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Abstract—This paper is about stochastic recruitment, a control some input given to all agents in the system. The authors are
architecture for centrally controlling the ensemble behavor of  actively working on applying this control framework to the
many identical agents, in a manner similar to motor recruitment problems of endothelial cell migration and artificial muscl

in skeletal muscles. Each agent has a finite set of behaviorsy . . . .
states, which can be switched based on a broadcast command; B actuators. Figure 1 illustrates the basic system architect

switching randomly between states with a centrally determied
probability, it is possible to designate the number of agers

in each state. This paper covers stochastic recruitment piiies Broadcast Identical agents respond

for the case when little or no feedback is available from the command Vs A N
system. Feed-forward control policies based on rate equiliia

are presented, with an analysis of the performance trade-é§ ) I RN
inherent in the problem. Minimal feedback control laws are dso I\
discussed, and a policy is presented which minimizes the exqgted —>

I
=

convergence time of the system given only the ability to halthe
system when the desired output has been achieved.
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. INTRODUCTION
Finding methods for centrally controlling the collective ‘ R
behavior of many identical agents is an active researctc topi G H
across diverse communities, including robotics, bioeagin g ABC
ing, and control. Many different systems can be modeled as
a swarm of identical agents, such as bacteria, cells, robots e i /?sgt%?;gﬁastfrg:ggfl
in a swarm, or computers in a network. In this paper, we ! of agents' states

will explore control of a class of finite state or hybrid state
agents that we believe to be applicable to a variety of these Fachagenthasa discrete state

problems. In particular, we wish to regulate the ensemble

distribution of many agents over their discrete statesher tFig- 1. Many systems in nature can be thought of as an enseafble

. . . . ctionally similar discrete-state agents that each aedpndependently to
fraction of agents havmg a pamCUIar discrete state. Tlﬁ?me global stimulus. The ensemble output behavior of mank agents is

discrete states in question could be tasks performed bynswake number of agents in each discrete state.
robots, cell migration behaviors, or switched modes gangrn

the time evolution of some continuous state variable. One of | this paper, we discuss the performance of feed-forward
the key components of the these regulatory mechanismseéntrol policies for controlling the number of agents in feac
stochasticity. In biological systems, stochasticity istaqui- giscrete state. If rich information usable for feedbacktoan
tous phenomenon that can be observed in mechanochemigalyailable, then many control techniques that presume ful
cell and molecular behaviors. For example, angiogenetiis c&ate knowledge can be applied. The authors have shown that
migration and tissue development are often treated astddecsimme feedback policies can be formulated for controltimgy
random walks, where stochastic behaviors play key roles fgfsemble state distribution based on linear feedback Iajys |
deVeIOping multi-cellular structures that meet morph'([iag expectation_based control laws [4]’ and dynamic prograﬂgmi
and functional requirements [1], [2]. Natural systems arétb [5]. However, the output measurements from real systems
upon random processes, and biological systems in pa"tiCthP{en provide only uncertain estimates of system state dis-
exploit the stochastic nature of their building blocks. Ifibution. For example, a robot swarm might have limited
control engineering, randomness has been treated as wvagbmmunication with a central control station. An artificial
behavior that should be filtered out or avoided. Except f(hﬁusc'e Composed of many individual sub-units may (and
communication technology and some of the system identifiGgsually will) exhibit some output delay or hysteresis, satth
tion techniques, randomness has not yet been fully exploitgome estimating filter must be used to predict the individual
as a useful concept. In general, we assume that the transifigiits’ states. Uncertainty of this form will lead to increas
between states can be modeled as a Markov state transi[i@,@ertaimy in the closed-loop behavior of the system.We wi
graph whose state transition probabilities are determbned show that we can formulate open-loop control policies that
_ _ o cause the state distribution to reach a stochastic equitibr
The authors are with the Mechanical Englneerlng Departrattite Mas- that is close to anv desired state distribution. havina well
sachusetts Institute of Technology, Cambridge, MA, USAL3®{| ael , y ) g
asada}@rit.edu characterized variance. The performance of policies ddipgn



o minimal or no feedback provide a good bounding cagwevious control architecture exploits feedback of aggreg

guidelines for examining the performance of closed-loaysla output, while this paper addresses control issues with no

Depending on the degree of uncertainty in the state digiobu feedback or limited feedback. We call this control “Stoditas

estimated from measurements, it may actually be advanssgeBecruitment”, which will be formally described next.

to use an open-loop policy instead of a closed-loop policy.

