
A Local Collision Avoidance Method
for Non-strictly Convex Polyhedra

Fumio Kanehiro∗, Florent Lamiraux†, Oussama Kanoun†, Eiichi Yoshida∗ and Jean-Paul Laumond†

IS/AIST-ST2I/CNRS Joint Japanese-French Robotics Laboratory(JRL)
∗Intelligent Systems Research Institute, National Institute of Advanced Industrial Science and Technology(AIST)

Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 Japan
Email: {f-kanehiro, e.yoshida}@aist.go.jp
†LAAS-CNRS, University of Toulouse

7 Avenue du Colonel Roche, 31077 Toulouse, France
Email: {florent, okanoun, jpl}@laas.fr

Abstract— This paper proposes a local collision avoidance
method for non-strictly convex polyhedra with continuous veloc-
ities. The main contribution of the method is that non-strictly
convex polyhedra can be used as geometric models of the robot
and the environment without any approximation. The problem
of the continuous interaction generation between polyhedra is re-
duced to the continuous constraints generation between polygonal
faces and the continuity of those constraints are managed by the
combinatorics based on Voronoi regions of a face. A collision-free
motion is obtained by solving an optimization problem defined by
an objective function which describes a task and linear inequality
constraints which do geometrical constraints to avoid collisions.
The proposed method is examined using example cases of simple
objects and also applied to a humanoid robot HRP-2.

I. I NTRODUCTION

Detecting and avoiding collisions is fundamental for the
development of robots that can be safely operated in human
environments. This issue has given rise to contributions in
the 1980’s in the context of robotic manipulators. One of the
most famous and most used contribution in this domain is
certainly [1]. [1] proposes a method which plans a motion
by minimizing an error between a desired velocity and the
planned velocity under inequality constraints to avoid colli-
sion. The robot and the environment must consists of strictly
convex objects. [2] extends this method to avoid local minima
by modifying the task description in heavily cluttered environ-
ment. [3] proposes another approach for avoiding collisionby
following the distance gradient. The robot is approximatedby
a set of strictly convex objects (ellipsoids).

Recent developments of humanoid robots have made the
issue of collision detection and avoidance very critical again.
[4] proposes a path planning method which computes dy-
namically stable and collision-free trajectories. It prepares
a set of statically stable postures in advance and finds a
path by exploring it with RRT-connect[5]. And the path is
transformed into a dynamically stable trajectory by applying
a dynamics filter[6]. [7] proposes a fast method to ensure that
there is no self-collision in a trajectory. Shapes of the robot
are approximated by convex hulls and the minimum distances
between them are tracked using V-Clip[8]. [9] proposes a local
collision avoidance method using repulsion fields defined by

Fig. 1. “Pick up an object under the table” example

the minimum distance. [10] combines three methods to detect
self-collisions online, (1) table look-up to detect self-collisions
between adjacent joints and (2) reduction of pairs of links to
be checked using heuristics, and (3) collision check using ap-
proximated shapes by convex hulls. [11] approximates shapes
by spheres and swept sphere lines and used the minimum
distances between them to avoid self-collision. [12] computes
a strictly convex bounding volume called STP-BV by patching
spheres and toruses for each body of a humanoid robot and
builds collision-free postures.

Many works have focused on approximating the robot by
strictly convex objects but to our knowledge, very few has
been done to deal with non-strictly convex objects without
geometric approximation.

