
Distributed Localization of Modular Robot Ensembles

Stanislav Funiak Michael P. Ashley-Rollman
and Seth Copen Goldstein
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{sfuniak, mpa, seth}@cs.cmu.edu

Padmanabhan Pillai
and Jason D. Campbell
Intel Research Pittsburgh

Pittsburgh, PA 15213, USA
{padmanabhan.s.pillai, jason.d.campbell}@intel.com

Abstract— Internal localization, the problem of estimat-
ing relative pose for each module (part) of a modular
robot is a prerequisite for many shape control, locomotion,
and actuation algorithms. In this paper, we propose a
robust hierarchical approach that uses normalized cut to
identify dense subregions with small mutual localization
error, then progressively merges those subregions to localize
the entire ensemble. Our method works well in both 2D
and 3D, and requires neither exact measurements nor
rigid inter-module connectors. Most of the computations
in our method can be effectively distributed. The result is
a robust algorithm that scales to large, non-homogeneous
ensembles. We evaluate our algorithm in accurate 2D and
3D simulations of scenarios with up to 10,000 modules.

I. INTRODUCTION

Large self-reconfigurable modular robots have re-
ceived a growing interest from the robotics community.
A self-reconfigurable modular robot (SRMR) is com-
prised of many discrete, physically connected modules
which can be rearranged to adapt the robot’s shape or
capabilities to the task at hand. These robot ensembles
have been proposed for various applications, such as
product design and visualization [1], emergency search
and rescue, and rapid prototyping [2, 3]. A fundamental
task in such robot ensembles is internal localization, the
establishment of relative pose amongst the robot’s many
individual components. Accurate internal localization is
required for many tasks, including motion planning,
mechanical stability, and control.

Internal localization for large robot ensembles presents
a number of challenges. As systems scale to larger
ensembles of smaller, finer grain modules, one can
expect only limited capabilities at individual modules. In
particular, modules only make noisy observations of their
immediate neighbors, and do not have access to long
distance measurements, such as global time-of-flight
measurements, or external beacons. A lack of strong me-
chanical latches in small modules precludes mechanical
constraints for accurate alignment and orientation.

This work is supported in part by the NSF under grants CNS
0428738 (ITR: Synthetic Reality) and NeTS-NOSS CNS-0625518, by
the ONR under grant MURI N000140710747, by Intel Corporation,
and by Carnegie Mellon University.

Although localization algorithms have been well stud-
ied in robotics, many of the existing approaches do
not directly apply to large-scale internal localization.
Constraint-based approaches [4, 3, 5] rely on strong prior
assumptions about ensemble structure (e.g., lattices) or
require exact observations to scale up to large ensembles.
They are neither robust to noise nor well suited to irreg-
ular, non-lattice structures, common in some SRMRs.
Local probabilistic approaches have been shown to be ef-
fective in localization of relatively small modular robots,
such as PolyBot[6], but require assumptions of strong
sensing, or robust mechanical latching to reduce errors
in larger systems. Sparse approximation techniques [7, 8]
used in simultaneous localization and mapping (SLAM),
are effective in dealing with large amounts of noisy
observations, but are difficult to apply to SRMRs, where
modules are densely packed, forming grids and loops.

A more closely related problem is localization of wire-
less sensor networks. Here the nodes need to combine
distance information about other nodes in order to accu-
rately triangulate their positions. A standard formulation
is to treat the distance information as weights of edges
in a graph and obtain a Euclidean embedding, using
methods such as regularized semidefinite programming
relaxations [9, 10]. Internal localization can also be
viewed as Euclidean embedding; however, only distances
to immediate neighbors are known. As indicated by our
experiments in Section VI, this restriction appears to
impair the performance Euclidean embedding methods.
Therefore, it is necessary to develop new techniques that
are effective in this domain.

A key problem with applying incremental approaches
like the ones seen in SLAM is that they can accumulate
error, and this error takes a long time to resolve. In the
case of a modular ensemble, the greatest error will tend
to accumulate in a region with only a few inter-module
observations, which we call a weak region. A substantial
rotational uncertainty will be introduced in the partial so-
lution, and will be magnified by subsequent additions. If
we selectively incorporate the observations in the densely
connected regions first, the partial solution will be con-
strained and the error will be substantially reduced. We
use this intuition to formulate a hierarchical algorithm,

Fig. 1. Connectivity graph of ensemble with 8008 nodes, and resulting
estimate of module positions; the results are accurate, subject to a
rotation and translation of the coordinate space.

where we recursively split the ensemble connectivity
graph into well-connected components using normalized
cut [11]. In order to keep the normalized cut computa-
tions tractable, we perform graph abstraction, analogous
to over-segmentation in image segmentation [11].