In this paper a stochastic cellular system with limited otitp Tendon

feedback will be formulated in its simplest form. Basic cenv

gence properties and control policy will be discussed tm gai

insights into collective behaviors of stochastic celldgstems.

The framing of the problem is based on cell and systems

biology and motivated by needs in robotics and control. The

paper, however, does not aim to apply the results directly to

a specific area; instead the objective is to better undafstan Parallel binary motor units

the possible regulatory mechanism that may govern a large

population of cellular agents. Fig. 2. Muscles are composed of many small motor units, whieheither
relaxed or activated, producing force. The net power anffhesis of the

muscle depend on the number of recruited motor units.
Il. INTRODUCING STOCHASTIC RECRUITMENT

In an attempt to investigate a regulatory mechanism that
works with limited or no feedback, we look at biological q
control systems, extract key features from there, and ftatau

a simple, abstract problem for detailed analysis. Oneisgik
difference from traditional engineered systems is that bio 1— 1—
logical cells are living in a wet environment, where signals q p

propagate through diffusion. Stimuli to the process pevehs

affect all the cells involved in the wet environment. It istno p

likely that each cell receives a specific control signal from

a central controller. Rather, the control signal, if it égjds

broadcast in nature. Fig. 3. A small automaton having two state® N and OFF, can be
In response to stimuli, an important property of bio|ogiceﬂommanded to transition between states with probabiliiesd q.

systems is that each cell's behavior is stochastic in nature . . . -
Although receiving the same stimuli, the cell's response is The concept of recruitment is best explained by examining

randomly chosen, conditioned on the environmental factoFQe fun_ctlon O_f sl_<e_|eta| muscle. A mu_sc_le IS not_a homogenous
collection of individual cells; rather it is organized as et-n

Endothelial cell migration, for example, each cell's move: ) _
ment is a random process, switching directions stochzﬂyticawork of many small motor units, which respond autonomously

[1]. Furthermore, the state transition probabilities ofieary © stlmultcjjsffrom Lhe spinal column, as sr:jown in Flgu.redzl. A I
depending on the stimuli that individual cells receive. dt jcommand from the nervous system produces a varied leve

known that biochemical kinetics highly depend on tempﬂnseltumc force by affecting the p(_arcentage of motor units which
and other factors, resulting in changes to state transitigAntract. [7]. Each motor unit has a threshold for respoose t

probabilities. In the case of endothelial cell migratiotats 1€ rr:ervous lexcnanon, SO t(;'a}t var;;:ngfthe excngtmngemnt h
transition probabilities are modulated by the stimuli eagant [© e muscle acts to modulate the force produced [8]. This

receives as well as the conditions of the wet environment chlt(_act_ure can be replicated in en_gmgered SVSt.e_”!S caeripo
which it is exposed [2]. of a similar arrangement of subunits, like an artificial masc

These stochastic behaviors of biological cells suggest[eél' A central controller broadcasts some excitation tocdll

new control methodology for engineered systems; a cent{ﬁ'3 SUb_ltJrl'_tS’ V_‘II_E'Ch ctl‘r;angi thellr) behaw_or ?t a r?t? baseci on
controller broadcasts signals that modulate state tiansit e excitation. The authors have been using two-state agén

probabilities to be used at individual agents, or directlyaul- this I;md to C(E)ntrOI shape rgemcorﬁ/ aII_oy Imuscle z?lctuatorsernad
casts state transition probabilities across the cell paijmu. up of many binary units [5]. CollectivelyV small actuators

Whichever the case, the central controller does not dietath produce binary outputs which are modulated so that varied
agent to take a specific transition, but only specifies theproforceb andfO(Aj]{ZSpflacementj are productedogsTﬁ funcglolr;l_;)f the
abilities of transition. The actual control action is up tack numbero (force-producing) agentsy;". The probability

cellular agent, but the collective behavior may be effedyiv per unit time of .state transitions between thev anq OFF
controlled with the central controller. This broadcastteoh St2t€S are described by paramejeesidg, as shown in Figure
protocol will be useful for engineered systems, since itinexs
very little bandwidth, and allows each cellular agent to be
Comp|ete|y anonymOUS. A The Dynam|cs Of Randomizaj ReCI‘UItment

