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Abstract— This work presents the dynamic modeling of an
untethered electromagnetically actuated magnetic micro-robot,
and compares computer simulations to experimental results.
The micro-robot, which is composed of neodymium-iron-boron
with dimensions 250 µm x 130 µm x 100 µm, is actuated by
a system of 5 macro-scale electromagnets. Periodic magnetic
fields are created using two different control methods, which
induce stick-slip motion in the micro-robot. The effects of model
parameter variations on micro-robot velocity are explored and
discussed. Micro-robot stick-slip motion is accurately captured
in simulation. Velocity trends of the micro-robot on a silicon
surface as a function of magnetic field oscillation frequency and
magnetic field strength are also captured. Mismatch between
simulation and reality is discussed.

I. INTRODUCTION

The fundamental challenge with decreasing robot size
below the centimeter scale is providing power and actuation
to the robot. Most current micro-robots rely on external
actuation and/or power to function, and usually have further
limitations as well. These limitations include restrictions
such as requiring tethers [1]–[3], a fluid environment [4]–[7],
or a specialized operating surface [8]–[11]. Further, though
many miniature robots exist on the centimeter or millimeter
scale, true micron-scale robots, with all characteristic lengths
on the order of tens to hundreds of microns, are still quite
rare [4], [5], [9], [11], [12].

The micro-robot presented in this and in earlier work
[13] utilizes magnetic torque provided by large-scale elec-
tromagnets to achieve its motion and does not require any
physical tethers or an on-board power source. Controlled by
dynamically adjusting magnetic fields, it does not need a
patterned work surface or electrostatic coupling to a sub-
surface. Additionally, while the robot does not require a fluid
medium to operate, it can move and perform tasks in a fluid
environment. Some limitations of this design are that the
working surface cannot be composed of a ferromagnetic or
strongly diamagnetic material, nor can the surface itself be
magnetized, and the robot must remain within the working
volume of the electromagnets.

In this paper, we present a comprehensive dynamic model
of the magnetic micro-robot and its interactions with the
magnetic field and the silicon surface on which it operates.
Such a model is necessary to understand the nature of the
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robot’s motion, and can be used as a tool for future opti-
mization and control. With an accurate model, the number
of necessary experiments can be greatly reduced, and time
consuming or difficult tests can be performed in computer
simulation, allowing for quick parameter optimization.

Micro-robots that do not rely on specialized surfaces for
power delivery and control are a vital step toward advanc-
ing the field of micro-robotics, which is filled with many
potential applications. Examples include micro-manipulation
of micro-components, and micro-assembly and fabrication
of hybrid micro-systems [8], [10]. Tetherless micro-robots
with appropriate tools can be used for micro-scale mea-
surement and surface inspection [1]. More advanced micro-
robots could even be used for undetectable surveillance as
micro-unmanned vehicles, or as micro-surgeons in medical
applications inside living bodies [2].

II. EXPERIMENTAL SETUP

Five independent electromagnetic coils were constructed
large enough to enclose a cube 10 cm on a side, which
contains the working volume. Of these coils, four were
placed upright to control the direction and gradient of the
horizontal magnetic field, and one is placed below the
work plane to control electromagnetic clamping, as seen in
Fig. 1. Within the tolerances of machining, the coils were
constructed to be identical, with the same dimensions, wire
gauge, and number of turns of the wire. Imaging of the the
magnetic micro-robot is accomplished with a CCD camera
connected to a variable magnification microscope lens. For
high-framerate video, a high speed camera (Phantom V7.0)
and an additional microscope lens was placed horizontally
inside one of the four upright magnets to achieve a side
view of the micro-robot during actuation. Parameters for
each of the electromagnets are provided in Table I. Control
of the electromagnetic coils is performed by a PC with a
data acquisition system at a control bandwidth of 1 kHz.
The coils are powered by custom-made electronic amplifiers,
controlled by the PC.