A key challenge in internal localization is that obser-
vations are not stored centrally, and it is not feasible to
collect the observations to a single node. This calls for
a distributed approach, but the recursive nature of our
algorithm and top-down partitioning make a distributed
implementation difficult to achieve. We used a declara-
tive, logical programming language called Meld to help
address these issues and create an efficient distributed
implementation of our algorithm.

We evaluate our algorithm on realistic 2D and 3D
problems with up to 10,000 modules that accurately
model unreliable observations and physical interactions
among the modules. We demonstrate that the compu-
tational complexity of the approach is nearly linear in
the size of the ensemble for a fixed ensemble structure,
and outperforms methods from wireless sensor network
localization based on classical multidimensional scal-
ing [12] and semidefinite programming (SDP) relax-
ations [9, 10], as well as simpler incremental heuristics.

II. LOCALIZATION OF MODULAR ENSEMBLES

We assume that the location of each module can be
described by a small number of parameters, such as the
coordinates of its center and orientation in space. In
this paper, we focus primarily on circular and spherical
modules in 2D and 3D space, respectively. Each module
is equipped with sensors, such as infrared transmit-
ters/receivers, that allow a pair of modules to detect
when they are in close proximity. Such observations are
inherently uncertain: two modules may be in sensing
range, but not in physical contact, or a measurement can
be made when sensors are not aligned. We do, however,
assume that (i) the observations are symmetric (that is,
whenever module i observes module j then module j
also observes module i), and (ii) the modules know the
identity of modules they sense (that is, we do not need
to address the data association problem).

(a) module prototypes (b) sensor model

Fig. 2. (a) Sensor board from module prototype. (b) Sensor model,
used in the paper. Each observation zi,j is represented as the location
of the sensor, projected to the perimeter of the module. The circle in-
dicates the midpoint of the two modules’ centers. The model penalizes
the module locations xi and xj , based on the distance between the
midpoint and the observations zi,j and zj,i.

Figure 2(a) shows a current working prototype of
a sensing subsystem fitting the properties described
above. Each module shown has 8 IR transmitters and
16 IR receivers, oriented radially and spaced evenly
around the circular perimeter. Note that for these mod-
ules, multipath interference, scattering, shadowing, and
small dimensions effectively preclude techniques such as
acoustic or radio time-of-flight-based localization.

III. LOCALIZATION AS PROBABILISTIC INFERENCE

In this section we define the probabilistic model that
underlies our algorithm. We then discuss a simple incre-
mental optimization method that motivates our approach.

A. Probabilistic Model With Attractive Potentials

We use a probabilistic model that describes the prob-
ability of a joint assignment of module locations X =
(X1, . . . , XN), given observations Z made by all mod-
ules in the ensemble. The location of each module i is
represented by a vector, Xi , (Ci, Ri), where Ci is the
center of the module and Ri is its orientation (repre-
sented in 2D as an angle, and in 3D as a quaternion).

When two modules i and j are in the immediate neigh-
borhood of each other, a pair of observations (zi,j , zj,i) is
generated which represent the sensors at module i and j,
respectively, that made the observation. We use a discrete
model that captures whether two modules observe each
other and with which sensors, but not the intensity of the
readings. Also, for simplicity of notation, we assume that
there is at most one pair of observations for every pair of
modules, and we take zi,j to be the location of the sensor
at module i, in module i’s local reference frame (see
Figure 2(b)). The model penalizes an observation zi,j ,
based on how well it predicts the displacement between
the two module centers.

φ(xi, xj ; zi,j) ∝ exp

{
−1

2

∥∥∥∥ri(zi,j)−
cj − ci

2

∥∥∥∥2

2

}
.

(1)

Note that this model does not explicitly represent the
constraint that the modules must not overlap; instead, we

(a)

(b)

2

6

10

14

18

12

16

20

(c)

0 5 10 15 20 25 30
0

100

200

300

400

step

nu
m

be
r

of
 it

er
at

io
ns

Fig. 3. (a) Ensemble, consisting of two tightly connected clusters.
The clusters are connected by two pairs of observations. Within each
component, modules make observations with all of their immediate
neighbors, whereas the two components share only two observations,
one at each side. (b) Intermediate result, obtained when incrementally
conditioning on observations, starting from the lower left corner. The
numbers indicate the order of conditioning. The solution accumulates
substantial error; this error is not detected until loop closure, at step 21,
and takes many iterations to resolve with conjugate gradient descent.
(c) The number of iterations at each step to reach convergence.

have chosen to rely on the observations to obtain a non-
overlapping solution. Alternatively, we could use a more
accurate mode that captures properties of IR transmitters
and receivers, such as quadratic decay and multi-modal
response, but such a refinement is not key to the methods
presented in this paper.

