
Fast Probabilistic Labeling of City Maps

Ingmar Posner and Mark Cummins and Paul Newman
Mobile Robotics Group,

Dept. Engineering Science

Oxford University

Oxford, UK

Email: {hip, mjc, pnewman}@robots.ox.ac.uk

Abstract— This paper introduces a probabilistic, two-stage
classification framework for the semantic annotation of urban
maps as provided by a mobile robot. During the first stage,
local scene properties are considered using a probabilistic bag-
of-words classifier. The second stage incorporates contextual
information across a given scene via a Markov Random Field
(MRF). Our approach is driven by data from an onboard camera
and 3D laser scanner and uses a combination of appearance-
based and geometric features. By framing the classification
exercise probabilistically we are able to execute an information-
theoretic bail-out policy when evaluating appearance-based class-
conditional likelihoods. This efficiency, combined with low order
MRFs resulting from our two-stage approach, allows us to
generate scene labels at speeds suitable for online deployment
and use. We demonstrate and analyze the performance of our
technique on data gathered over almost 17 km of track through
a city.

I. INTRODUCTION

This paper addresses the fast labeling of mobile robot

workspaces using a camera and a 3D laser scanner. We mo-

tivate this work by noting that, although contemporary online

mapping and simultaneous localization techniques using lidar

now produce compelling 3D geometric representations (a.k.a

maps) of a mobile robot’s workspace, these maps tend to be

geometrically rich but semantically impoverished. Our work

seeks to redress this shortcoming. Maps in the form of large

unstructured point clouds are meaningful to human observers,

but are of limited operational use to a robot. There is much to

be gained by having the robot itself upgrade the map to include

richer semantic information and to do so online. In particular,

the semantics induced by online segmentation and labeling

has an important impact on the action selection problem. For

example, the identification of terrain types with estimates of

their spatial extent has a clear impact on control. Similarly the

identification of buildings and their entrances has a central role

to play in mission execution and planning in urban settings.
In this paper we outline a probabilistic method which

achieves fast labeling of 3D point clouds by using a combina-

tion of appearance and geometric features. In particular we use

combined 3D range and image data to perform inference at two

distinct levels. Firstly, over local scales, classification is based

on the co-occurrence of appearance descriptors, which capture

both visual and surface orientation information. We frame this

classification problem in probabilistic terms, which allows the

implementation of a principled ”bail-out” policy to be invoked

when evaluating class conditional likelihoods, resulting in very

large computational savings. Secondly, at the scene-wide scale,

we use a Markov Random Field (MRF) to model the expected

Fig. 1. Classification results for a typical urban scene: the original image
(top left); segments classified as ’pavement/tarmac’ (top right); segments
classified as ’textured wall’ (bottom left); segments classified as ’vehicle’
(bottom right). The colour-coding is wrt. to ground-truth: green indicates a
correct label; red indicates a false negative.

relationships between patch labels and to thus incorporate the

rich prior information common to many parts of our man-made

environment. Our MRFs have a relatively low node-count, just

one node for each scene patch, yielding rapid inference.

II. RELATED WORK

Recently there has been a surge in the literature regarding

environment understanding within robotics, particularly as

available sensory data becomes richer and the limitations of

unannotated maps become more apparent. A variety of ma-

chine learning approaches to the problem have been explored,

with more recent approaches utilizing contextual as well as

local information to improve classification performance. In [1]

the authors classify 2D laser data into types of indoor scenes

using boosting. Contextual information was used explicitly

in [2] by way of a model based on relational Markov networks

to learn classifiers from segment-based representations of

indoor workspaces. More recently [3] introduced an approach

which takes into account spatial relationships between objects

and object parts in 3D. 3D laser data were used in [4],

where they were segmented to detect cars and classify terrain

using Graph Cut applied to a Markov Random Field (MRF)

formulation of the problem, an approach which was extended

by [5].



Particularly relevant to the work presented here are papers

which consider a combination of vision and laser data in an

outdoor setting. [6] considers the task of pedestrian- and vehi-

cle detection, using 2D laser data. In [7] a more sophisticated

inference framework based on Conditional Random Fields

was brought to bear on the vehicle detection problem, with

preliminary results also reported for multi-class labelling. 3D

laser data were combined with visual information in [8], which

used support vector machines for classification but did not

make use of contextual information.