In this paper, we extend the method described in [1] to
non-necessarily convex polyhedral objects, in such a way that
the resulting velocity of the robot is continuous. The basic
framework is same as in [1]. The robot velocity is computed
by minimizing difference between the desired task veloc-
ity and the planned one under linear inequality constraints
implied by pairs of objects close to each other. The main



difference is the way of generating constraints. In the case
of strictly convex objects, one constraint over the velocity
of the closest points between two objects is enough. The
minimum distance and the closest points between non-strictly
convex objects can be computed using efficient algorithms
and robust implementations[13, 14, 15, 16]. But performing
collision avoidance by applying a linear inequality constraint
over the velocity between the closest points might result in
discontinuous velocities for the objects. Because the closest
points between two strictly convex objects move continuously
whereas the closest points between non-strictly convex ob-
jects do not. If one object is a robot body, discontinuous
velocity cannot be applied. So in the case of polyhedra,
several constraints are generated for each pair of objects unlike
the method in [1]. Our method reduces the problem of the
continuous interaction generation between polyhedra to the
continuous constraints generation between faces and manages
the continuity of those constraints using the combinatorics
based on Voronoi regions of a face.

The paper is organized as follows. In section II, we recall
Faverjon and Tournassoud’s method for strictly convex objects.
In section III, we extend the method to make it possible
to accept polyhedra. In section IV, the extended method
is examined using example cases of simple objects and a
humanoid robot HRP-2[17]. In section V, we summarize and
conclude the paper.

II. A LOCAL METHOD FOR STRICTLY CONVEX OBJECTS

A. Strictly convex objects

First, let us recall the following definition.
Definition: Strictly convex object. LetO be a closed subset of
R

3 and int(O) be the interior of (greater open subset of)O.
O is strictly convex if and only if

∀A ∈ O,∀B ∈ O,∀λ ∈ R, 0 < λ < 1, λA+(1−λ)B ∈ int(O)

For instance, a convex polyhedron is not strictly convex. If
two points on a facet are selected asA andB, the line segment
linking them is not inside the interior of the polyhedron but
on the facet.

B. Outline of the method

Let us recall the principle of Faverjon and Tournassoud’s
method [1]. LetO1 andO2 be two strictly convex objects.
For ease of explanation, let’s considerO1 as a movable object
andO2 as a static one. Letp1 andp2 denote the closest points
betweenO1 andO2 andd does the distance‖p1−p2‖ between
them (Fig. 2). SinceO1 andO2 are strictly convex objects,
p1 andp2 move continuously onO1 andO2 boundaries and
d is continuously differentiable.

If d is smaller than a threshold calledinfluence distanceand
denoted bydi, the following constraint is defined for velocity
of d:

ḋ ≥ −ξ
d− ds

di − ds

(1)

where ξ is a positive coefficient for adjusting convergence
speed,ds(< di) is a positive value calledsecurity distance.

Fig. 2. Faverjon and Tournassoud’s method

Inequality (1) is calledvelocity damperand it expresses that
d must not decrease too fast when it is smaller thandi. As
the result,d never be smaller thands. The region whered
is smaller thandi is called influence zone. Note thatḋ must
satisfy Inequality (1) whenp1 enters influence zone. If it
doesn’t,ḋ is constrained discontinuously. Therefore, the value
of ξ must be tuned according to applications.

ḋ is computed by the following equation.

ḋ = (ṗ1|n)

wheren is the unit vector(p1 − p2)/d and notation(u|v)
refers to the inner product of vectorsu andv.

Let q denote the configuration anḋq the velocity of the
robot. The velocity ofp1 can be expressed as:

ṗ1 = J(q,p1)q̇

whereJ(q,p1) is a Jacobian matrix ofO1 atp1. Inequality (1)
thus becomes a linear inequality constraint over the robot
velocity q̇:

(q̇|J(q,p1)
T n) ≥ −ξ

d− ds

di − ds

A task is described by the control of a measure of the
problem, a vectorτ (q) in a task space. The task is achieved by
finding q which satisfiesτ (q) = 0. Given a desired task ve-
locity τ̇ , the robot velocity to achieve the task while avoiding
collision is computed by solving the following optimization
problem overq̇:

min
q̇

‖Jτ (q)q̇ − τ̇‖2

subject to (q̇|J(q,p1)
T n) ≥ −ξ

d− ds

di − ds

.
(2)

whereJτ (q) is a Jacobian matrix ofτ (q) at q.
Of course, considering each body of the robot and several

obstacles yields several inequality constraints.