III. ROBOT FABRICATION

The micro-robot used in these experiments was made of
neodymium-iron-boron (NdFeB), a hard magnetic material.
To create the robot, a magnetized piece of NdFeB was cut
using a laser machining system (NewWave LaserMill). First,
the NdFeB was cut parallel to the direction of magnetization,
making planar slices approximately 100 µm thick. These
slices were then laid flat so that the magnetization of the
slice was in a horizontal plane. Robots were then cut from



Fig. 1. Photograph of the electromagnetic coil setup, where (A) is the
camera, (B) is the microscope lens, (C) is one of four horizontal coils that
move the micro-robot within the plane, (D) is the wafer where the micro-
robot resides, and (E) is the clamping coil beneath the wafer that holds the
micro-robot to the surface.

these slices such that the magnetization vector was pointing
towards the front of the robot. High translational speeds,
small laser spot size, and low cutting depths per pass were
employed to minimize local demagnetization due to heating
by the laser.

IV. MODELING

A computer simulation was created to model the behavior
of the micro-robot as it interacts with the silicon surface it
moves upon, and how it is affected by the magnetic fields
created by the five macro-scale electromagnets over time. Be-
ing made of hard magnetic material, the magnetic field does
not affect the robot’s internal magnetization. Furthermore,
the small size of the robot implies that the magnetic field it
creates does not significantly affect the electromagnets.

A. Magnetic Field

The magnetic field produced is determined by the current,
I , through the electromagnetic coil. It is a function of the
voltage across the coil, V , which is a control input in the

Description Value Units
Coil Resistance (R) 10.0 Ω

Inductance (Li) 70 mH

Inner length 0.120 m

Outer length 0.157 m

Number of Turns (Nt) 510 −
Effective Length 0.1385 m

Distance From Center .099 m

Maximum Field at Center 6.5 mT

Maximum Gradient at Center 149 mT/m

TABLE I
ELECTROMAGNET PROPERTIES

simulation, and the resistance and inductance of the coil.
Resistance and inductance were measured experimentally,
and their values are presented in Table I. Using these values,
the differential equation for the current through an inductor
is incorporated in the dynamic simulation:

dI

dt
=
−R

Li
I +

1
Li

V (1)

This current is used to determine the magnetic field
produced by each of the coils.

Inside of the control volume, the principle of superposition
is valid for determining the magnetic field at a point in space.
Hence, the contributions from all five electromagnets can be
determined separately and then added together. To determine
the contribution of each electromagnet, one must apply the
Biot-Savart law for each square turn coil:

~B( ~X) =
µ0NtI

4π

∮
S

~dl′ × ~aR

R2
(2)

where ~B( ~X) is the magnetic field at the robot’s position
~X = x~ex + y~ey + z~ez , µ0 is the permeability of free space
(4π × 10−7), ~dl′ is an infinitesimal line segment along the
direction of integration, ~aR is the unit vector from the line
segment to the point in space of interest, and R is the distance
from the line segment to the space of interest.

For a square turn coil, this contour integral simplifies into
four line integrals, the definite integral of which exists and
can be evaluated at the end points [14]. For the x-directed
coils, the primary field in x and the fringe fields in y and
z can be determined at any point in space by evaluating the
following [15]:

R =
√

(x− c)2 + (y − yj)2 + (z − zi)2 (3)
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4π
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R

∗
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1
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+ 1
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] (4)
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4π
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∗
(
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[
1

(x−c)2+(y−yj)2
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Bz = µ0NtI
4π

∑2
i=1

∑2
j=1(−1)i+j+1

∗
(

(x−c)(y−yj)
R ∗

[
1

(x−c)2+(z−zi)2

]) (6)

z = [a,−a], y = [a,−a] (7)

where Bi is the magnetic field in the i direction, a is half
the effective length of the electromagnet, and c is ± the
distance from the center, where the ± is evaluated based
upon the location of the coil of interest (i.e. plus for the coil
in the positive x or positive y-directions). Similar equations
are used for the y-directed and clamping coils.