Combining the observation model (1) for each pair of
neighboring modules i, j and instantiating the observa-
tions zi,j gives the likelihood of the joint state x:

p(z|x) ∝
∏
i,j

φ(xi, xj ; zi,j). (2)

For internal localization, we wish to compute the max-
imum likelihood estimate (MLE) of the location of all
the modules, given all observations z:

x∗ = argmax
x

p(z|x), (3)

up to some global translation and rotation.

B. Computing the MLE Solution Incrementally

It is not easy to maximize the likelihood (2) directly,
since the likelihood function is non-convex and high-
dimensional. One approach is to compute the solution (3)
incrementally, that is, compute the maximum likelihood
estimate

x∗A = arg max p(zA|xA) = arg max
∏

i,j∈A

φ(xi, xj ; zi,j)

for progressively larger connected sets of modules A.
Here, xA denotes the locations of the modules in A and
zA denotes all observations among the modules in A. At
each step, the set zA is expanded, incorporating modules
connected to its perimeter, and then iteratively refining
the position estimates with the correspondingly expanded
set of observations.

Figure 3 illustrates the behavior such an incremental
approach on a small ensemble with 200 modules that

consists of two dense components. The observations are
incorporate observations in breadth-first order, starting
from the lower left corner. Figure 3(c) shows the run-
ning time of the algorithm at each step, expressed as
the number of iterations of conjugate gradient descent
until convergence. We see that while the number of
iterations is typically small, it increases dramatically
midway through the experiment when the observations
close a loop, formed by the two square components. The
computed solution accumulates error that takes a long
time to resolve once the algorithm closes the loop.

IV. GUIDING LOCALIZATION WITH NORMALIZED
CUT

The experiment in Figure 3 points to an important
drawback of an incremental maximum likelihood es-
timate (MLE) solution. Highly uncertain observations
may be incorporated early, and errors magnified by
subsequent module additions. With a simple MLE rep-
resentation, this will remain undetected until a single
observation closes the loop, at which point significant
iterative computations are needed to shift the estimates
back into low error bounds. However, if we were to first
incorporate the observations within each dense cluster in
Figure 3 and defer the observations that join the two clus-
ters until later, the intermediate results would be more
accurate, and would serve as a better starting solution
for adding new observations. This suggests a hierarchical
solution (Algorithm 1) that partitions the ensemble using
clustering, recursively computes the estimates for each
cluster, and uses the partial solutions to compute the
globally optimal solution.

A. Determining an Effective Partition

Sparsely connected regions where only a few obser-
vations are made (weak regions) are one of the main
sources of error and uncertainty as localization pro-
gresses. As illustrated in Figure 3, certain occurrences of
weak regions can introduce a substantial rotational error
– those that do not occur in pairs in 2D or triplets in 3D.
An effective heuristic for identifying these weak regions
is a cut on the connectivity graph of the ensemble:
starting from a graph G, whose edges correspond to ob-
servations between modules, we seek to partition G, such
that each component is well-connected and the inter-
component observations are as few as possible. This
criterion is effectively the one optimized in normalized
cut [11]:

Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)
assoc(B, V)

, (4)

where Ncut(A,B) is the cut value, cut(A,B) is the
number of observations between module sets A and B,
and assoc(A, V) is the number of observations between

the modules A and all modules in the graph. Minimizing
(4) yields a partition of G into two components A,B.
Our heuristic will first incorporate observations within
the clusters A and B, and then the observations between
A and B.1

Intuitively, normalized cut prefers partitions such that
the number of observations between A and B is small,
compared to all observations made by A and B. For
example, in Figure 3a, the vertical cut that separates
the two well-connected components has value Ncut =
O(1

N), where N is the number of modules, whereas the
value of the horizontal cut is Ncut = O(1√

N
). Indeed,

we see that normalized cut strongly discriminates these
two orderings and yields the correct ordering.