C. Lower bound of the distance betweenO1 andO2

If we denote byd(t) the minimum distance betweenO1

andO2 along time,d(t) is continuously differentiable. If a
condition on the derivativėd of d:

∀t > 0, ḋ(t) ≥ −ξ
d(t)− ds

di − ds

and the initial conditiond(0) ≥ ds are satisfied, then the
following condition is derived.

∀t > 0, d(t) ≥ ds + (d(0)− ds)e
−

ξ
di−ds

t
> ds (3)

This proves that the distance between objects constrained by
velocity dampernever be smaller thands.

III. A L OCAL METHOD FORNON-STRICTLY CONVEX

POLYHEDRA

A. A discontinuous case of non-strictly convex polyhedra

If we apply Faverjon and Tournassoud’s method to non-
strictly convex polyhedra, the robot velocity changes discon-
tinuously since the closest points between two objects move
discontinuously. Fig. 3 and Fig. 4 show snapshots and results
of an example case. In this example, a rectangle(0.2×0.8[m])
moves above an horizontal floor. The task of the rectangle
is to move its centerpc(q) from (0.0, 0.7)T [m] to pg =
(0.0,−1.0)T [m]. Parameters ofvelocity damper, di, ds andξ
are set to 0.4[m], 0.2[m] and 0.5[m/s] respectively.τ̇ is given
by:

τ̇ = δτmax

pg − pc(q)

‖pg − pc(q)‖

whereδτmax is set to 0.2.
Top left picture of Fig. 4 shows the minimum distance

between the rectangle and the floor. Top right picture displays
the vertical position of the rectangle. Bottom left and right
pictures show the linear velocity alongY axis and the angular
velocity respectively. One of vertices of the bottom edge of
the rectangle,C1 enters intoinfluence zoneat t = 0.25. But
the velocity ofC1 is not affected since its velocity satisfies
Inequality (1). Fromt = 0.5, the object velocity is affected
by velocity damper. The center must move downward with the
constant speed to achieve the task but the admissible speed of
C1 is limited. As a result, the object rotates. Aroundt = 2.0,
the bottom edge of the rectangle becomes almost parallel
to the ground, the closest points start to oscillate between
C1 and C2. The object rotates clockwise to achieve the task
whenC1 is constrained and does counterclockwise whenC2

is constrained. As a result, the minimum distance becomes
smaller thands and the rectangle eventually collides with the
floor at t = 3.0.

The collision-freeness is not assured anymore when the
robot bodies and obstacles are not strictly convex as shown.
The oscillation of the closest points causes discontinuous
changes ofp1 andn in Problem (2) and it leads to disconti-
nuity in the solution of Problem (2) as we can see in Fig. 4.

Fig. 3. Example of a discontinuous constraint

Fig. 4. Results of the example

B. Decomposition of interaction between polyhedra

The goal of this section is to define the inequality constraints
in such a way thatq̇ remains continuous. To cope with this
issue, we propose to keep track of several pairs of points that
move continuously on the facets of the polyhedra composing
the obstacles and robot.

Discontinuity of constraints happens in the following cases.

1) a new constraint appears suddenly
2) a constraint disappears suddenly

The closest points jump discontinuously if these two cases
happen at the same time.

In order to prevent these cases and generate a collision-
free motion with continuous velocities, pairs of points must
be selected by complying with the following rules.

1) the closest points between a robot body and an obstacle
must be constrained to guarantee that the robot never
collides.

2) the potential closest points must have been constrained
before they become the closest points.

3) the closest points must continue to be constrained even
if they are not closest anymore.

Let us decompose the interaction between polyhedra into a
set of interactions between faces. Polygonal faces are assumed
to be decomposed into triangles1.

1In the following, featuresof a triangle are the triangular (open)face, the
three edges and the three vertices.