The work presented here also leverages a combination of

laser data with vision. Our main contribution lies in the def-

inition of an efficient contextual inference framework, based

on a graph over plane patches rather than over measurements

(e.g. laser range data) directly. This yields substantial speed

increases over previous approaches. As an integral part of

this framework we further define a generative bag-of-words

classifier and describe an efficient inference procedure for it.

Finally, the work presented here further distinguishes itself

from related work by combining information from two compli-

mentary sensors – full 3D geometry and appearance. Thereby

our approach gains the capacity of providing more detailed

workspace descriptions such as the surface-type of building(s)

encountered or the nature of ground traversed.

III. CLASSES AND FEATURES

The system described in this paper utilizes data from a cali-

brated combination of 3D laser scanner and monocular camera,

both mounted on a mobile robot. Our basic processing pipeline

is similar to that described in [8] – the major contribution

of this paper is to extend the inference machinery. Briefly,

incoming 3D laser data are segmented into local plane patches

using a RANSAC procedure (see Figure 2). Plane patches are

then sub-segmented into visually homogeneous areas using an

off-the-shelf image segmentation algorithm [9]. The product of

this feature extraction pipeline is a set of visually similar image

patches which have 3D geometry attributes associated with

them. Our classification framework proceeds by classifying

each patch individually. The final stage then consideres scene-

wide interactions between these local patches.

In contrast to much of the existing work in the area,

we consider a relatively rich set of seven classes in three

categories. Classes are listed in Table I, and comprise ground

types, building types and two object categories. Labeling the

environment into classes such as these is a useful step towards

a number of autonomous tasks such as path following, location

TABLE I

CLASSES

Class Description

Ground Type
Pavement/Tarmac Road, footpath.
Dirt Path Mud, sand, gravel.
Grass Grass.

Building Type
Smooth Wall Concrete, plaster, glass.
Textured Wall Brickwork, stone.

Object
Foliage Bushes, tree canopy.
Vehicle Car, van.

Fig. 2. An original 3D laser scan (left) and its approximation by planar
patches as generated by the segmentation algorithm (right).

recognition and collision avoidance.

Classification is performed on the basis of the features listed

in Table II. These features are computed for all laser points in a

patch, proivded that the points are visible in the camera image.

Colour and texture features are computed over the 15x15 pixel

local neighbourhood of each projected laser point.

IV. GENERATIVE PROBABILISTIC

CLASSIFICATION

The inference framework proposed in this paper is a multi-

level approach based on successive combinations of lower-

level features. At the lowest level, individual laser points are

mapped to appearance-words based on the set of features

described in Section III. The next level of the hierarchy pools

information from multiple laser points by grouping them into

patches based on boundaries in both the image and the point

cloud. Each patch is then assigned a pdf over class membership

by a bag of words classifier.

The highest level of the hierarchy takes account of spatial

context by using an MRF defined over the set of patches. This

improves local decisions by incorporating information from

the gross geometric arrangement of classes in the scene.

A. Level 1 - Classification of Individual Laser Points

The lowest level input to our system is the collection of

laser points in the scene. Each laser point is described by

a feature vector, using the features described in Section III.

Rather than deal with raw data directly, we adopt the bag-

of-words representation [10], where the feature vectors are

quantized with respect to a “vocabulary”. The vocabulary is

constructed by clustering all the feature vectors from a set

of training data, using an incremental clustering algorithm.

This yields a vocabulary of size |v|, the vocabulary size being

determined by a user-specified threshold. The cluster centres

then define the vocabulary. When the system has been trained,

TABLE II

FEATURES USED FOR CLASSIFICATION

Feature Descriptions Dimensions

3D Geometry
Orientation of surface normal of local plane 1
2D Geometry
Location in image: mean of normalised x and y 2
Colour
HSV: hue & sat. histograms in local neighbourhood 30
Texture
HSV: hue & sat. variance in local neighbourhood 2



incoming sensory data is mapped to the approximate nearest

cluster centre using a kd-tree. Each patch is then described

by a bag-of-words, which is the input to the next level of the

system.

