points between nonigtrict
convex objects can be computed using efficient algorith
and robust implementations[13, 14, 15, 16]. But performing
collision avoidance by applying a linear inequality coastt
over the velocity between the closest points might result in
discontinuous velocities for the objects. Because theestos
points between two strictly convex objects move continljous
whereas the closest points between non-strictly convex ob-
jects do not. If one object is a robot body, discontinuous
velocity cannot be applied. So in the case of polyhedra,
several constraints are generated for each pair of objatitseu
the method in [1]. Our method reduces the problem of the
continuous interaction generation between polyhedra ¢ th

continuous constraints generation between faces and manﬂﬁequality (1) is calledvelocity damperand it expresses that

the continuity of.thos.e constraints using the combmaﬁonc{:i must not decrease too fast when it is smaller thanAs
based on Voronoi regions of a face.

) . . e result,d never be smaller thad,. The region wherel
The paper is organized as follows. In section I, we recatﬁ] s 9

Faverion and Tournassoud’s method for strictly convexabie Is smaller thand; is calledinfluence zoneNote thatd must
J Y ) satisfy Inequality (1) wherp; entersinfluence zonelf it

In section Ill, we extend the method to make it possiblg . 3 ! ; :
. esn't,d is constrained discontinuously. Therefore, the value
to accept polyhedra. In section IV, the extended methqg ¢ must be tuned according to applications

is examined using example cases of simple objects andoaéi. ted by the followi i
humanoid robot HRP-2[17]. In section V, we summarize and IS computed Dy the Toflowing equation.
conclude the paper.

Fig. 2. Faverjon and Tournassoud’s method

d= (p1|n)

I[I. A LOCAL METHOD FOR STRICTLY CONVEX OBJECTS
A. Strictly convex objects wheren is the unit vector(p; — p2)/d and notation(u|v)
refers to the inner product of vectotsandv.

Let g denote the configuration angl the velocity of the
robot. The velocity ofp; can be expressed as:

First, let us recall the following definition.
Definition: Strictly convex object. LaD be a closed subset of
R3 and inf{©) be the interior of (greater open subset @)
O is strictly convex if and only if

VAe OVBe O,YAeR,0< A< 1, M+(1-))B €int(O)

p1 = J(q,p1)q

hereJ (g, p1) is a Jacobian matrix aP; atp; . Inequality (1)

For mstance, a convex polyhedron is not str!ctly CONVex. mus becomes a linear inequality constraint over the robot
two points on a facet are selectedAsnd B, the line segment velocity ¢:

linking them is not inside the interior of the polyhedron but
on the facet. d—d
. (4l (q.p1)"n) > ~£ 57—

B. Outline of the method i~ s

Let us recall the principle of Faverjon and Tournassoud’s p task is described by the control of a measure of the
method [1]. LetO; and O, be two strictly convex objects. problem, a vector(q) in a task space. The task is achieved by
For ease of explanation, let's consid@ as a movable object finding q which satisfiesr(q) = 0. Given a desired task ve-
andO; as a static one. Lgi; andp, denote the closest pointsiocity +, the robot velocity to achieve the task while avoiding

between?, andO, andd does the distancip, —p || between collision is computed by solving the following optimizatio
them (Fig. 2). SinceD; and O, are strictly convex objects, problem overg:

p1 andp, move continuously or; and Oy boundaries and
d is continuously differentiable.
If d is smaller than a threshold call@dluence distancand

min |7 (a)q - £

denoted byd;, the following constraint is defined for velocity ) . d—d, @)
of d: subject to (q|J(q,p1)"n) > _£d4 —
i ¢l d & o
T Tdi—ds where J,(q) is a Jacobian matrix of (q) at q.

where ¢ is a positive coefficient for adjusting convergence Of course, considering each body of the robot and several
speed,ds;(< d;) is a positive value calledecurity distance obstacles yields several inequality constraints.