The continuous motion between polyhedra,O1 and O2

can be achieved if each triangle ofO1 moves with continu-
ous velocity against each triangle ofO2. Therefore we can
focus on an interaction between triangles,T1 and T2. The
continuous motion betweenTi and Tj can be achieved if
each edge ofT1 moves with continuous velocity againstT2
and each edge ofT2 moves with continuous velocity against
T1. Finally the interaction between polyhedra is decomposed
into interactions between an edge and a triangle as shown
in Fig. 5. It means that the continuous interaction between
polyhedra can be achieved if we can find a method to realize
a continuous interaction between an edge and a triangle. In the
same way, the continuous interaction between a robot and the
environment which consists of several polyhedra respectively
can be achieved if each polyhedron of the robot moves in
continuous way against each polyhedron of the environment.

Fig. 5. Decomposition of interaction

C. Constraint generation using Voronoi regions

Next, let us find pairs of points to be constrained to realize
the continuous interaction between an edge and a triangle.
The pairs of points to be constrained depend on the Voronoi
regions in which the edge lies. The Voronoi region is defined
as follows.
Definition: Voronoi regionVR(X) for featureX. A Voronoi
region associated with a featureX of a triangle is a set of
points that are closer toX than any other feature.

The Voronoi plane is also defined as follows.
Definition: Voronoi planeVP(X,Y ) between neighboring
features X and Y . VP(X,Y ) is the plane containing
VR(X) ∩ VR(Y ).

Since a triangle consists of a faceF , three edgesEi(i =
1, 2, 3) and three verticesVi(i = 1, 2, 3), 3D space around the
triangle is separated into 7 Voronoi regions.
Case1 : The edge is inVR(F)
The closest point jumps from one of end points of the edge to
the other when the edge and the triangle are almost parallel.
Therefore, two pairs,(V1,V

′

1) and (V2,V
′

2) are constrained,
whereV1 andV2 are end points of the edge.(a, b) denotes a
pair of points,a and b andV ′

i(i = 1, 2) denotes a projection

of Vi ontoF along its normal vector. Any point on the edge
can be the closest point when the edge and the triangle are
parallel. But we don’t need any additional pair since both end
points are already constrained and they are also the closest
points.
Case2 : The edge is inVR(E)
The closest point jumps from one of end points of the edge
to the other when the edge andE are almost parallel. So two
pairs, (V1,V

′

1) and (V2,V
′

2) are constrained, whereV ′

i(i =
1, 2) is a projected point ofVi onto E . The closest points
between the edge andE coincides with one of two pairs in
some cases, but doesn’t in other cases. Therefore, one more
pair for the closest points is added. Three pairs are createdas
a consequence.
Case3 : The edge is inVR(V)
The closest point moves continuously on the edge. So the pair
of the closest points is constrained.

Fig. 6. Constraints generated between an edge and a triangle

So far, we considered cases the edge lies in one of the
Voronoi regions of the triangle. But in most cases, the edge
may move to another Voronoi region and lie in several Voronoi
regions at the same time. Therefore, the edge is decomposed
into several line segments again by clipping it with Voronoi
planes.

Before this decomposition, we need to confirm that conti-
nuity of constraints is kept when an edge goes into another
Voronoi region. When the edge moves betweenVR(F) and
VR(E), continuity of constraints are maintained since end
points of decomposed line segments are onVP(F , E) and
they produce the same constraints. However, in other cases,
constraints may appear or disappear suddenly. An example is
shown in Fig. 7. The edge is moving fromVR(V) to VR(E).
When an end point of the edge touchesVP(V, E) and a new
constraint appears suddenly. In the reverse case, the constraint
disappears suddenly.

This discontinuity can be solved by adding two more
constraints on both end points of the edge when it is inVR(V).

Finally, the algorithm to pick up pairs of points to be
constrained is described as in Algorithm 1-4.