B. Level 2 - Patch-level Classifier

Our patch-level classifier is inspired by the probabilistic

appearance model introduced in [11] and the theory presented

below is an extension of that work into a more general

classification framework. Building on the output of the lower-

level vector quantization step, an observation of a patch z =
{

z1, . . . , z|v|
}

is a collection of binary variables where each

zi indicates the presence (or absence) of the ith word of the

vocabulary within the patch. We would like to compute p(C|z),
the distribution over the class labels given the observation,

which can be computed according to Bayes rule:

p(Ck|z) =
p(z|Ck)p(Ck)

p(z)
(1)

where p(z|Ck) is the class-conditional observation likelihood,

p(Ck) is the class prior and p(z) normalizes the distribution.

C. Representing Classes

Given a vocabulary, individual classes are represented

within the classification framework by a set of class-specific

examples, which we call exemplars. Concretely, for each class

k the model consists of nk exemplars Ck =
{

Ck
1 , . . . , Ck

nk

}

where Ck
i is the ith exemplar of class k. Exemplars them-

selves are defined in terms of a hidden “existence” vari-

able e, each exemplar Ck
i being described by the set

{

p(e1|C
k
i ), . . . , p(e|v||C

k
i )

}

. The term ej is the event that a

patch contains a property or artifact which, given a perfect

sensor, would cause an observation of word zj . However, we

do not assume a perfect sensor — observations z are related

to existence e via a sensor model which is specified by

D :

{

p(zj = 1|ej = 0), false positive probability.

p(zj = 0|ej = 1), false negative probability.
(2)

with these values being a user-specified input. The reasons

for introducing this extra layer of hidden variables, rather

than modeling the exemplars as a density over observations

directly, are twofold. Firstly, it provides a natural framework

to incorporate data from multiple sensors, where each sensor

has different (and possibly time-varying) error characteristics.

Secondly, as outlined in the following section, it allows the

calculation of p(z|Ck) to blend local patch-level evidence with

a global model of word co-occurrence.

D. Estimating the Observation Likelihood

The key step in computing the pdf over class labels as

per Equation 1 is the evaluation of the conditional likelihood

p(z|Ck). This can be expanded as an integration across all the

exemplars that are members of class k:

p(z|Ck) =

nk
∑

i=1

p(z|Ck
i , Ck)p(Ck

i |C
k) (3)

where Ck is the class k, and Ck
i is an exemplar of the class.

Given p(Ck|Ck
i ) = 1 (an assumption that none of the training

data is mislabeled) and p(Ck
i |C

k) = 1
nk

(all exemplars within

a class are equally likely), this becomes

p(z|Ck) =
1

nk

nk
∑

i=1

p(z|Ck
i ) (4)

The likelihood with respect to the exemplar can now be

expanded as:

p(z|Ck
i ) = p(z1|z2, ..., zn, Ck

i )p(z2|z3, ..., zn, Ck
i )...p(zn|C

k
i )
(5)

This expression cannot be tractably computed — it is in-

feasible to learn the high-order conditional dependencies

between appearance words. We thus seek to approximate

this expression by a simplified form which can be tractably

computed and learned for available data. A popular choice

in this situation is to make a Naive Bayes assumption —

treating all variables z as independent. However, visual words

tend to be far from independent, and it has been shown in

similar contexts that learning a better approximation to their

true distribution substantially improves performance [11]. The

learning scheme we employ is the Chow Liu tree, which

locates a tree-structured Bayesian network that approximates

the true distribution [12]. Chow Liu trees are optimal within

the class of tree-structured approximations, in the sense that

they minimize the KL divergence between the approximate

and true distributions. Because the approximation is tree-

structured, its evaluation involves only first-order conditionals,

which can be reliably estimated from practical quantities of

training data. Additionally, Chow Liu trees have a simple

learning algorithm that consists of computing a maximum

spanning tree over the graph of pairwise mutual information

between variables — this readily scales to very large numbers

of variables.

We use the Chow Liu tree to model the fact that certain

combinations of visual words tend to co-occur. It can be

learnt from unlabeled training data across all classes, and

approximates the distribution p(z). To compute p(z|Ck), the

class-specific density, we find an expression that combines this

global occurrence information with the class model outlined

in section IV-C. Returning to Equation 5 and employing the

Chow Liu approximation, we have

p(z|Ck
i ) = p(z1|z2, .., zn, Ck

i )p(z2|z3, .., zn, Ck
i )..p(zn|C

k
i )