B. Summary of the Algorithm

Our proposed approach is summarized in Algorithm 1.
The algorithm starts by computing the normalized cut
(A,B) for the connectivity graph G. By applying the lo-
calization procedure recursively, the algorithm computes
a partial solution for the modules A, conditioned on all
observations among A (in the algorithm description, GA

denotes the subgraph induced by A) and similarly for
the modules B. We then use the partial solutions x∗A and
x∗B to initialize the search for the optimum solution for
the entire graph: we transform the observations between
A and B, zA,B , {zi,j : i ∈ A, j ∈ B}, into the global
coordinate frame, using the module locations given by
the partial solution x∗A; similarly for modules B. This
procedure yields two sets of points p = {pi} and
q = {qi}, such that pi and qi are locations of matching
observations in the global coordinate frame. Recall that
the likelihood is maximal when sensors are in close
proximity; thus, an effective initialization is to hold the
relative locations of modules fixed within each cluster
A,B, and compute the optimal rigid body transform
between the clusters:

arg min
R∈SO(d),t∈Rd

∑
k

‖pk − (Rqk + t)‖2
2 , (5)

where R is the rotation matrix (in 2D or 3D) and t is
the translation vector. The optimal rigid body alignment
(5) can be computed with closed-form solution in time
linear in the number of observations between A and
B [13]. This procedure yields an initial estimate of the
locations of all modules, x0

V . The initial estimate is
then refined using iterative methods, such as conjugate
gradient descent or a quasi-Newton method.

1We selected binary partition, since as discussed below, the solutions
between two clusters can be merged very efficiently.

Algorithm 1 NormCutLocalize(G, V)
1: if V is sufficiently small then
2: compute arg max p(xV |zV) using local heuristics
3: else
4: Compute the normalized cut (A,B) =

NormCut(G)
5: x∗A ⇐ NormCutLocalize(GA, A)
6: x∗B ⇐ NormCutLocalize(GB , B)
7: p ⇐ transform the observations zA,B into the

coordinate frame, given by x∗A.
8: q ⇐ transform the observations zB,A into the

coordinate frame, given by x∗B .
9: Compute the optimal rigid alignment R, t:

arg min
R∈SO(d),t∈Rd

∑
k

‖pk − (Rqk + t)‖2
2 ,

10: Let x0
V = (x∗A, Rx∗B + t).

11: x∗V ⇐ arg max p(xV |zV), starting from x0
V

C. Scaling Up the Solution

While the normalized cut formulation yields an effec-
tive sequence in which observations should be incorpo-
rated, computing the exact normalized cut is costly and
dominates other operations. Specifically, the cost of the
rigid alignment is linear in the total number of obser-
vations, whereas the complexity of computing a single
normalized cut is O(|V |3/2), where |V | is the number
of nodes [11]. A standard method to decrease the
computational complexity is to compute an abstraction of
the graph, using a simpler clustering algorithm, such as
k-means [11]. In particular, in image segmentation, this
procedure amounts to computing an over-segmentation
of the image. The normalized cut is then computed on
a smaller graph G′, where each node of G′ corresponds
to a cluster of nodes in the original graph G.

Compared to other clustering tasks, the clustering task
in localization is simpler in two ways. First, unlike in
applications, such as image segmentation, where shifting
the cut can adversely affect the visual quality of the
segmentation, the clustering here is only used as a
heuristic, and offsetting the cut does not substantially
decrease the quality of location estimates. Furthermore,
since the connectivity graph G has unit edge weights,
the cut value itself increases at most linearly (in 2D)
or quadratically (in 3D) in the number of hops away
from the optimal cut. Therefore, we have found that it
is often sufficient to partition the graph greedily into a
fixed number of components. As discussed in Section
VI, using as few as twenty components yields accurate
solutions (the actual number of needed components will
depend on the amount of uncertainty in the ensemble).

level k

1. Abstraction 2. Normalized cut 3. Alignment

level k+1

4. Refinement

level k − 1

Fig. 4. Control flow for level k of the distributed implementation

V. DISTRIBUTED LOCALIZATION

While centralized localization in a self-reconfigurable
modular robot is useful, a distributed localization is
much more appealing, since it can significantly reduce
the communication cost, enables online control, and
avoids a centralized point of failure. In this section, we
propose a distributed version of Algorithm 1 that uses
a combination of data aggregation techniques and local
refinement steps to compute each module’s own location.
In combination with a declarative programming language
[14], we obtain a fully executable distributed solution.