Algorithm 1 decomposes interaction between polyhedra,
O1 and O2 into interactions between triangles. Function
DISTANCE BOUND(O1, O2, di) filters out such pairs of
triangles that distances between triangles are bigger thandi.
This function is very important to improve efficiency and it can



Fig. 7. Appearance/disappearance of a constraint

Algorithm 1 PAIRS POLYHEDRA(O1, O2)
pairs← ∅
triangle pairs←DISTANCE BOUND(O1, O2, di)
for all (T1, T2) ∈ triangle pairs do

pairs← pairs ∪ PAIRS TRIANGLES(T1, T2)
end for
return pairs

be implemented easily using techniques for collision detection
such as OBB-Tree.

Algorithm 2 PAIRS TRIANGLES(T1, T2)
pairs← ∅
for all E2 ∈EDGES(T2) do

pairs← pairs ∪ PAIRS EDGE TRIANGLE(E2, T1)
end for
for all E1 ∈EDGES(T1) do

pairs← pairs ∪ PAIRS EDGE TRIANGLE(E1, T2)
end for
return pairs

Algorithm 2 decomposes interaction between triangles,T1
and T2 into interactions between an edge and a triangle.
Function EDGE(T ) returns the set of edges that composeT .

Algorithm 3 decomposes interaction between an edge and a
triangle into interactions between a line segment and a triangle.
A function VORONOICLIP(E , VR(f)) clips a part ofE
which is inVR(f).

Algorithm 4 generates pairs of points to be constrained.
Function VERTICES(S) returns the set of end points ofS, a
function PARALLEL(S1, S2) checks two segments are parallel
or not, and a function CLOSESTPAIR(A, B) computes the
closest points between geometric elementsA andB.

After pairs are computed,velocity damperis inserted
between each pair of points if the distance between those
points is smaller thandi.

In this procedure, constraints are generated on all end points
of line segments. Since end points are shared by several line
segments, duplicated pairs are generated. A duplicated pair
is also generated when the closet point coincides with one of
the end points. Therefore, we need to check duplication before
adding a new pair.

Algorithm 3 PAIRS EDGE TRIANGLE(E , T )
pairs← ∅
for all f ∈ {F , E1, E2, E3,V1,V2,V3} do
S ←VORONOI CLIP(E , VR(f))
if S then

pairs ← pairs ∪ PAIRS SEGMENT FEATURE(S,
f )

end if
end for
return pairs

Algorithm 4 PAIRS SEGMENTFEATURE(S, f )
pairs← ∅
for all V ∈VERTICES(S) do

pairs← pairs ∪ {CLOSESTPAIR(V, f )}
end for
if f ∈ {V1,V2,V3} then

pairs← pairs ∪ {CLOSESTPAIR(S, f )}
else if f ∈ {E1, E2, E3} then

if not PARALLEL(S, f ) then
pairs← pairs ∪ {CLOSESTPAIR(S, f )}

end if
end if
return pairs

D. Sources of discontinuous robot velocities

Solving Problem 2 is equivalent to finding the closest
point between the desired task velocitẏτ and the space
of admissible task velocitiesSτ̇ (light blue region in Fig.8).
The robot velocities which satisfy all the linear inequality
constraints(yellow regions in Fig.8) exist in the convex sub-
space(orange region in Fig.8). It is projected intoSτ̇ by Jτ .
And when the task is defined in the lower dimensional space
than the robot velocity space, a point in the task velocity space
corresponds to the subspace in the robot velocity spaceSq̇(red
region in Fig.8).

There are three kinds of sources of discontinuous robot
velocities.

1) If a constraint changes discontinuously, the shape ofSτ̇

also does. As the result, the robot velocity might change
discontinuously. This source can be removed using the
constraint generation method described in this section.