This derivation is for a concentrated electromagnet, i.e.
all the current carrying wires can be described by a single
line with zero thickness. This assumption is found to be
accurate to within 2.2% because the travel distances are small
in comparison to the magnetic coils, and the distribution of
wires within each electromagnet is small compared to the



size of the magnet. As a result, an effective length must be
used instead of the actual inner or outer length; these values
are listed in Table I.

B. Magnetic Forces

Within a magnetic field any magnetized object, in this
case the micro-robot, will experience both a torque and a
force. This magnetic torque is proportional to the magnetic
field strength, and acts in a direction to bring the internal
magnetization of the object into alignment with the field. The
magnetic force is proportional to the gradient of the magnetic
field, and acts to move the object to a local maximum. The
equations that govern these interactions are:

~Tm = Vm
~M × ~B( ~X) (8)

~Fm = Vm( ~M • ∇) ~B( ~X) (9)

where ~Tm is the torque the robot experiences, Vm is the
volume of the robot, ~M is the magnetization of the robot
(assumed to be uniform) [7], [16].

The gradient is determined analytically by taking the
derivatives of (4-6) in each direction, yielding nine terms.
Torque is determined by finding the magnetic field at the
center of the robot’s body. It was found that for a cube 2.5
cm on a side in the center of the working volume, fringing
fields were less than 2.5% of the primary field for each coil
individually, and the maximum force and torque that can be
exerted on the micro-robot are 240 nN and 10.5 µN ·mm,
respectively.

C. Magnetic Micro-Robot

In modeling the micro-robot, we assume it is an isotropic
rectilinear solid with the properties tabulated in Table II.

Description Value Units
Length (L) 250 µm

Width (W ) 130 µm

Height (H) 100 µm

Density (ρ) 7400 kg/m3

Mass (m) 25.6 ng

Weight (mg) 251 nN

Magnetization (M ) 5× 105 A/m

TABLE II
MAGNETIC ROBOT PROPERTIES

From experimental high-speed video of the micro-robot,
it appears to exhibit a stick-slip motion when actuated by a
pulsed magnetic field. During motion, the robot moves by
rocking forward and backward around a steady state angle.
Motion occurs when the contact point between the robot and
the silicon surface slips. This occurs either when the robot
“falls” while rocking down, or “jumps” while rocking up.
Several images from a high speed video at 200 frames per
second (fps) are presented in Fig. 2(a-d) to illustrate this
motion. A video can be found online at [17]. We attempt to
model this behavior in a computer simulation.

Fig. 2. Stick-slip motion of the micro-robot observed with a high speed
camera, compared to simulated results. (a) The robot is initially at its steady
state angle, and the point of contact is highlighted by a solid white line. (b)
When the magnetic field changes, the robot rocks downward, changing its
angle relative to the silicon wafer. (c) During the next upswing, the robot
slides forward. The former contact point is highlighted with a solid white
line. (d) After slipping forward, the robot assumes its steady state angle
again at a new position, shown by a dashed white line. Analogous steps are
performed in simulation in images (e) through (h).

To simulate the dynamics of the magnetic micro-robot, we
restrict modeling to a side-view of the robot in the x-z plane,
shown in Fig. 3. The robot has a center of mass (COM) at ~X ,
an orientation angle θ from the ground, a distance r from its
COM to a corner, and an angle φ determined from geometry.
The robot experiences external forces, including its weight,
mg, a normal force from the surface, N , an adhesive force to
the surface, Fadh, an x-directed externally applied magnetic
force, Fx, a z-directed externally applied magnetic force,
Fz , a linear damping force in the x-direction, Lx, a linear
damping force in the z-direction, Lz , an externally applied
magnetic torque, Ty , a rotational damping torque, Dy , and
a Coulomb sliding friction force Ff . Ff depends on N , the
sliding friction coefficient µ, and the velocity of the contact
point, dPx

dt , where (Px, Pz) is the bottom-most point on the
micro-robot (nominally in contact with the surface). Using
these forces, we develop the dynamic relations:

mẍ = Fx − Ff − Lx (10)
mz̈ = Fz −mg + N − Fadh − Lz (11)
Jθ̈ = Ty + (Ff )rsin(θ + φ)