A. Localization through Aggregation and Dissemination

Our distributed solution mirrors the operations of the
centralized algorithm. Figure 4 summarizes the control
flow for one level of the algorithm execution. The first
three steps – graph abstraction, normalized cut, and
rigid body alignment – use data aggregation techniques
and perform key steps of the computation at the group
leader. Note that the gradient of the log-likelihood (2)
decomposes linearly over the nodes of the cluster and
their neighbors. Therefore, the iterative refinement step
can be performed locally, without global coordination.

In order to compute the graph abstraction, we use a
random sampling strategy that partitions the graph into
a set of connected subgraphs, centered around randomly
chosen leaders. Each node elects itself as a leader with a
small probability, and the nodes greedily join the nearest
leader (as measured by the hop-count). The description
of the abstracted graph is then aggregated to a single
node that computes the normalized cut using a standard
centralized implementation. Since we need to perform
normalized cut only on small graph abstractions, a cen-
tralized implementation is sufficient. Alternatively, one
could use a distributed algorithm based on decentralized
power iteration. [15]

A key step in Algorithm 1 is computing the optimal
rigid body alignment between two sides of the partition.
While, at first glance, it is not clear how to distribute
this step, a closer look at the method in [13] reveals that
the method only depends on the first- and second-order
statistics of the points {(pi, qi)} in Equation 5. These
statistics can be aggregated from the boundary towards
the group leader. The leader then computes the optimal
transform and disseminates the result. Since the aggre-
gated information depends only on the dimensionality of

the aligned points (2 or 3), rather than their count, the
communication cost of aggregating and disseminating
the optimal transform is small.

B. Declarative Implementation using Meld

The distributed algorithm described in the previous
section presents a number of implementation challenges.
Unlike simple message-passing style inference algo-
rithms found commonly in literature [16], our localiza-
tion approach uses multiple aggregation and dissemina-
tion steps that require both local and non-local commu-
nication across the ensemble and operate in asynchrony.
These steps rely on a number of data structures, used
to represent the graph, the location, and the rigid body
transform statistics. Due to the recursive nature of the
algorithm, the implementation may need to maintain
parallel data structures for all of the concurrently active
levels. These challenges make it tedious to implement
the algorithm in a standard message-passing framework.
In this section, we briefly outline our implementation
that uses Meld [14], a logical, declarative, high-level
programming language for modular robots.

Meld is a declarative language with syntax similar to
Prolog. A Meld program consists of rules that specify
sufficient preconditions to derive new facts from existing
ones. A key benefit of Meld is that it lets the programmer
focus on the logical, information processing aspects of
an algorithm, while automatically taking care of the
mechanics of distributed programming, such as com-
munication. For example, a simple distributed spanning
tree algorithm can be specified in two rules: a rule that
determines the root of the tree, and a rule that lets a
node join a tree that extends to one of its neighbors.
In a similar manner, Meld simplifies implementation of
other distributed data structures.

We found that many features of Meld fit well with
the needs of our algorithm, but also exposed some
drawbacks of our approach. The language let us naturally
represent the graph abstraction process and aggregate
and disseminate sufficient statistics for the rigid align-
ment. The results of different phases were easily chained
together. Furthermore, when intermodule connections
were lost or network layout changed, Meld was able to
automatically recover, recomputing the relevant portions
of these distributed data structures and rerunning parts
of the localization algorithm. On the downside, Meld’s
declarative programming model made it more difficult
to express certain imperative sequences and loops. More
fundamentally, a change in or removal of one fact
(for example, the origin of the coordinate system) may
trigger the removal and subsequent rederivation of a
large number of other facts. This drawback is inherent
to our localization algorithm and is subject to ongoing
research.

(a) solid (b) sparse (c) open

Fig. 5. Scenarios used in our experiments. The scenarios were
generated by settling randomly inserted modules in a gravitational field.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results that
illustrate both the centralized and the distributed aspects
of our solution. We generated input scenarios with
a C++ simulator [17] that models IR sensing and
physical interactions between the modules. Each module
in the simulation had 12 IR transceivers (colocated
emitter/detector pairs), whose IR response was modeled
according to an inverse-square law, similar to the model
in [18]. The threshold for detecting observations between
a pair of neighboring nodes was set to 20 per cent of
the peak intensity. At this setting, a sensor can report
a connection even if the modules are not in a physical
contact and if the transmitter and the receiver are not
perfectly aligned.