2) Even all the constraints move continuously in the robot
velocity space, discontinuous robot velocities might be
generated when the task is defined in the lower di-
mensional space than the robot velocity space. This
situation is similar with solving inverse kinematics at
singular postures. SR-Inverse[18] is proposed to prevent
the robot velocity from going to infinity. The same thing
can be realized by modifying the objective function of
Problem 2 as follows:

‖Jτ (q)q̇ − τ̇‖2 + λ‖q̇‖2 (4)

whereλ is a positive coefficient for adjusting strength



of the penalty for big velocities. The added second term
put a damping effect to the robot velocity and remove
discontinuities.

3) Every point inSq̇ is the optimal solution of Problem 2.
A point in Sq̇ might be chosen discontinuously by the
optimization algorithm. The modified objective function
changesSq̇ into a point and this discontinuity is also
removed.

Fig. 8. Mappings between velocity spaces

IV. EXAMPLES

A. Collision Avoidance of a Single Object

The proposed method is applied to the example shown
in Section III-A to check that a collision avoidance motion
with continuous velocity can be generated. Fig. 9 shows
snapshots of the generated motion and Fig. 10 shows results
corresponding to Fig. 4. The minimum distance converges to
ds and there is no collision. And linear velocity alongY axis
and angular velocity changes in continuous way. In this case,
a constraint is generated whenC1 enters intoinfluence zone
and one more constraint is added whenC2 does.

Fig. 9. Snapshots of interaction between a rectangle and theground

Fig. 11 shows another example which includes a concave
shape and a shape with a hole. A “L” shape object which
consists of 12 triangles passes through a torus which consists
of 512 triangles. It is impossible for existing methods to plan
a collision free motion between these kinds of shapes without
approximations.

Top left of Fig. 12 shows the minimum distance. The
distance between non-strictly convex objects is continuous and
piecewise smooth. Since the closest points are constrained
at any time, the condition in Eq.(3) holds and the minimum
distance between objects never become smaller thands. Top
right of Fig. 12 shows the number of pairs of triangles which
are found by DISTANCEBOUND(). The total number of

Fig. 10. Improved results of an example #1

Fig. 11. Snapshots of an interaction between a concave shapeand a torus

pairs of triangles is12 × 512 = 6144 whereas it is less than
100. Bottom left of Fig. 12 shows the number of constraints.
It changes along time since they are activated only if the
distance between points is smaller thandi. In this example,
117 constraints are generated at a maximum. Bottom right of
Fig. 12 shows the computational time. It is measured on a
PC equipped with Intel Core 2 Duo 2.13[GHz]. It is almost
proportional to the number of pairs of triangles.

B. Collision Avoidance of a Humanoid Robot

The proposed method is also applied to a humanoid robot
HRP-2. The task of the robot is to move its left hand to
the specified position using its whole body. In addition to
constraints for collision avoidance, three kinds of constraints
are added. (1) A relative transformation of feet is kept while
reaching since the robot stands on both legs. (2) A horizontal
position of the center of mass is kept to keep static balance(We
assume the center of mass is above the support polygon at
the initial configuration.). (3) Joint angles are kept in their
movable ranges. As a result, this collision-free reaching task



Fig. 12. Results of an example #2

can be achieved by solving the following QP problem:

minimize ‖Jhandq̇ − ṗ‖2 + λ‖q̇‖2 (5a)

subject to (q̇|JT
distj

n) ≥ −ξ
dj − ds

di − ds

,

for j ∈ {1, · · · , nc}, (5b)

Jfeetq̇ = 0, (5c)

Jcomq̇ = 0, (5d)

vmaxj(qj) ≥ q̇j ≥ vminj(qj),

for j ∈ {1, ..., ndof}. (5e)