C. Lower bound of the distance betwe@n and O, t=0.0 p =10 =20 t=3.0

Y ,
If we denote byd(t) the minimum distance betweef), li
and O, along time,d(t) is continuously differentiable. If a

X

B ! .
condition on the derivative of d:
| *

. d(t) — d,
vt > 0,d(t) > —g%

and the initial conditiond(0) > d, are satisfied, then the

Fig. 3. Example of a discontinuous constraint

following condition is derived. E0.4 7—o1 =£Y7
© K . [=]
e, £03 =
vt > 07 d(t) > ds + (d(o) - ds)e dimds T > ds (3) Bz d. = 0.2 80'5
Ro2 "_‘ =
This proves that the distance between objects constraiped b ol 0.3
velocity dampemnever be smaller thad;.
0.1
090 1.0 20 . 3.0 0.0 1.0 20 . 3.0
I11. AL ocAL METHOD FORNON-STRICTLY CONVEX Timef[s] Timef[s]
POLYHEDRA 200 720
z g
A. A discontinuous case of non-strictly convex polyhedra 3 =10
If we apply Faverjon and Tournassoud’s method to nonZ'Q2 7200
strictly convex polyhedra, the robot velocity changes aiisc = &0
tinuously since the closest points between two objects move &
discontinuously. Fig. 3 and Fig. 4 show snapshots and gesult *¢, o 20 30 20 10 20 - 30
Time[s] Time[s]

of an example case. In this example, a rectangle(0.2[m])
moves above an horizontal floor. The task of the rectangle
is to move its centemp.(q) from (0.0,0.7)7[m] to p, =
(0.0, —1.0)T[m]. Parameters ofelocity damperd;, d, and ¢

Ere set to 0.4[m], 0.2[m] and 0.5[m/s] respectivetyis given g Decomposition of interaction between polyhedra
V:

Fig. 4. Results of the example

P, — Pe(q) . The goal of this section i_s to define the inequality co'nstsai.n
m in such a way thatj remains continuous. To cope Wlth this
issue, we propose to keep track of several pairs of points tha
where o, .. is set to 0.2. move continuously on the facets of the polyhedra composing
Top left picture of Fig. 4 shows the minimum distancehe obstacles and robot.
between the rectangle and the floor. Top right picture dyspla Discontinuity of constraints happens in the following case
the vertical position of the rectangle. Bottom left and tigh
pictures show the linear velocity alorig axis and the angular
velocity respectively. One of vertices of the bottom edge of ) . ) ) )
the rectangle(; enters intoinfluence zonat ¢t = 0.25. But The closest points jump discontinuously if these two cases
the velocity of C; is not affected since its velocity satisfie'@Ppen at the same time.
Inequality (1). From¢ = 0.5, the object velocity is affected N order to prevent these cases and generate a collision-
by Ve'ocity damperThe center must move downward W|th théree mOtion W|th Continuous Ve|OCities, pairS Of pOintS mus
constant speed to achieve the task but the admissible speeB€selected by complying with the following rules.

Cy is limited. As a result, the object rotates. Aroute: 2.0, 1) the closest points between a robot body and an obstacle

the bottom edge of the rectangle becomes almost parallel must be constrained to guarantee that the robot never
to the ground, the closest points start to oscillate between collides.

C; and C,. The object rotates clockwise to achieve the task 2) the potential closest points must have been constrained

i = 5Tmafc

1) a new constraint appears suddenly
2) a constraint disappears suddenly

when C; is constrained and does counterclockwise whgn before they become the closest points.

is constrained. As a result, the minimum distance becomes3) the closest points must continue to be constrained even
smaller thand, and the rectangle eventually collides with the if they are not closest anymore.

floor att = 3.0.

Let us decompose the interaction between polyhedra into a

The collision-freeness is not assured anymore when g q¢ interactions between faces. Polygonal faces arerasbu
robot bodies and obstacles are not strictly convex as shovy(g.be decomposed into triangles

The oscillation of the closest points causes discontinuous

Ch?‘”ges ofp, aHQn in Problem (2) and it leads to 0_“509”“' 1In the following, featuresof a triangle are the triangular (open)face, the
nuity in the solution of Problem (2) as we can see in Fig. 4hree edges and the three vertices.