A. Scenarios

We constructed both 2D and 3D test ensembles.
The 2D ensembles were generated by randomly settling
simulated spheres under a simulated gravity field into
a fixed container of the desired overall shape. The re-
sults were configurations with realistic, irregular, largely
amorphous structures. Several of these configurations,
illustrated in Figure 5 mimic planar slices of a 3D
shape capture scenario [4]. Each shape in Figure 5 was
instantiated ten times, with different initial velocities and
locations of the modules, allowing us to average results
across repeated runs using configurations very similar
in overall shape but where module connectivity and
spacing varies. The 3D test ensembles were generated
by rasterizing 3D outlines (defined by OBJ files from
various shape libraries) into a designated target lattice,
either hexagonal-close-packed or cubic.

B. Scalability

In the first experiment, we evaluated the performance
of the proposed method as the number of modules in
an ensemble increases. We selected the structured triple
scenario in Figure 5(b) and formed a set of progressively
larger ensembles. At each scale, the ensemble retains the
same overall shape and the proportions, but the number
of modules that form the shape increases. We then run
Algorithm 1 such that, at each level of the hierarchy,
the estimate x∗A reaches a fixed level of accuracy, as
measured by the norm of the gradient of the likelihood
function at x∗A. This procedure ensures that each estimate

0 2000 5000 10000
0

100

200

300

400

500

600

Ensemble size

N
um

be
r

of
 it

er
at

io
ns

threshold 0.1
threshold 1

Fig. 6. The average number
of iterations per module for the
triple scenario as the number
of modules grows. At different
scales, the ensemble retains its
shape and the proportions. With a
threshold of 1.0, the average lo-
cation RMS error was 1.26; with
a threshold of 0.1, the average
location RMS error was 0.80.

10 20 30 40 50
0

0.5

1

1.5

2

Number of vertices of G’

R
M

S
er

ro
r

[m
od

ul
e

ra
di

i]

Fig. 7. The location RMS error
for the triple scenario with 2000
modules, when using the normal-
ized cut approximation in Sec-
tion IV-C. The horizontal dashed
line indicates the fidelity of the
solution, obtained with exact nor-
malized cut.

x∗A is sufficiently accurate, before it is used at the higher
level. Figure 6 shows the average number of iterations in
preconditioned conjugate gradient descent as a function
of the number of modules. We see that the number
of iterations, needed to attain the same accuracy (as
measured by the gradient norm), increases very slowly.

C. Sensitivity to Abstraction

In the second experiment, we evaluated the sensitivity
of the proposed localization method to errors, introduced
by performing normalized cut on the abstracted, rather
than the original connectivity graph. We took the struc-
tured scenario in Figure 5(b) with 2000 modules. Fig-
ure 7 shows the root mean square (RMS) error as we vary
the number of nodes in the abstraction of the connectivity
graph (since we controlled the maximum diameter of
clusters, rather than their count, the displayed node count
is approximate). In order to account for the overlap,
introduced by the objective (1), we uniformly scale the
locations of the modules, so that the average spacing
equals the module diameter. Then, using the ground truth
locations of the modules, we compute an optimal rigid
alignment and report the error for the aligned solution.
We see that the performance of the proposed localization
method is insensitive to abstraction errors: with 20 or
more nodes in the abstracted graph, the approach yields
a sufficiently small RMS error. These results suggest that
small graph abstractions provide meaningful results and
can be analyzed at each leader node centrally.

D. Performance in 3D

In the third set of experiments we extended the
algorithm to three dimensions, using a quaternion rep-
resentation for each catom’s 3D orientation rather than
the scalar orientation parameter used in the 2D case.
Since the quaternion may become unnormalized in the
process of gradient descent computations, we implicitly

(a) incremental (b) SDP relaxation (c) our solution

Fig. 8. Example results using three algorithms on the triple scenarios.
Lower images reflect results after additional iterative refinement steps.

(a) incremental (b) SDP relaxation (c) our solution

Fig. 9. Example results using three algorithms on the open scenarios.
Lower images reflect results after additional iterative refinement steps.

normalize the quaternion in the observation model (1)
and in the corresponding gradient.

We generated lattice-bound test ensembles from var-
ious 3D outlines. (The lattice-bound property of these
ensembles was due to limitations of our ensemble-
generation code.) We simulated spherical modules each
with 50 sensors scattered across their surfaces. Despite
the larger number of sensors when compared to the 2D
case, the available angle constraints in the 3D test cases
were generally much weaker. We found that our algo-
rithm was capable of determining positions in these 3D
tests very accurately, within 1 module radius. Figure 1
shows an example of the results obtained on a large 3D
scenario with 8008 modules.