The authors have developed several types of stochasti® key appealing feature of this state transition framework
broadcast control [3], [5], [6]. The major difference istliae is its similarity to statistical models for many real-world



phenomena, including the dynamics of gene regulation [9], The rate at whichr; exponentially approaches from an
chemical reactions [10], and even swarms of insects [11jitial condition xg is is represented in the transient term,

It is well understood how kinetic chemical reaction mod-

els yield well-described transient and steady-state bersav A=1-p—gq (7
These dynamics can be exploited in engineered systems, sinc ) ] ) )

an artificial system can be designed to arbitrarily vary the These observations are important in formulating an open-
state transition probabilities of its agents. To demonstiiais, 0P control policy.

we will consider the simplest recruitment problem, a system
made up of N small subsystems or agents having just two
statesON andOF'F. The control task is to recruit a specific
number of agentsy "¢, into theON state. These states could

represent two different modalities or behaviors exhibibgd In previous work, the authors formulated closed-loop con-
L 2~ trol laws by finding the state transition graph parameteas th
each individual agent. To keep track of the state evolutibn y 9 graph p

Rhinimize the expected future error
the system, we will introduce a discrete distribution viaiga P ’

x;, describing the probability with which each agentGsv
at timet,

IIl. A NO-KNOWLEDGE CONTROL POLICY

E(N{tIp, g, N{™) = N"ef (8)

If the central controller has no knowledge of the number of
ry = P(state = ON) (1) agentsin each state, then the control policy must produez fe
forward dynamics that move the state distribution towam th
desired goal. Equation (6) demonstrated that the time &waolu
of x; has a steady-state component. Instead of chogsanyl
g to minimize the one-step ahead error conditioned on the
present state distributiony and ¢ could be chosen so that

N some desired number of cell§"¢f is expected in the steady
P(N{" = klxy) = ( 3 > zyf (1 —a)NF (2) state according to (3),

Of course, usinge; as a sufficient statistic for predicting
system behavior does not guarantee tN&" can be known
exactly. Instead, the likelihood thatunits are on is calculated
as a function ofr; using a binomial distribution,

There are multiple reasons why using makes more E(N°"|p,q) = Nags = NP _ pres 9)

S

sense than consideringy?”, if little feedback information pt+q

is available. First and foremost, it is quite simple to peedi Many policies satisfy this constraint for any givevie/.
the future behavior ofr given an initial condition and a gq, example, setting = 0.1 and ¢ = 0.1 will drive the
broadcast command. In the absence of other informatiot, SYgents to a 50% likelihood of being in either state. So will
as a measured ensemble output, this will provide a gogttingp = ¢ = 0.3. In order to distinguish between these

guess of long-term behavior. Second,ladecomes large, the cases, a scaling analysis can be used to weigh the perfoemanc
central limit theorem will guarantee that?™ will approach rageoffs between these policies.

its expected value,

E(N{"|x) = Nay (3) A Convergence Rate and Steady State Distribution are Inde-

The evolution ofz; can be written as a recursive sequenc%endent‘

based on the Markov graph parametgrand g, The control policy parameteys and ¢ can be rewritten as
Bpo andBqq, wherepy + go = 1 and g is a scaling factor that
- - varies subject to the constraint thak p < 1 and0 < ¢ < 1.
rep =1 =qut+p—2)=0=-p=au+p (4 \pen the transition probabilities are scaled in this waye Th
The time evolution ofz, can also be written as a determinsteady-state distribution,; is independent of3,
istic sequence which satisfies (4),

o, = Bro o (10)
P P ; B(po+q0)  Po+qo
1 =——+ 20— —— | (1-p—q) ®) .
p+q p+q However, the rate of convergence still dependsspn
Here x( is the initial likelihood that an arbitrarily selected
unit is in the ON state. Some physical meaning can be l-p—q=1-0Bpo+q)=1-p5 (11)

gleaned from (5). The time-independent term of the sequenc

corresponds to the fraction 6N agents at steady state. Thisc(;arl;\rl]:r rgfjentsinfgactgnIEeaargﬁfarﬁa:z:::je\:vr\:\illghst\ill\g;?h the
is equal to the probabilistic rate at which agents transiiom 9 Y 9