The continuous motion between polyhed@; and O, of V; onto F along its normal vector. Any point on the edge
can be achieved if each triangle 6f, moves with continu- can be the closest point when the edge and the triangle are
ous velocity against each triangle 6f,. Therefore we can parallel. But we don’t need any additional pair since bott en
focus on an interaction between trianglég, and 7;. The points are already constrained and they are also the closest
continuous motion betweefl; and 7; can be achieved if points.
each edge off; moves with continuous velocity againgt Case2 : The edge is iIVR(E)
and each edge df; moves with continuous velocity againstThe closest point jumps from one of end points of the edge
7,. Finally the interaction between polyhedra is decomposesl the other when the edge afdare almost parallel. So two
into interactions between an edge and a triangle as shopdirs, (V1,V]) and (V»,V)) are constrained, wher¥/(i =
in Fig. 5. It means that the continuous interaction betwean2) is a projected point ofY; onto £. The closest points
polyhedra can be achieved if we can find a method to realigetween the edge anfl coincides with one of two pairs in
a continuous interaction between an edge and a triangleeln some cases, but doesn’t in other cases. Therefore, one more
same way, the continuous interaction between a robot and gi#r for the closest points is added. Three pairs are crested
environment which consists of several polyhedra respagtiv a consequence.
can be achieved if each polyhedron of the robot moves @ase3 : The edge is IVR(V)
continuous way against each polyhedron of the environmenthe closest point moves continuously on the edge. So the pair

of the closest points is constrained.
polyhedron polyhedron
robot :I— environment
polyhedron i_: polyhedron -’\

( triangle triangle ) 4
polyhedron polyhedron
triangle triangle
\_ J

H face edge ; vertex
triangle triangle
edge edge Fig. 6. Constraints generated between an edge and a triangle
edge edge
. edge edge J So far, we considered cases the edge lies in one of the

Voronoi regions of the triangle. But in most cases, the edge
may move to another Voronoi region and lie in several Voronoi
regions at the same time. Therefore, the edge is decomposed
into several line segments again by clipping it with Voronoi

Fig. 5. Decomposition of interaction

C. Constraint generation using Voronoi regions

Next, let us find pairs of points to be constrained to realiZ4anes. 3 . .
the continuous interaction between an edge and a triangleBefore this decomposition, we need to confirm that conti-
The pairs of points to be constrained depend on the Voror®iity of constraints is kept when an edge goes into another
regions in which the edge lies. The Voronoi region is definedronoi region. When the edge moves betwaéR(F) and
as follows. VR(E), continuity of constraints are maintained since end
Definition: Voronoi regionVR(X) for feature X. A Voronoi Points of decomposed line segments aredA(F,£) and
region associated with a featur® of a triangle is a set of they produce the same constraints. However, in other cases,
points that are closer to¥ than any other feature. constraints may appear or disappear suddenly. An example is

The Voronoi plane is also defined as follows. shown in Fig. 7. The edge is moving fronR(V) to VR(E).
Definition: Voronoi plane VP(X,Y) between neighboring When an end point of the edge touchég (), £) and a new
features X and Y. VP(X,Y) is the plane containing COnstraint appears suddenly. In the reverse case, theraionmst
VR(X) N VR(Y). disappears suddenly.

Since a triangle consists of a fadg, three edges;(i = This discontinuity can be solved by adding two more
1,2,3) and three vertice®; (i = 1,2, 3), 3D space around the constraints on both end points of the edge when it 8R(V).
triangle is separated into 7 Voronoi regions. Finally, the algorithm to pick up pairs of points to be
Casel : The edge is iIVR(F) constrained is described as in Algorithm 1-4.