E. Comparison with Prior Work

In the fourth set of experiments, we compared the
performance of the proposed algorithm to Euclidean
embedding methods, used in wireless sensor network
localization, as well as simpler incremental heuristics.
Figures 8 and 9 show examples of how incremental
and semidefinite programming approaches qualitatively
perform poorly compared to our algorithm, even after
applying significant number of iterative refinement steps.
SDP in particular suffers from overestimation of dis-
tances, and artifacts due to projection to a 2D space from
a manifold in a higher dimensional space.

Quantitatively, we evaluated the following methods:
(i) classical multi-dimensional scaling [12], (ii) the in-
equality formulation of regularized semidefinite pro-
gramming [9], (iii) the simpler incremental approach,
discussed in Section III-B, (iv) a simple hierarchical
approach that merges pairs of clusters bottom-up, in

0

2

4

6

8

10

12

14

solid triple sparse open

R
M

S
er

ro
r

[m
od

ul
e

ra
di

i]

Classical MDS
Regularized SDP
Incremental
Connectivity
Normalized cut

(a) global

0

0.1

0.2

0.3

0.4

solid triple sparse open

R
M

S
er

ro
r

[m
od

ul
e

ra
di

i]

Classical MDS
Regularized SDP
Incremental
Connectivity
Normalized cut

(b) local

Fig. 10. RMS error of the location estimates. (a) Global RMS error,
averaged over all modules. (b) RMS error of modules relative to their
neighbors. Here, we greedily partition the ensemble into connected
regions with diameter of 6 modules or less and compute the RMS
error using the optimal rigid alignment for each region.

the order given by their algebraic connectivity, and
(v) the proposed method, using exact normalized cut.
We perform repeated experiments on the scenarios in
Figure 5 with 1000 modules. The initial solution, ob-
tained by each method is refined with 300 iterations of
preconditioned conjugate gradient descent.

Figure 10 shows the average RMS error for each
scenario. We see that approaches, based on Euclidean
embedding (classical MDS, regularized SDP) generally
do not perform very well in this setting, especially for the
sparse version of the triple scenario and the large open-
loop scenario. For classical multi-dimensional scaling,
the error results from approximating true distances with
hop-count; for regularized SDP, the errors come either
from the SDP relaxation or the underlying solver. The
incremental and simple hierarchical approaches perform
better, but are outperformed by our normalized cut
formulation on the scenarios with non-homogeneous
structure (triple, sparse). It is worth noting that the
Euclidean embedding methods are substantially more
computationally expensive: an optimized implementation
of a state-of-the-art SDP relaxation method [10] takes 5-
10 minutes to run on an input with 5000 nodes, whereas
the Matlab implementation of our hierarchical algorithm
runs in less than a minute.

F. Distributed Results

Finally, we evaluate the message complexity of the
distributed implementation. Figure 11 shows the average
number of messages sent by each module as a function of
the ensemble size. The figure confirms that the number of
messages per module required by the algorithm increases
only logarithmically in the total number of modules in
the ensemble. Thus, the implementation scales to large
ensembles. Figure 12 shows the split of the messages
among different components of the algorithm for two
ensemble sizes. Interestingly, the messages sent are
dominated by the gradient descent. In particular, the
extra work done to determine the normalized cut is small
compared to the cost of iterative refinement.

10
1

10
2

10
3

10
40

500

1000

1500

2000

Number of modules

N
um

be
r

of
 m

es
sa

ge
s

/ m
od

ul
e

total
gradient descent

Fig. 11. The number of messages per module as a function of the
ensemble size.

Procedure / Test case 5× 5× 5 10× 10× 10
Neighbor detection 0.5% 0.3%
Graph abstraction 7.7% 7.3%
Normalized cut 6.4% 6.5%
Rigid alignment 9.7% 9.5 %
Gradient descent 75.8% 76.3 %

Fig. 12. The relative number of messages sent by each component.

VII. DISCUSSION AND FUTURE WORK

In this paper, we examine large-scale localization in
modular robot ensembles using uncertain, local observa-
tions. We formulate internal localization as a probabilis-
tic inference problem and introduce a novel approach
which hinges on selection of an effective ordering of
observations using a normalized cut criterion. In com-
bination with closed-form solutions for rigid alignment
and simple graph abstraction scheme, this approach leads
to accurate, scalable solutions. We perform an extensive
evaluation of our proposed approach on a test suite of
realistic 2D and 3D configurations with up to 10,000
nodes and demonstrate that our approach outperforms
both recent methods using Euclidean embedding and
simpler heuristics. Finally, we describe a fully distributed
implementation of our algorithm that computes the re-
sults by sending only a few messages between the nodes.