−(N − Fadh)rcos(θ + φ)−Dy (12)

where J is the polar moment of inertia of the robot, calcu-
lated as J = m(H2 + L2)/12.

The robot is first assumed pinned to the surface at
(Px, Py), where 0 < θ < π

2 . This gives the following
additional equations:

x = Px − rcos(θ + φ)
ẍ = P̈x + rθ̈sin(θ + φ)− rθ̇2cos(θ + φ) (13)

z = Pz + rsin(θ + φ)
z̈ = P̈z + rθ̈cos(θ + φ)− rθ̇2sin(θ + φ) (14)

To solve equations (10-14), we realize that there are 7
unknown quantities (N ,θ̈, ẍ, z̈, P̈x, P̈z , Ff ) for 5 equations,
indicating an under-defined system. As the stick-slip motion
in this system is similar to the case outlined by Painlevé’s
paradox, we resolve the paradox by taking the friction force,
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Fig. 3. Schematic of a rectangular magnetic micro-robot with applied
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Ff , as an unknown value (as opposed to setting Ff = µN )
[18]. Using the pinned assumption, we can set P̈x = P̈z = 0;
then, equations (10-14) are solved directly. There are three
possible types of solution that can occur during each time
step:

1. The solution results in N < 0 (an impossible case).
This implies that the pinned assumption was false, and the
micro-robot has broken contact with the surface. Equations
(10-12) are resolved using N = 0 and Ff = 0.

2. The solution results in Ff > Ffmax, where Ffmax =
µ · N . This also implies that the pinned assumption was
false, and the point of contact is slipping; thus the robot
is translating in addition to rocking. Equations (10-14) are
resolved using Ff = Ffmax and P̈x left as an unknown.

3. All of the variables being solved for are within phys-
ically reasonable bounds. The robot is in contact with the
surface at the pinned location and is rocking in place.

When a satisfactory solution is reached for each time step,
the solutions for orientation and location are used as initial
conditions in the next solution step.

V. SIMULATION RESULTS

To simulate the micro-robot, a 5th ordered Runge-Kutta
solver is used to solve the time-dependent system. A mag-
netic pulsing signal is given as a voltage waveform, and
equation (1) is solved for the currents. With given initial con-
ditions, equations (1-9) are used to determine the magnetic
field forces, and equations (10-14) are solved for the three
position states of the micro-robot: x, z, and θ. The results
of the simulation are displayed in Figure 2(e-h), where the
simulated micro-robot exhibits stick-slip motion, agreeing
with experiment.

From previous work [13], two different types of magnetic
actuation can be used to move the magnetic micro-robot in
a reliable fashion. The first is In Plane Pulsing (IPP), where
the magnetic field within the plane of motion is varied, while
the clamping magnetic field is held constant. The second
method is Out of Plane Pulsing (OPP), where the magnetic
field within the plane of motion is held constant, but the

clamping magnetic field is varied. Since a DC magnetic field
will not translate a micro-robot due to high static friction,
these periodic excitation methods are necessary to induce
stick-slip translation.

A. In Plane Pulsing

For IPP control, the voltages across the clamping electro-
magnet and one in-plane electromagnet (in the direction of
robot motion) are slowly ramped up. This causes the robot
to orient in the desired direction while remaining locked
down on the silicon surface. Next, the in-plane electromagnet
is pulsed using a sawtooth waveform at a higher voltage,
varying the horizontal, or x-directed magnetic field. The
magnetic fields generated in the simulation from IPP control
are shown in Fig. 4.
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Fig. 4. Simulation of the x and z-directed magnetic fields generated by
IPP control at a maximum pulsing magnetic field strength of 2.5 mT with
a pulsing frequency of 30 Hz in simulation.