Jhand,Jcom,Jfeet and Jdistj
are Jacobian matrices for

the hand position(3DOF), for the horizontal position of the
center of mass(2DOF), for the relative transformation be-
tween feet(6DOF) and for the distance betweenjth pair of
points(1DOF) respectively. Inequality (5b) defines geometric
constraints to avoid collision wherenc is the number of pairs
of points to be constrained. In this example,di, ds and ξ are
set to 0.05[m], 0.03[m] and 0.5[m/s] respectively. Equality (5c)
defines a kinematic constraint to keep the relative transforma-
tion between feet and Equality (5d) does a dynamic one to
keep the center of mass on a vertical line. Inequality (5e)
defines kinematic constraints for joint limits, wherendof is
the number of joints. The joint velocity is limited when the
joint angle comes close to its limit. The limit is also computed
by velocity damper:

vmaxj(qj) =







ξ
(q+

j − qj)− qs

qi − qs

if q+

j − qj ≤ qi,

v+

j otherwise
(6)

vminj(qj) =







−ξ
(qj − q−j )− qs

qi − qs

if qj − q−j ≤ qi,

v−

j otherwise
(7)

whereq+

j andq−j are physical upper bound and lower bound
of joint angle andv+

j and v−

j are those of joint velocity of
jth joint respectively. In this example,qi, qs and ξ are set to
0.2[rad], 0.02[rad] and 0.3[rad/s] respectively.

Fig. 13 shows snapshots of the generated motion. The frame
1 shows an initial configuration. A trapezoid in front of the
robot is an obstacle and a small box close to the robot foot
indicates the target position of the hand. At the frame 2, the
left upper arm comes close to the obstacle, and constraints for
collision avoidance become active. The left shoulder avoids the
obstacle from the frame 2 to 4 and the head directs upward to
avoid collision in the frame 5. We can see that the whole
body is fully used to avoid collision and achieve the task
simultaneously. If we don’t include Inequality (5b), the left
shoulder collides with the table as shown in the frame 3’.

Fig. 13. Snapshots of “pick up an object under the table” motion

Fig. 14 shows the number of constraints(left) and the com-
putational time(right). The average computational time for one
step is about 100[ms] on the same PC with previous examples.
We can get this motion(the total duration is 14[s]) in 28[s]
when we select 50[ms] as the time step. The computational
time is not so long in this case since shape of the obstacle is
very simple. It is expected that it becomes longer drastically if
the number of obstacles and complexity of shapes increase. If
the number of pairs of triangles is too many to get a solution
within reasonable time, we can reduce the number of pairs
by using thininfluence zoneor simplified shapes. Even in the
latter case, simplified shapes can be non-strictly convex.

V. CONCLUSION

In this paper, we proposed a local method for collision
avoidance between non-strictly convex polyhedra with con-
tinuous velocities. The continuity is achieved by decomposing
the interaction between polyhedra into a set of interactions
between line segments clipped by Voronoi regions and tri-
angles and constraining several pairs of points on those
geometrical elements. These pairs of points can be used to
define constraints in other collision avoidance methods like
[9].



Fig. 14. Results of a picking up motion example

In case of a humanoid robot, dynamic stability of the robot
is a very critical issue. But it is not guaranteed by our method
since ZMP [19] is not constrained directly. A generated motion
can be stable at least if it is executed with sufficiently small
speed since the center of mass is constrained above its support
polygon. In order to get a fast and dynamically stable motion,
we are trying to use the motion as an initial path of an
optimization method.

ACKNOWLEDGMENT

Researchers from LAAS-CNRS are partly supported by
the project ANR RNTL PerfRV2. We gratefully acknowledge
AEM Design, developer of a powerful QP solver, C-FSQP[20].

REFERENCES

[1] B. Faverjon and P. Tournassoud, “A Local Based Approach for Path
Planning of Manipulators With a High Number of Degrees of Freedom,”
in Proc. of IEEE International Conference on Robotics and Automation,
1987, pp. 1152–1159.

[2] C.Helguera and S.Zeghloul, “A Local-based Method for Manipulators
Path Planning in Heavy Cluttered Environments,” inProc. of Interna-
tional Conference on Robotics & Automation, 2000, pp. 3467–3472.

[3] M. Schlemmer and G. Gruebel, “A Distance Function and its Gradient
for Manipulator On-Line Obstacle Detection and Avoidance,” in Proc.
of International Conference on Advanced Robotics, 1997, pp. 427–432.