OFF to ON, normalized by the sum of all transition ratesthe condition imposed in (9). In the most extreme cabés
chosen to be 1, so that = 0. In this case,x; converges
between states, . . .
to p/(p + q) after only one time interval. Figure 4 shows
converging to the same steady-state behavior from the same

Tos = p+q ©) initial conditions, for several values g@f.



B. Accuracy Varies Only as z,; and N. number of transitions can be calculated conditionedcgrp

The other point of concern for this control system is thandg,
accuracy of the control system once it reached steady state. .
Specifyingz,s does not guarantee that the number of recruited E(N{""*|24,p,q) = N(qze + p(1 — 2¢)) (14)
cells N2 will converge. Instead, the distribution from (2) will In the steady state (9) can be substituted in, so that (14) is
have some variance. When expressed as a variance normalg?lanction of N, p andg '
by the total number of units, this yields a measure of acgurac ' ’
for recruitment, rans 2Npq
E(Ng*p,q) = —— (15)
p+q
Var (NP /N|xgs) = 2ss(1 — 255)N = LQN (12) Using the scaling argument again, (15) can be rewritten
(p+4q) in terms of Bpy and Bqo. This implies that an increase if
The 8 scaling argument from (10) and (11) can be applieehplies more expected transitions per unit time in the stead
to the variance calculation. The numerator and denomirtdtorstate,
(12) both vary by a factor o8, so the variance is independent

of the rate at which the actuator converges to its steadg stat

229N
probability distribution, E(N*"*|Bpo, Bao) = 52Nt B(2Npogo) ~ (16)
B(po + q0)
B*poqo _ Poqo (13) The value of3 minimizing the number of expected transi-
B2 (po+q0)*N  (po+ qo)*N tions is, naturally, O, corresponding to the control polibgt

This is an important observation; it means that nothing filows no random transitions between state.
to be gained by taking “baby steps”, that is, selecting very
small values ofp and ¢ in hopes of improving the accuracy
of recruitment in exchange for a slower rate of response. T
only parameter that can be varied to improve accuradyis  Both closed-loop and open-loop control laws of this form
are not limited to the two-state case. In general, the clgntra

|:1)é Generalization to Many Sates

Expected Values of N for Various Values of B specified state transition probabilities for a k-state grepuld
500 . . be represented as a matii,
- ol S B=1 | % N P11 P21 - PRl
o ~ ; D12 D22 - DPk2
4 B=l0.5 M = ) . ) a7
£ : : . :
& 300 _ ; ' ' o
Z p=02 Pk P2k DPkk
o
S 200 ] Each column ofM must add up to 1. Thesé? — k
_%é independent parameters could be chosen to minimize the
3 100 Expected value of N7 expected error conditioned on the present knowledge for the
T ; 1 k—1 f
Probability Distribution of N number of agents in statéé,, , ... N,/ ", as was done in (8),
I | 1 ; k i ref
00 1 5 10 15 E(NZ+1|M’Nt1’”.Nt):NLTGJ‘ (18)

Discrete Time Steps Similarly, (9) can be extended to multiple states so that the

Fig. 4. The expected value o¥2" and probability distribution ofve™ at steady-state expected number of agents in each state ik equa

several points in time are shown fo¥ = 500, po = 0.8, o = 0.2, and t0 the reference,
B =0.2,0.5 and 1. This plot illustrates the fact that the vamaof N2 is
independent of the rate of convergence. All three casesoapprthe same