This alternating in-plane magnetic field causes the robot
to rock downward (θ decreases) as the field is increased, and
rock upward when the field is decreased. The robot translates
by slipping each time it rocks downward, which agrees with
experimentally observed behavior. After reaching its target
destination, the voltage across the in-plane electromagnet
is ramped down, leaving only the clamping electromagnet
active. A simulation of this motion is presented in Fig. 5.

B. Out of Plane Pulsing

In OPP control, the voltages across the clamping electro-
magnet and one in-plane electromagnet (in the direction of
robot motion) are slowly ramped up, like in IPP control.
After orienting the robot, however, the voltage across the
clamping electromagnet is varied using a sawtooth wave-
form, while the horizontal magnetic field is held constant.
The magnetic fields generated in the simulation from OPP
control are shown in Fig. 6.

By alternating the out-of-plane magnetic field, the robot
tends to rock upward (θ increases) as the clamping field is
increased, and rock downward when the field is decreased;
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Fig. 5. Simulation of the robot’s angle θ (solid line) and the x-direction
velocity of the contact point, dPx

dt
(dotted line) in a simulation of IPP

control. The robot slides over the surface during the downstroke, when θ is
decreasing.
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Fig. 6. Simulation of the x and z-directed magnetic fields generated by
OPP control at a maximum pulsing magnetic field strength of 2.5 mT with
a pulsing frequency of 30 Hz in simulation.

this is an opposite effect when compared to IPP control. In
this case, the robot translates by slipping each time it rocks
upward, which agrees with experimentally observed behav-
ior, and is explicitly shown in Fig. 2. After reaching its target
destination, the voltage across the in-plane electromagnet
is ramped down, leaving only the clamping electromagnet
active. A simulation of this motion is presented in Fig. 7.

VI. MATCHING MODEL PARAMETERS

In order to accurately model the physical system, several
parameters had to be determined empirically. As with any
empirical determination, there exists the possibility of error.

A. Friction

The Coulomb sliding friction coefficient between the robot
and the surface, µ, was determined by using a load-cell to
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Fig. 7. Simulation of the robot’s angle θ (solid line) and the x-direction
velocity of the contact point, dPx

dt
(dotted line) in a simulation of OPP

control. The robot slides over the surface during the upstroke, when θ is
increasing.

measure the force required to slide a bulk NdFeB micro-
magnet with a known downward load across a Si surface.
From this, the friction coefficients between NdFeB and Si
were found to be µk = 0.145 for kinetic, and µs = 0.2 for
static. If |dPx

dt | > 0, µ = µk, otherwise µ = µs.
Noting that the kinetic friction coefficient is approximately

70% the static friction coefficient, the effect of varying µ
was explored in simulation while maintaining this ratio, as
shown in Fig. 8. At low friction coefficients, the micro-robot
dominantly slides; motion due to stick-slip behavior is less
dominant as stick-slip motion requires friction. Speeds are
higher for OPP control, because the in-plane coil is always
on. As the friction coefficient increases, stick-slip behavior
becomes more dominant and results in very similar velocity
profiles for the two control methods between µs = 0.2 and
µs = 1.0. At friction coefficients µs > 1.0, IPP results in
higher velocities. This is due to the reduced normal force
which arises during IPP downstroke motion, shown in Fig.
5, as opposed to the increased normal force which arises in
upstroke motion for OPP, shown in Fig. 7.