[4] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
Planning for Humanoid Robots Under Obstacle and Dynamic Balance
Constraints,” inProc. of International Conference on Robotics & Au-
tomation, 2001, pp. 692–698.

[5] J. James J. Kuffner and S. M. LaValle, “RRT-Connect: An Efficient Ap-
proach to Single-Query Path Planning,” inIn Proc. IEEE International
Conference on Robotics & Automation, 2000, pp. 995–1001.

[6] S.Kagami, F.Kanehiro, Y.Tamiya, M.Inaba, and H.Inoue, “AutoBalancer:
An Online Dynamic Balance Compensation Scheme for Humanoid
Robots,” in Proc. of the Fourth International Workshop on the Algo-
rithmic Foundations on Robotics(WAFR’00), 2000.

[7] J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and H. In-
oue, “Self-Collision Detection and Prevention for HumanoidRobots,” in
Proc. of International Conference on Robotics and Automation, 2002,
pp. 2265–2270.

[8] M.Mirtich, “VClip: Fast and robust polyhedral collision detection,”ACM
Transactions on Graphics, vol. 17, no. 3, pp. 177–208, 1998.

[9] L. Sentis and O. Khatib, “A Whole-Body Control Framework for Hu-
manoids Operating in Human Environments,” inProc. of International
Conference on Robotics and Automation, 2006, pp. 2641–2648.

[10] K. Okada and M. Inaba, “A Hybrid Approach to Practical Self Colli-
sion Detection System of Humanoid Robot,” inProc. of International
Conference on Intelligent Robots and Systems, 2006, pp. 3952–3957.

[11] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick, “Real-Time
Collision Avoidance with Whole Body Motion Control for Humanoid
Robots,” inProc. of International Conference on Intelligent Robots and
Systems, 2007, pp. 2053–2058.

[12] A. Escande, S. Miossec, and A. Kheddar, “Continuous gradient proxim-
ity distance for humanoids free-collision optimized-postures,” in Proc.
of International Conference on Humanoid Robots, 2007.

[13] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A Fast Procedure
for Computing the Distance Between Complex Objects in Three-
Dimensional Space,”IEEE Journal of Robotics and Automation, vol. 4,
no. 2, pp. 193–203, 1988.

[14] M. C. Lin and J. F. Canny, “A Fast Algorithm for Incremental Distance
Calculation,” inProceedings of the 1991 IEEE International Conference
on Robotics and Automation, 1991, pp. 1008–1014.

[15] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast Proximity
Queries with Swept Sphere Volumes,” inProc. of International Confer-
ence on Robotics and Automation, 2000, pp. 3719–3726.

[16] S. A. Ehmann and M. C. Lin, “Accelerated Proximity QueriesBetween
Convex Polyhedra By Multi-Level Voronoi Marching,” inProc. of
International Conference on Intelligent Robots and Systems, 2000, pp.
2101–2106.

[17] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata,
K. Akachi, and T. Isozumi, “Humanoid Robot HRP-2,” inProc. of IEEE
International Conference on Robotics and Automation, 2004, pp. 1083–
1090.

[18] Y.Nakamura and H.Hanafusa, “Inverse kinematic solutions with singu-
larity robustness for robot manipulator control,”ASME, Transactions,
Journal of Dynamic Systems, Measurement, and Control, vol. 108, pp.
163–171, 1986.

[19] M.Vukobratovíc and B.Borovac, “Zero-moment point –thirty five years
of its life,” International Journal of Humanoid Robotics, vol. 1, no. 1,
pp. 157–173, 2004.

[20] C. Lawrence, J. L. Zhou, and A. L. Tits,User’s Guide for CFSQP
Version 2.5: A C Code for Solving (Large Scale) Constrained Nonlinear
(Minimax) Optimization Problems, Generating Iterates Satisfying All
Inequality Constraints.