While this paper goes a long way towards robust
internal localization, there are some questions left to
be answered. For example, it would be interesting to
examine the merits of fast iterative methods developed
for SLAM, such as [19]. These methods may make
it possible to quickly recover from small changes in
the ensemble and cope with dynamic settings. More
broadly, one may hope to combine the normalized cut
heuristic with additional structure in the problem to
obtain a fully probabilistic solution. Such an approach
would recover not only a point estimate, but also its
uncertainty. Addressing both these questions would lead
to truly robust solution to internal localization in modular
robotics and drive research in other fields.

ACKNOWLEDGMENT

The authors thank Rahul Sukthankar and Dhruv Ba-
tra for their valuable feedback. We also thank Casey

Helfrich and Michael Ryan for building the DPRSim
simulator which was used for many of our experiments.
Finally, we thank Rahul Biswas for an implementation
of the regularized SDP localization algorithm.

REFERENCES

[1] S. C. Goldstein and T. Mowry, “Claytronics: A scalable basis for
future robots,” in Robosphere, Nov 2004.

[2] K. Gilpin, K. Kotay, and D. Rus, “Miche: Modular shape
formation by self-dissasembly.” in ICRA, 2007, pp. 2241–2247.

[3] P. White, V. Zykov, J. Bongard, and H. Lipson, “Three dimen-
sional stochastic reconfiguration of modular robots,” in Proceed-
ings of Robotics Science and Systems, 2005.

[4] P. Pillai, J. Campbell, G. Kedia, S. Moudgal, and K. Sheth, “A
3D fax machine based on claytronics,” in IEEE/RSJ Int’l Conf.
on Intelligent Robots and Systems, Oct. 2006, pp. 4728–35.

[5] G. Reshko, “Localization techniques for synthetic reality,” Mas-
ter’s thesis, Carnegie Mellon University, 2004.

[6] M. Yim, D. Duff, and K. Roufas, “PolyBot: a modular recon-
figurable robot,” in Proceedings of IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2000.

[7] M. A. Paskin, “Thin junction tree filters for simultaneous local-
ization and mapping,” in Proc. IJCAI, 2003.

[8] U. Frese and L. Schroder, “Closing a million-landmarks loop,”
in Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, Oct. 2006.

[9] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, “Semidefinite
programming based algorithms for sensor network localization,”
ACM Transactions on Sensor Networks (TOSN), vol. 2, no. 2,
pp. 188–220, May 2006.

[10] Z. Wang, S. Zheng, S. Boyd, and Y. Yez, “Further relaxations
of the SDP approach to sensor network localization,” Stanford
University, Tech. Rep., 2006.

[11] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 8, pp. 888–905, 2000.

[12] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Lo-
calization from mere connectivity,” in Proceedings of the 4th
ACM international symposium on Mobile ad hoc networking &
computing. ACM Press New York, NY, USA, 2003, pp. 201–
212.

[13] S. Umeyama, “Least-squares estimation of transformation param-
eters between two point patterns,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 13, no. 4, April 1991.

[14] M. Ashley-Rollman, S. C. Goldstein, P. Lee, T. Mowry, and P. Pil-
lai, “Meld: A declarative approach to programming ensembles,”
in Proceedings of IEEE/RSJ Conference on Intelligent Robots
and Systems (IROS), 2007.

[15] P. Yang, R. A. Freeman, G. Gordon, K. Lynch, S. Srinivasa, and
R. Sukthankar, “Decentralized estimation and control of graph
connectivity in mobile sensor networks,” in American Control
Conference, June 2008.

[16] C. Crick and A. Pfeffer, “Loopy belief propagation as a basis
for communication in sensor networks,” in Proceedings of the
Nineteenth Conference on Uncertainty in Artificial Intelligence
(UAI-2003), C. Meek and U. Kjærulff, Eds. San Francisco:
Morgan Kaufmann Publishers, Inc., 2003.

[17] “Dprsim: The dynamic physical rendering simulator,”
http://www.pittsburgh.intel-research.net/dprweb/.

[18] K. D. Roufas, Y. Zhang, D. G. Duff, and M. H. Yim, “Six
degree of freedom sensing for docking using IR LED emitters
and receivers,” in Proceedings of International Symposium on
Experimental Robotics VII, 2000.

[19] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Bur-
gard, “Efficient estimation of accurate maximum likelihood maps
in 3d,” in Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, 29 2007-Nov. 2 2007.