The closest point jumps from one of end points of the edge toAlgorithm 1 decomposes interaction between polyhedra,
the other when the edge and the triangle are almost paraltél. and O, into interactions between triangles. Function
Therefore, two pairs(Vy, V) and (V», V) are constrained, DISTANCE_.BOUND(O;, O,, d;) filters out such pairs of
whereV,; andV, are end points of the edgéu, b) denotes a triangles that distances between triangles are bigger ¢han
pair of points,a andb and V! (i = 1,2) denotes a projection This function is very important to improve efficiency andainc



VR(V) Algorithm 3 PAIRS.EDGE TRIANGLE(E, 7)

pairs < ()
forall fe{F,&,E,E,V1,Vs,Vs3} do
S —VORONOILCLIP(E, VR(f))
if S then
pairs «— pairs U PAIRSSEGMENT.FEATURE(S,
f)
end if
end for
return pairs

VPV, E)

VR(E)

Fig. 7. Appearance/disappearance of a constraint

Algorithm 1 PAIRS.POLYHEDRA(O1, O5)
pairs «— ()
triangle_pairs «—DISTANCE.BOUND(O;, O, d;)
for all (71,73) € triangle_pairs do
pairs «— pairs U PAIRSTRIANGLES(7, 73)
end for
return pairs

Algorithm 4 PAIRS. SEGMENT.FEATURESS, f)
pairs «— ()
for all YV eVERTICES(S) do
pairs — pairs U {CLOSESTPAIR(V, f)}
end for
if fe{V1,Vs,V5} then
pairs «— pairs U {CLOSESTPAIR(S, f)}
else if f € {&1,&9, &3} then
if not PARALLEL(S, f) then
pairs — pairs U {CLOSESTPAIR(S, f)}
end if
end if
return pairs

be implemented easily using techniques for collision deiac
such as OBB-Tree.

Algorithm 2 PAIRS TRIANGLES(7;, T3)
pairs < ()
for all £&; c¢EDGES(3) do
pairs < pairs U PAIRSEDGETRIANGLE(E;, T7)
end for
for all & €EDGES(;) do
pairs < pairs U PAIRSEDGETRIANGLE(E:, 72)
end for
return pairs

D. Sources of discontinuous robot velocities

Solving Problem 2 is equivalent to finding the closest
point between the desired task velocity and the space
of admissible task velocities; (light blue region in Fig.8).
The robot velocities which satisfy all the linear inequalit
constraints(yellow regions in Fig.8) exist in the convex-su
space(orange region in Fig.8). It is projected istp by J.
And when the task is defined in the lower dimensional space

Algorithm 2 decomposes interaction between trianglgs, than the robot velocity space, a point in the task velociycsp
and 7; into interactions between an edge and a triangleorresponds to the subspace in the robot velocity sSaged
Function EDGET) returns the set of edges that comp@se region in Fig.8).

Algorithm 3 decomposes interaction between an edge and &here are three kinds of sources of discontinuous robot
triangle into interactions between a line segment and aghta velocities.

A function VORONOLCLIP(, VR(f)) clips a part of& 1) If a constraint changes discontinuously, the shap§:of
which is in VR(f). also does. As the result, the robot velocity might change

Algorithm 4 generates pairs of points to be constrained.
Function VERTICESS) returns the set of end points &f, a
function PARALLEL(S;, S2) checks two segments are parallel 2)
or not, and a function CLOSESFAIR(A, B) computes the
closest points between geometric elemefitand B.

After pairs are computed,velocity damperis inserted
between each pair of points if the distance between those
points is smaller tham.

In this procedure, constraints are generated on all endgoin
of line segments. Since end points are shared by several line
segments, duplicated pairs are generated. A duplicated pai
is also generated when the closet point coincides with one of
the end points. Therefore, we need to check duplicationrbefo
adding a new pair.

discontinuously. This source can be removed using the
constraint generation method described in this section.
Even all the constraints move continuously in the robot
velocity space, discontinuous robot velocities might be
generated when the task is defined in the lower di-
mensional space than the robot velocity space. This
situation is similar with solving inverse kinematics at
singular postures. SR-Inverse[18] is proposed to prevent
the robot velocity from going to infinity. The same thing
can be realized by modifying the objective function of
Problem 2 as follows:

1J-(a)g — 7I1* + Alldl® (4)

where \ is a positive coefficient for adjusting strength



of the penalty for big velocities. The added second terng "4 =01 &7
put a damping effect to the robot velocity and removeg 206
discontinuities. A &

3) Every point inS; is the optimal solution of Problem 2. %3
A point in §; might be chosen discontinuously by the 0.4
optimization algorithm. The modified objective function

. ; ; . A ds = 0.2
changesS; into a point and this discontinuity is also %570 20 30 40 00 10 20 30_ 40
removed. _ Time]s] Time[s]
700 700
& E
Task velocity space Robot velocity space g =01
A A = 3
Si J 2.0.1 £.02
/—_\ 5 >
£ £-03
e 3
0.2 Z-04
_ _ 00 10 20 30 40 00 10 20 30 40
Jq ~ imef[s] ime[s]
7 J !
Fig. 10. Improved results of an example #1
T
0 o 12 24

Fig. 8. Mappings between velocity spaces

V. EXAMPLES
A. Collision Avoidance of a Single Object 36

48 60
The proposed method is applied to the example shou
in Section IlI-A to check that a collision avoidance motior
with continuous velocity can be generated. Fig. 9 shov
snapshots of the generated motion and Fig. 10 shows res
corresponding to Fig. 4. The minimum distance converges

ds and there is no collision. And linear velocity alodgaxis

and angular velocity changes in continuous way. In this cas.

a constraint is generated whén enters intoinfluence zone Fig. 11.
and one more constraint is added whén does.

Snapshots of an interaction between a concave sirapa torus

t=0.0 t=1.0 t=2.0 t=3.0 pairs of triangles isl2 x 512 = 6144 whereas it is less than
100. Bottom left of Fig. 12 shows the number of constraints.

c C It changes along time since they are activated only if the
1 2 . . . .
| | | | distance between points is smaller thén In this example,
117 constraints are generated at a maximum. Bottom right of
Fig. 9. Snapshots of interaction between a rectangle andrthend Fig. 12 shows the computational time. It is measured on a
PC equipped with Intel Core 2 Duo 2.13[GHz]. It is almost
Fig. 11 shows another example which includes a concalRéoportional to the number of pairs of triangles.
shape and a shape with a hole. A “L" shape object which . i ,
consists of 12 triangles passes through a torus which dasnsf Collision Avoidance of a Humanoid Robot
of 512 triangles. It is impossible for existing methods tarpl  The proposed method is also applied to a humanoid robot
a collision free motion between these kinds of shapes withddRP-2. The task of the robot is to move its left hand to
approximations. the specified position using its whole body. In addition to
Top left of Fig. 12 shows the minimum distance. Theonstraints for collision avoidance, three kinds of caaists
distance between non-strictly convex objects is contistand are added. (1) A relative transformation of feet is kept whil
piecewise smooth. Since the closest points are constraimedching since the robot stands on both legs. (2) A horitonta
at any time, the condition in Eq.(3) holds and the minimumosition of the center of mass is kept to keep static balakee(
distance between objects never become smaller dhaffop assume the center of mass is above the support polygon at
right of Fig. 12 shows the number of pairs of triangles whicthe initial configuration.). (3) Joint angles are kept inithe
are found by DISTANCEBOUND(). The total number of movable ranges. As a result, this collision-free reachask t