probability distribution inNp™. E(NgIM) = Nvi(M) = Norel (19)
Here v; (M) is the eigenvector oM having eigenvalue 1.
The second-largest eigenvalue will dominate the rate athvhi
C. The Number of Transitions per Unit Time the feed-forward policy converges corresponding to the rat
In a physical system, there is often a significant energy cdstind in (7). Solving for these two conditions (the steady-
associated with switching agents from one behavior to amothstate distribution and the rate of convergence) can be done
For example, a mobile robot switching between patrolling twalgebraically or numerically. The other performance cidgte
different areas will expend energy in driving from place ta@lso translate nicely to the multi-state case. The variarice
place. A shape memory alloy actuator has significant latetiie number of agents in states still determined only by the
heat associated with the phase transition used for actyaio steady state probability of an agent being in that statéM ),
spurious phase transitions are costly. As a consequemayit and by the total number of agent¥,
be useful to consider the expected number of state transitio
per unit time when formulating a control policy. The expecte Var (NLIM) = v;(M)(1 = v1;(M))N (20)



Finally, the expected number of transitioning agents from formulating a policy is the expected time that the system
(15) can be written for the k-state case in terms of the steadgkes to converge to the desired state or output. We will
state distribution, formulate the cost/ to be minimized as a function of the

initial probability that agents are ON, given the additional

k .
knowledge that the system has not converged at timeD.
E(NI*) = N> v1i(1 = pi) (21) g Y g
i=1 0o
The trade-offs for the multi-state case are not as easy to T=1+E|> g(y) CCO] (23)
t=1

guantify nicely. However, the general observation is that a
the second-largest eigenvalueMfdecreases, the convergence Here g(y;) is the cost per stage of the system, equal to 1
time decreases and the expected number of transitions when the system has not yet reached the target, and 0 when

creases. the system is already there:
E. The One-Shot Policy gy =4 L v = Jalse (24)
t 0, ,y;=true

So far we have observed that it is impossible to minimize o )
both convergence time and the number of transitions at gtead At €ach point in time, Bellman’s equation can be used to
state. This performance trade-offs in the no-knowledge; coeXPress the truncated cost recursively forward in time,
stant policy recruitment problem can be addressed by vagyin
andq with time. Suppose that we want to recruit, as accurately Je = E[g(ye)| wt] + E [ Jeg1] 24 (25)

as possible, a specific number of agents, given no knowledgekeep in mind that the sequendeo, 1, s, ..., 2y, ...} is

of N™ or xg, in minimal time with minimal steady-state oSt yatermined by (5), as long as the broadcast commiang)
g was ddemcl)nstrated dabove that the accuracy (r)]f recrultmedteonstant. The stochastic nature of the cost functioresris
epends only onV' andz,. As a consequence, the accuracy,, the uncertainty about when the exact number of desired
obtained by thes = 1 pollqy will not_lmproye for more than ON agents has been reached. After this point, the cost
one round of state tran3|t|(|)_ns: This motivates the one;shtytion hecomes zero. The practical result of this is that t
time-varying recruitment po |c.y.. _ expectation of the cost-to-go will be equal to the probapdf
1) Computep andq that satisfies the steady state conditioRot converging at time multiplied by the expected cost-to-go
from (9), and sets the second-largest eigenvalegual assuming that the desired state has not yet been reached. The
to 0. likelihood of reaching the desired state can be described by

2) Broadcasp andq to all agents. N thinking of the number oD N agents as a Bernoulli variable
3) After one round of stochastic state transitions, brosticgthe sum of many binary random variables),

a command to all agents to get= 0 andq = 0, so that
all transitions cease. (

This policy will guarantee that the agents get as close to H: = P(y:|zt) =

the desired distribution as possible, subject to the vadaf
N2 determined by (13). Similarly, the likelihood of not reaching the desired state

will be defined asf;,

Nret ) w1 —a) NN (26)

IV. A MINIMAL KNOWLEDGE FEEDBACK POLICY

Often, it may be useful to consider the case in which the
central controller has limited knowledge of the number of Using this, the expectation in (25) can be evaluated,
ON agents. Lety, be a Boolean measurement which lets
the controller know if the current distribution has reactieel Jy=Hy + HyJyyy = Hy[1+ Jii1] (28)
desired distribution, or is close enough. One definitionhis t

could be when exactly the desired number of agents are in thd he benefit of rewriting the series representation/pfe-
ON state, cursively is that each term in the series carries a multgiie

term from the previous time step,

Ht = P(gt|It) =1- Ht (27)