≈ p(zr|C
k
i )

|v|
∏

q=1

p(zq|zpq
, Ck

i ) (6)

where zr is the root of the Chow Liu tree and zpq
is the

parent of zq in the tree. Each term in Equation 6 can be

further expanded as an integration over the state of the hidden

variables in the exemplar appearance model, yielding

p(zq|zpq
, Ck

i ) =
∑

seq∈{0,1}

p(zq|eq = seq
, zpq

, Ck
i )p(eq = seq

|zpq
, Ck

i ) (7)

which, assuming that sensor errors are independent of class

and making the approximation p(ej |zj) = p(ej)∀i 6= j



becomes

p(zq|zpq
, Ck

i ) =
∑

seq∈{0,1}

p(zq|eq = seq
, zpq

)p(eq = seq
|Ck

i )

(8)

further manipulation yields an expansion of the first term in

the summation as

p(zq = szq
|eq = seq

, zp = szp
) =

a

a + b
(9)

where szq
, seq

, szp
∈ {0, 1} and

a = p(zq = szq
)p(zq = szq

|eq = seq
)p(zq = szq

|zp = szp
)

b = p(zq = szq
)p(zq = szq

|eq = seq
)p(zq = szq

|zp = szp
)

which is now expressed entirely in terms of the known detector

model and marginal and conditional observation probabilities.

These can be estimated from training data. Thus we have a

procedure for computing p(z|Ck).
Returning to Equation 1, the prior p(Ck) can be learned

simply from labeled training data, p(z|Ck) we have discussed

above, and to normalize the distribution we make the naive

assumption that our set of classes fully partitions the world.

Clearly this work would benefit from a background class, a

change we plan to make in future versions of the system.

The posterior distribution across classes, p(Ck|z), can now be

computed for each patch.

E. Learning A Class Model

The final issue to address in relation to the patch-level

classifier is the procedure for learning the class models de-

scribed in section IV-C. Class models consist of a list of

exemplars obtained from ground-truth (i.e. labeled) data. The

term p(eq = 1|Ck
i ) represents the probability that exemplar

i of class k contained word q (this is a probability because

our detector has false positives and false negatives). Given an

observation labeled as this class, the properties of the exemplar

can be estimated via

p(eq = 1|Ck
i , z) =

p(z|eq = 1, Ck
i )p(eq = 1|Ck

i )

p(z|Ck
i )

(10)

where p(z|Ck
i ) can be evaluated as described in the previous

section and the prior term p(eq = 1|Ck
i ) we initialize to the

global marginal p(eq = 1).

F. Approximation Using Bounds

Computing the posterior over classes, p(Ck|z), requires an

evaluation of the likelihood p(z|Ck
j ) for each of the exemplars

in the training set. As the number of exemplars grows, this

rapidly becomes the limiting computational cost of the infer-

ence procedure. This section outlines a principled approxima-

tion that accelerates this computation by more than an order of

magnitude. The key observation is that while the posterior over

classes depends on the summation over all exemplars (as per

Equation 4), typically the value of the summation is dominated

by a small number of exemplars, with the rest providing

negligible contribution. By evaluating the exemplar likelihoods

in parallel, those with negligible contribution can be identified

and excluded before the computation is fully complete. This

Fig. 3. Conceptual illustration of the bail-out test. After considering the first
j words, the difference in log-likelihoods between two exemplars is ∆. Given
some statistics about the remaining words, it is possible to compute a bound
on the probability that the evaluation of the remaining words will cause one
exemplar to overtake the other. If this probability is sufficiently small, the
trailing exemplar can be discarded.

is a kind of preemption test, similar to procedures which have

been outlined in other domains [13].

Recalling Equation 6, the log-likelihood of the current

observation having been generated by exemplar i is given by

ln(p(z|Ck
i )) ≈

|v|
∑

q=1

ln(p(zq|zpq
, Ck

i )) (11)

Now, define

di
q = ln(p(zq|zpq

, Ck
i )) (12)

and

Di
j =

j
∑

q=1

di
q =

j
∑

q=1

ln(p(zq|zpq
, Ck

i )) (13)

where di
q is the log-likelihood of the ith exemplar given word

q, and Di
j is the log-likelihood of the ith exemplar after

considering the first j words. At each step of the accelerated

computation Di
j is computed for all i, and incrementally

increased j - that is, we are computing the log likelihoods

of all exemplars in parallel, considering a greater proportion

of the words at each step. After each step, a bail-out test is

applied. This identifies and excludes from further computation

those exemplars whose likelihood is too far behind the current

leader. Too far can be quantified using concentration inequal-

ities [14], which yield a bound on the probability that the

discarded exemplar will catch up with the leader, given their

current difference in log-likelihoods and some statistics about

the properties of the words which remain to be evaluated.