g0.4 d; =0.4 g whereq;r andgq; are physical upper bound and lower bound
ué 580 of joint angle andv;.r and v; are those of joint velocity of
% g jth joint respectively. In this example;,, ¢, and £ are set to
Q03 %40 0.2[rad], 0.02[rad] and 0.3[rad/s] respectively.
3 Fig. 13 shows snapshots of the generated motion. The frame
ds = 0.2 § 1 shows an initial configuration. A trapezoid in front of the
0,20 >0 70“ 20 2 00 50 10 %0 robot is an obstacle and a small box close to the robot foot
Time[s] Time[s]  indicates the target position of the hand. At the frame 2, the
£120 — left upper arm comes close to the obstacle, and constraints f
g %12 collision avoidance become active. The left shoulder asthe
§ 20 E obstacle from the frame 2 to 4 and the head directs upward to
eg = avoid collision in the frame 5. We can see that the whole
B 40 § 6 body is fully used to avoid collision and achieve the task
= = simultaneously. If we don'’t include Inequality (5b), thdtle
5 0 g 0 shoulder collides with the table as shown in the frame 3'.
= 0 20 40 Timefs% S 20 40 Time?so]
1(t=0) « 2t=47) y 3(t=8.7)
Fig. 12. Results of an example #2 » Sf; gf(
[ i
can be achieved by solving the following QP problem: ,‘/" .i/ [/ -
[ / o —
minimize | Thanad — pII”> + A4l (5a) - - i
PR — 1
subject to (G| s, m) > —gH, 4(t=11.6) 5(t=14.5) 3 »
| 7 — UWg ;‘,\ (V -/}’ <
g TSt ) 2 e P
eret‘.] B ) ,?I )(' ‘5‘ [;J,(/,
comq = 0, (5d) lf/ S P —" y ;‘w;
vmaz;(q;) > d; > vming(q;), - = -
for j € {1,...,n40r}. (5€)

Fig. 13. Snapshots of “pick up an object under the table” nmotio

Jhands Jeoms Jfeer @Nd Jyis, are Jacobian matrices for
the hand position(3DOF), for the horizontal position of the Fig 14 shows the number of constraints(left) and the com-
center of mass(2DOF), for the relative transformation b%utational time(right). The average computational timedioe
tween feet(6DOF) and for the distance betweém pair of  step is about 100[ms] on the same PC with previous examples.
points(1DOF) respectively. Inequality (5b) defines geoioet we can get this motion(the total duration is 14[s]) in 28[s]
constraints to avoid collision where. is the number of pairs \when we select 50[ms] as the time step. The computational
of points to be constrained. In this exampig,d, and¢ are  time js not so long in this case since shape of the obstacle is
set to 0.05[m], 0.03[m] and 0.5[m/s] respectively. EQelic) very simple. It is expected that it becomes longer dragyic&l
defines a kinematic constraint to keep the relative transder {he number of obstacles and complexity of shapes increfse. |
tion between feet and Equality (5d) does a dynamic one fi®e number of pairs of triangles is too many to get a solution
keep the center of mass on a vertical line. Inequality (Sgjithin reasonable time, we can reduce the number of pairs
defines kinematic constraints for joint limits, wheng,; is  py using thininfluence zoner simplified shapes. Even in the

joint angle comes close to its limit. The limit is also cormgulit

by velocity damper V. CONCLUSION

In this paper, we proposed a local method for collision

(q;,r —qj) —qs | N avoidance between non-strictly convex polyhedra with con-
vmaz;(g;) = SW if g —q; < aq (6) tinuous velocities. The continuity is achieved by deconmpps
ot otherwise the interaction between polyhedra into a set of interastion
J between line segments clipped by Voronoi regions and tri-
(G —q7)—q angles and constraining several pairs of points on those
RN B S —q; <4, ) geometrical elements. These pairs of points can be used to
vmin;(q;) = _ 4= 4s therwi define constraints in other collision avoidance methods lik
v otherwise

J [9].



The number of constraints

1200

) (12]
£ 600
800 5
£ (13]
E
400 g 300
2 [14]
0 E o
0 4 8 12 O 0 8 12
Time[s] Time[s] [15]
Fig. 14. Results of a picking up motion example
[16]

In case of a humanoid robot, dynamic stability of the robot
is a very critical issue. But it is not guaranteed by our mdthg17]
since ZMP [19] is not constrained directly. A generated ooti
can be stable at least if it is executed with sufficiently $mal
speed since the center of mass is constrained above itsrsuppe]
polygon. In order to get a fast and dynamically stable motion

we are trying to use the motion as an initial path of an
optimization method. [19]
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