B. Adhesion
Adhesive forces between the surface and the micro-robot

are present due to stiction effects that become significant at
the micro-scale, such as capillary and van der Waals forces
[19]; these are lumped together into one force Fadh. We
estimate this force to be Fadh = 0.22 µN , or about 90% of
the micro-robot’s weight. To determine this, a micro-robot
was placed on a silicon wafer, and the wafer was slowly
rotated. Using the previously determined friction coefficient,
µ, a measured angle at which the robot begins to slide on
the wafer, α, and a simple free body diagram, the magnitude
of the adhesion force can be derived:

Fadh = mg

(
sin(α)

µ
− cos(α)

)
(15)

From Fig. 9, OPP velocities are higher at low adhesion
because the in-plane coil is always on, allowing sliding
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Fig. 8. Simulated effect of changing the static and kinetic friction
coefficients on the steady state velocity of the robot. The kinetic friction
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motion. As adhesion increases, OPP motion is influenced
more than IPP for reasons similar to increasing friction:
OPP translates the robot during upswing, when normal
forces (which increase with adhesion) and friction forces
are at their highest, whereas IPP translates the robot during
the downswing, when the importance of these forces is
minimized.
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Fig. 9. Simulated effect of changing the adhesive force, Fadh, on the
steady state velocity of the robot. Pulsing frequency is 100 Hz, with a 2.5
mT maximum pulsing magnetic field.

C. Damping

Linear damping forces, Lx, Lz , and rotational damping
torque Dy , are a result of fluid drag effects through a liquid
layer that is assumed to form between the robot and the
silicon surface. For modeling, linear damping forces are first
estimated using a Couette flow fluid drag model:

Lx,z ≈
Abµd

g0
× {ẋ, ż} [N ] (16)

where Ab is the area of the bottom of the robot, µd is the
dynamic viscosity of the liquid layer, and g0 is the separation

from the surface, assumed to be 1.5 µm from measurements
of the surface roughness. This results in a linear drag Lx,z ≈
2.4×10−5×{ẋ, ż} [N ]. In a similar fashion, torque damping
forces are estimated using the integral of a viscous drag force
equation:

Dy = CD
1
2
ρw

∫ L/2

0

Ws3ds× θ̇2 [N ·m] (17)

where CD ≈ 19
Re is the constant drag coefficient at Re ≈

Lẋ
ν = 0.22 [20], ν is the kinematic viscosity of water, ρw is

the density of water, and s is a variable of integration. This
results in a rotational damping torque Dy ≈ 6.7× 10−16 ×
θ̇2 [N ·m].

Both damping coefficients are later adjusted to match the
simulation to experimental results. In reality, the damping
forces will depend on the micro-robot’s orientation angle,
θ. For purposes of simulation, estimated average damping
coefficients are used to capture the overall behavior trends;
in the future, angular-dependent drag coefficients may be
used in simulation. The estimated constant damping forces
used are:

Lx,z = 1.0× 10−5 × {ẋ, ż} [N ] (18)

Dy = 9.0× 10−17 × θ̇2 [N ·m] (19)

These damping terms are necessary to keep the simulated
robot stable in both rotational and translational motion.
With increasing linear damping, average micro-robot velocity
decreases for both IPP and OPP control. Changes in the
linear damping coefficient cause different behavior regimes
to emerge. At very low values of linear damping, the velocity
is controlled almost exclusives by friction forces. At higher
values of linear damping, all motion is suppressed. Only in a
very small range is micro-robot velocity controlled by linear
damping. For lower values of rotational damping, there is
little effect on micro-robot velocity. This is likely the case
when rotational drag is much smaller than magnetic torque.
As rotational damping increases, both OPP and IPP velocities
decrease at about the same rate, supporting this theory.

VII. RESULTS AND DISCUSSION

All testing was performed on the back side of a silicon
wafer in open air. No special polishing or preparation was
performed on the wafer. For both control methods, two dif-
ferent parameters were examined: (1) Maintaining a constant
waveform pulsing frequency while varying the maximum
voltage across the coils (as a result, varying the maximum
magnetic field), and (2) maintaining a maximum voltage
across the coils while varying the frequency of waveform
pulsing.