. true, N/" = Nref
Yt _{ false, Nton # Nref (22) me1l
The policy space to be searched is all policies for which Jo=Hi+ HiHeyy + HiHi 1 Hepp + .+ H HyJm
a constant commandp, ¢) is broadcast, until the minimal k=t

feedback measurements determine that the desired state hd$ie recursive form of this expression can be used to derive
been reached. At this point, all state transitions are conai®d the optimal policy. In order to demonstrate that a policyalbc

to cease, by setting = ¢ = 0. The broadcast command isminimizes this cost function, we must first find a policy for
assumed to be constant because, in the absence of additisrath the gradient off with respect to the policy parameters
information, there is no good reason for changing the corns- zero, indicating that the policy lies at an extremum.of
mand. This problem will be posed as a stochastic shortelst pat parameter space. As in the no-knowledge case, nothing
problem. In this framework, the cost function to be miningizeis known about the number ad N agents until the target



distribution is achieved, so a policy with constantand ¢

must be pursued until, is true. The optimal policy to pursue Gy = (N, — N™) (Ap% + Aq%> (35)

is not hard to imagine; Essentially, it is to re-run the ohets Ip dq

policy again and again unti; is true. This can be proved As above, the only terms in the series defining the inner

analytically. product which can be negative are with#,. G; can be
evaluated forp = 3N"¢f/N andq = 3(1 — N"¢f/N), to

(p,q) = ( N;ﬂ 1— N;f ) (29) obtain the expression:
The first condition is that the gradient of with respect Gt = Nt(zg — po)?(1 — B)* (36)

to p and ¢ is zero, for any initial probabilityzy. J can be o )
expanded recursively forward as a recursive series from any! his is greater than zero fqf 7 1, so the cost function

point in time using (28), is also_ ?ncreasing in that directior_Gt can be shown to
be positive for any small perturbation im and ¢, but the
aJ;  O0H, _9J, expressions involved are lengthy and will not be repeatee. he
(?—pt = 8—;[1 + Jiy1] + Hy (;;1 (30) P ik P

Contour plot of J, N=500, &=200

The sign of each term in this series is determined by the si
of the partial derivative off; at each point in time. The other
terms in the expression are probabilities, which are pasiti
or truncated cost functions, which must also be positivee Tl
derivative of H with respect tax; reduces to an expression in
terms of Hy,

8Ht o Nref—NCCt

- = - o A
o, L r— Bl) &£ 04

The partial derivative ofd; with respect top is:

OH, Nzy — N 9
gt _ gt o (32)
Op x4(l—a¢) Op
One multiplicative term within this expressiaNz; — N"¢7, 0.35
is particularly interesting. Using the allegedly optimallipy ' 0.5 1 15
from (29), the value of;; can be found for all t using (5): B
_ Zo, t=0 33 Fig. 5. The contour lines of the cost function fafF = 500, N"¢f = 200

Ty = ]\/'Tef/]\/'7 t>0 (33) show the shallowness of the minimum with respect to thersgdéictor3. The

cost steeply increases gg is varied for a fixedVef. In contrast, changes

Forallt > 0, Nxt—Nref is equal tON.Nref/N_Nref _in Bresult in only modest increases ih
0. ConsequentyH;/dp = 0 for t > 0, and by extension
every term in the series definingJ;/0p. Furthermore, this
line of reasoning also works to show ttéat, /9 = 0, because
each term of the series defining it will also contain a facor o A swarm of 500 two-state agents was simulated with the
Nref — Nz,. The task remaining is to show thatis increasing goal of recruiting 200 agents into the N state. The results
as the policy parameters deviate from the optimal poliayillt illustrate the behaviors described above. Simple feeddot
not be shown here, but it is straightforward to demonstratentrol policies were computed, one settitg= 0.1 and
that J increases with even infinitesimal perturbationspin the otheg = 1. As predicted, the number add N agents
As Figure 5, shows, however, the increaseJiras 3 varies approaches 200 in both cases. The recruitment behavior of
is very gradual, and second derivative tests do not suffiégbe 3 = 0.1 policy seems less random; however, this is the
One approach is to show that the gradient/odit some finite result of the auto-covariance of the system, not a diffezenc
distance away from the critical point is always pointing gwain the actual variance aV;/". The cumulative distribution of
from the optimal policy. This is shown by making sure thatalues of N" in the steady-state regime of both simulations
the inner product between the vector distance to the optinsiiows that the overall distribution of both processes islpea