Concretely, consider two exemplars a and b, whose log

likelihood has been computed under the first j words, and

whose current difference in log-likelihoods is ∆, as shown in

Figure 3. Now, let Xj be the relative change in log likelihoods

due to the evaluation of the jth word, and define

Sj =

|v|
∑

q=j+1

Xq (14)

so that Sj is that total relative change in log likelihoods

due to all the words that remain to be evaluated. We are



interested in p(Sj > ∆) – the probability that the evaluation

of the remaining words will cause the trailing exemplar to

catch up. If the probability is sufficiently small, the trailing

hypothesis can be discarded. The key to our bail-out test is

that a bound on the probability p(Sj > ∆) can be computed

quickly, using concentration inequalities such as the Hoeffding

or Bennett inequality [15]. These concentration inequalities

are essentially specialized central limit theorems, bounding

the form of the distribution Sj , given the statistics of the

components Xj (which we can think of as distributions before

their exact value has been computed). For the Hoeffding

inequality, it is sufficient to know max(Xj) for each j, that

is, the maximum relative change in log likelihood between

any two exemplars due to the jth word. We can compute this

statistic quickly - it is simply the difference in log likelihoods

between the exemplars with highest and lowest probability of

having generated word j, which we can keep track of with

some simple book-keeping. Bennett’s inequality additionally

requires a bound on the variance of Xj , which can also be

cheaply computed.

Applying the Bennett inequality, the form of the bound is

p(S > ∆) < exp

(

σ2

M2
cosh(f(∆)) − 1 −

∆M

σ2
f(∆)

)

(15)

where

f(∆) = sinh−1

(

∆M

σ2

)

(16)

and M and v are the maximum and variance values of the

remaining features, such that

p (|Xq| < M) = 1, ∀q ∈ [j + 1, |v|] (17)

|v|
∑

q=j+1

E
[

X2
q

]

< σ2 (18)

Typically we set our bail-out threshold p(S > ∆) < 10−6.

The speed increase due to this bail-out test is data dependent

— in our experiments it is typically a factor of 60 times faster

than performing the full classification without bail-out test.

V. MARKOV RANDOM FIELDS FOR SPATIAL CONTEXT

The estimation of the set of most likely values of a set

of interdependent random variables from available data is a

standard machine learning problem. Such context-dependent

inference can be achieved using a family of graphical models

known as Markov Random Fields (MRFs). An MRF models

the joint probability distribution, p(x,Z), over the (hidden)

states of the random variables, x and the available data,

Z . For pairwise MRFs, it is well known that this joint

probability can be maximised by equivalently minimising an

energy function incorporating a unary term modelling the

data likelihood for each node and a binary term specifying

the interaction potentials between neighbouring nodes over

the set of possible values [16]. Under the assumption of

every datum being equally likely (i.e. p(Z) being uniform)

a minimisation of this energy function is equivalent to finding

the most likely configuration of labels given the observed data

- i.e. a maximum a posteriori (MAP) estimate of p(x|Z). In

the following we describe how an MRF can be applied in

the context of our scene labelling endeavour. In particular, we

outline how the model structure of an MRF is derived for each

scene from the available data, how the model parameters are

obtained and, finally, how a MAP estimate over p(x|Z) is

achieved.

A. Model Structure

MRFs are a family of graphical models where the set

of interdependent variables is modelled as a graph G(V, E),
where V denotes the set of vertices and E denotes the set

of edges connecting neighbouring nodes, respectively. In the

context of our scene labelling problem, each vertex represents

a patch as introduced in Section IV. Neighbourhood relations

within each scene are established using the segmented image

obtained in Section III using [9]. Of course, adjacency in an

image implies, but does not guarantee, adjacency in the 3D

scene. Therefore, in estimating adjacency from 2D information

a trade-off is made between the ability of determining neigh-

bourhood relations efficiently and the introduction of incorrect

adjacencies due to the loss of depth information. In practice,

we found the number of false adjacencies introduced by this

approach to be negligible. Typical examples of graph structure

extracted from scenes recorded by our mobile platform are

shown in Figure 4.