For each experiment at each pulsing frequency, three trials
were performed to attain an error estimate of the velocity.
During the experiment, a video of the robot motion was
recorded and post-processed. Two frames of the video, one
near the beginning and one near the end of the robot’s
journey, were taken. In each position, the robot’s central
position was determined, and the total travel distance was
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measured in pixels. A conversion ratio from the image
to real-world distances in microns/pixel was empirically
determined by counting the pixels across a known length.
The total time for travel was also recorded to determine
the velocity. Across a travel distance of about 5 mm with
a positioning error of 1-2 pixels (about 50 µm), results in a
1% error in measured distance.

For simulations, the average velocity was determined in a
similar manner. The x-position and time was reported shortly
after steady state motion was reached (after the third cyclic
pulse), and also at a determined time signifying the end of
the simulation. These two values were used to determine the
average velocity of the simulated micro-robot.

Micro-robot velocity as a function of frequency for both
IPP and OPP control appears to be linear for low frequencies
in both experiment and simulation, as seen in Figs. 12 and
13. At higher frequencies, velocities appear to exhibit a slight
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Fig. 12. Simulated and experimental robot velocity at varying frequencies,
at a maximum pulsing magnetic field strength of 2.5 mT under IPP control.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Frequency (Hz)

V
el

oc
ity

 (
m

m
/s

)

 

 

experiment
simulation

Fig. 13. Simulated and experimental robot velocity at varying frequencies,
at a maximum pulsing magnetic field strength of 2.5 mT under OPP control.

roll-off in experiment. This roll-off may be due to the linear
and rotational damping effects experienced by the micro-
robot.

Simulated results seem to underestimate micro-robot ve-
locity for both IPP and OPP translation modes as a function
of maximum field strength, shown in Figs. 14 and 15.
For both IPP and OPP, the simulation suggests a linearly
increasing dependence of velocity on field strength with
some roll off for higher fields in IPP. This dependence is
apparent in the IPP case, but is not as clear for OPP, which
may be linearly increasing or may be relatively constant.

VIII. CONCLUSION

A detailed computer simulation that modeled the dynamics
of a magnetically controlled micro-robot on a flat surface is
proposed in this study. The parameters of the simulations
were adjusted until an approximate match with reality was
achieved. Both in simulation and in experiment, the magnetic
micro-robot was subjected to alternating magnetic fields,
which induced a stick-slip motion over the surface. The
velocity of this motion as a function of both excitation
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Fig. 14. Experimental robot velocity at varying maximum coil voltages
(displayed as maximum field strength) at a constant pulse frequency of 30
Hz for IPP control.
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Fig. 15. Experimental robot velocity at varying maximum coil voltages
(displayed as maximum field strength) at a constant pulse frequency of 30
Hz for OPP control.

frequency and maximum magnetic field for two different
control methods were recorded and analyzed.

It was found that in both control methods, IPP and OPP
control, the robot first attains a steady state angle with respect
to the surface. This angle is much larger for IPP than for
OPP. When one of the magnetic fields begins to oscillate, the
robot will rock upward and downward. For IPP control, the
robot will slide over the surface each time it rocks downward.
Alternatively, in OPP control, the robot will slide each time it
rocks upward. These behaviors were observed experimentally
and accurately reproduced in simulation.

The dependence of robot velocity on friction, adhesion,
linear damping, and rotational damping was explored in
simulation. In addition, both frequency and peak voltage
of OPP and IPP control were varied in simulation and
experiment to determine their effects on robot velocity. The
results obtained in simulation show general agreement with
experiments.

Future work will include adapting the system for both
coarse and fine motion control by using the simulation to
refine the control signals and determine appropriate control

laws in each case. In addition, vision algorithms are being
developed for closed-loop computer control of the micro-
robot. Possible applications in micro-object manipulation,
underwater control, and cooperative robotics are currently
being explored.
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