It should be noted that the one-to-one correspondence

between vertices and image patches implies that the number

of nodes in the MRF for a particular frame is independent

of the number of measurements taken of the scene. Thus,

the abstraction away from individual measurements (e.g. laser

range data) to the patch level decouples the complexity of our

inference stage from the density of the underlying data. This

provides a substantial advantage in terms of speed over related

works [7, 4] where the complexity of the graphical models is

directly proportional to the density of the underlying data.

B. Model Parameters

The specification of an energy function to be optimised

provides a convenient and intuitive way of incorporating scene

properties. Consider the set of labels, x ∈ Z
Nn , for a particular

configuration of a graph with Nn nodes. Each node s has an

observation vector, zs, associated with it (c.f. Section IV) and

can be assigned one of Nc labels such that xs ∈ {1, . . . , Nc}.

We specify the energy of any such configuration to be given

by

E(x|θ, λ) = λ
∑

s∈V

θs(xs) + (1 − λ)
∑

(s,t)∈E

θst(xs, xt) (19)

where we adopt the notation of [17] in that θ defines the

parameters of the energy: θs(·) is a unary data penalty func-

tion; and θst(·) is a pairwise interaction potential. λ represents

a trade-off parameter which will be explained shortly. θs

specifies the cost of assigning a given vertex any of the

available labels. Intuitively, for a given node s, θs can be

specified as a function of the posterior distribution over all

classes for that node given the associated data, p(C|zs), as



Fig. 4. Typical graphs extracted from urban scenes as recorded by our mobile robot. Top: the original scenes. Bottom: the corresponding segmented images
with the extracted graph overlaid. Circles indicate nodes, lines indicate edges. For images patches which are not marked as nodes no reliable geometry
estimates could be extracted from the laser data.

provided by the patch classifier introduced in Section IV. In

particular, the penalty of assigning label k to node s can be

expressed as

θs(xsk) = 1 − p(Ck|zs) (20)

The complement of p(Ck|zs) is used since θs refers to a

penalty function which is to be minimised.

The pairwise potential θst encodes prior domain information

in the form of penalties incurred by assigning specific labels to

adjacent (i.e. connected) nodes. This is an intuitive formulation

of the preference that nodes of certain labels are more likely

to be connected to nodes of certain other labels. It follows that

θst can be specified in terms of a square-symmetric matrix Φ

of size Nc × Nc such that

θst(xi, xj) = 1 − φi,j (21)

where again the complement is used since a penalty function

is specified. In this work we have chosen to specify Φ such

that, for two classes i and j,

φi,j =
Li,j

Li + Lj − Li, j
(22)

Here Li,j denotes the total number of links connecting nodes

of labels i and j, and Li denotes the total number of links

originating from nodes of label i. It follows that φi,j ≤
1 ∀(i, j). Appropriate values for both Li,j and Li are obtained

from a hand-labelled training set.

Finally, Equation 19 is a function of the trade-off parameter,

λ, which provides control over the relative contributions of the

unary and the binary terms to the overall energy. It is specified

such that λ ∈ [0, 1]. In this work λ is obtained by grid-search

which selects a value that optimizes a measure of classifier

performance on a set of labeled data. MAP estimation is

performed using sequential tree-reweighted message passing

(TRW-S) [17] because of its desirable convergence properties

and speed.

VI. RESULTS

We tested our algorithm using two extensive outdoor data

sets spanning nearly 17 km of track gathered with an ATRV

mobile platform. The system was equipped with a colour

camera mounted on a pan-tilt unit and a custom-made 3D

laser scanner consisting of a standard 2D SICK laser range

finder (75 Hz, 180 range measurements per scan) mounted in

a reciprocating cradle driven by a constant velocity motor. The

camera records images to the left, the right and the front of the

robot in a pre-defined pan-cycle triggered by vehicle odometry

at 1.5 m intervals. The Jericho data set was recorded in a built-

up area in Oxford over 13.2 km of track (16,000 images in

total). The Oxford Science Park data set was recorded in the

science park area in Oxford over 3.3 km of track (8,536 images

in total). The two datasets were collected in different areas

of the city, with only a very small overlap between the two

regions.

The Jericho data set was used for training. The features

from this set were used to learn the visual vocabulary and the

Chow Liu tree. The class models were built from 1,055 patches

which were segmented and labeled by hand. Automatically

segmented versions of the same labeled data were used to

learn the MRF binary potentials. An appropriate value for the

sensor model used by our patch-level classifier was determined

empirically as p(zi = 1|ei = 1) = 0.35 and p(zi = 0|ei =
1) = 0.

The Jericho data set is unsuitable for training the parameter

λ since the patch-level classifier will correctly classify all

patches in the training set, thus placing complete confidence in

the unary potentials and leading to biased results. Therefore,

λ was instead determined using an independent training set



obtained by sampling randomly from the Oxford Science Park

data. The sample comprised a quarter of the entire data set

(55 of 220 frames). The parameter value was then determined

by grid search over its range. Different values of λ lead to

different classification results, thus to select a value we must

define a measure of classifier performance which we wish to

optimize. We present results for two different such ’tuning

policies’:
Tuning Policy 1. Define a per-class error function as

e = 1 − p • r (23)

where p is the vector of class precision values, r is the vector

of class recall values and • denotes the Hadamard product.

Thus, classes with a low precision-recall product will have a

large error. Tuning policy 1 selects λ so as to minimize ‖e‖2.

The intention here is to maximize the precision-recall product,

with a bias toward improving the worst performing classes.
Tuning Policy 2. Maximize the number of true positives across

all classes.
We evaluated the performance of the classifier using

3,938 patches from the Oxford Science Park data set, which

were not involved in training λ and whose ground truth had

been labeled by hand. Classification performance is summa-

rized in Figure 5 and in Table III. A typical example is shown

in Figure 1.
We present three sets of results, with confusion matrices

visualized in Figure 5. 5(a) is based entirely on the output of

the patch-level classifier, showing performance before MRF

smoothing is applied. 5(b) shows the results incorporating

the MRF tuned according to policy 1, and 5(c) the results

from MRF policy 2. Prior to incorporating the MRF (5(a)),

there is notable confusion between the vehicle, foliage and

wall classes. Results incorporating the MRF (5(b),5(c)) show

a visible improvement of the confusion matrix. Particularly

noteworthy is improvement on the vehicle and foliage classes,

where confusion with wall classes has been substantially

reduced. The remaining confusion is primarily between closely

related classes such as the two wall types.
Numerical measures of performance are presented in Ta-

ble III. It should be noted that our test data is unbalanced,

in the sense that there are many more instances of some

classes than others, reflecting their relative frequency in the

world. A consequence of this is that performance figures such

as overall accuracy are not very informative, because they

mostly represent classifier performance on the largest class.

We chose not to balance the data because such an evaluation

would be unrepresentative of classifier performance in the real

world. We quote instead the per-class precision and recall. F0.5

measures are also provided in order to provide a measure of

overall classification performance per class for all policies.
The timing properties of our algorithm are outlined in

Table IV. Run times are from a 2Ghz Pentium laptop. The

mean total processing time was 3.9 seconds, which compares

favourable to similar systems such as [7], where the authors

quote 7 seconds to classify a single 2D laser scan.

VII. CONCLUSIONS

This paper has described and provided a detailed analysis

of a two-stage approach to fast region labeling in 3D point-

TABLE IV

TIMING INFORMATION (IN MILLISECONDS).

Process Mean (ms) Max (ms)

Plane Segmentation 2000 2800
Feature Extraction 89 125

Feature Quantization 4 90
Image Segmentation 960 1130
Patch Classification 850 3480

MRF 2 9

Overall 3.9 seconds 7.6 seconds

cloud maps of cities. The contributions of this work are two-

fold: the first stage classifier is framed using a probabilistic

bag-of-words approach, which provides for a principled bail

out policy that greatly decreases the computational cost of

evaluating likelihood terms. Further contribution lies in an

efficient formulation of the MRF to integrate contextual in-

formation. In contrast to related approaches, the size of graph

we use is small — indeed with just one node per region rather

than one per laser range measurment. As a result, the overall

per-scene compute time of this method is compelling: at 3.9

seconds (on average 5.6 times faster than our previous support-

vector machine based approach [8]) it is suitable for online

deployment.

The approach presented in this paper further provides sev-

eral attractive features above and beyond our own previous

work: the probabilistic nature of this approach enables a

principled extraction of confidence estimates for classification

results; the sensor model provides a mechanism to incorporate

the notion that some of the robot’s observations are more

trustworthy than others; and finally, the class models can

readily be updated online, allowing, in principle, for lifelong

learning.
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