V. COMPUTATIONAL RESULTS

policy and the gradient at that point is positive: identical, as shown in Fig. 7 using the cumulative distiidut
function of N?™ for each policy. However, the number of state
Hy[l + ] transitions per unit time, shown in red on Figure 6, is much

(Ap,Aq) -VJy = Zy = Gy + Hyze1 (34)  lower for the = 0.1 policy, as predicted by (15).
The one-shot policy was simulated using the same reference
The sub-expressio@; determines the sign of each term imas the constant policiesy™®f = 200. Figure 8 shows the

the series, result of 20 simulations. This control policy produces d¢ans

CCt(l — CCt)



steady-state errors, unlike the constant policies. Howéhie Simulation of One-Shot Policy

distribution of these errors is exactly equal to those ptbtt 250
in Fig. 7. Figure 9 demonstrates this using the result of 100
simulations. 0|
The minimal feedback policy introduced in Section IV was « o —
simulated forN"¢f = 200, showing the typical convergence &
behavior. Figure 10 shows a simulated result, as well 8 § 150
the expected the expected convergence time to the desir S
distribution, 27.5 time intervals. The authors’ previousriv & 149
found that the expected convergence time under these sal §
conditions, but with full knowledge ofVy™ was about 4.5
time intervals [5]. This gives a sense scale when consigerir 50
the value of state information for feedback in recruitmen
problems. 0
0 5 10 15 20 25

Time
Constant Feed—-Forward Policyt‘,’"N
Fig. 8. Twenty simulation runs of the one-shot policy. Thistjdlustrates the
trade-off made in this controller. In exchange for a stesidye error having
200 the same variance as the constant policy, the agents makatedransitions
at steady state.

c

O+~
< 100
CDF of One-Shot Policy Steady State Error
0 . . . 1
0 50 100 150 200 "
Time Steps S 08
. S o.
Constant Feed—Forward Pohc;{,aﬁs ks
=}
300 T T T £ 06
7
w 200 v ‘ el ' . o 0.4} Half of Simulated
g b=1 B=01 S 7| Results
HZH — = — =VU. (8]
100 L o2
Nref
0 Iy i 0
0 50 ~ 100 150 200 180 190 200 210 220 230
Time Steps Steady State Error

Fig. 6. A simulation of the constant policy recruitment aifon. The Fi9- 9 A cumulative distribution function for the steadgte errors in
number of ON cells for N™¢/ = 200 is plotted (blue) for3 = 0.1 and the one-shot distribution. This distribution will apprbaexactly the same

B = 1, with the number of transitions per unit time (red). As poteti, binomial limit distribution as the constant control poéisi
reducing by a factor of 10 reduces the number of transitions per umié i
by a factor of 10.

Minimal Feedback Policy, ®=200
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Fig. 7. The cumulative distribution oN/™ in steady state, for the two
simulations shown in Fig. 6. Despite the difference in cogeace rate 0
and smoothness of the time evolution, any valuegoproduces the same 0 20 40 60 80 100
cumulative distribution. Time

Fig. 10. The minimal feedback policy consists of using the- 1 constant
VI. CONCLUSION policy until some measurement confirms that the desired eurob agents

This paper has demonstrated that “recruiting” finite sta e recruited; The central controller then commands alh&sg® cease any
) . . . . .%iate transitions.
agents into specified states in specified numbers is possible



using stable, feed-forward control policies as long as the
controller can find inputs that satisfy a few eigenvector anéf!
eigenvalue constraints on the state evolution equatiotiké&n
the previously described closed-loop policies, these -feed
forward control laws cannot cause the system to converg8l
However, the random distribution of agents among states
will be tightly grouped about the desired distribution with
a well-characterized variance. Because the variance it wel4l
characterized and relatively independent of the otheroperf
mance measures for the system, it is straightforward tosass€s]
whether a closed-loop law or a feed-forward law provides
greater accuracy simply by comparing the variance in the r€s)
sponse of the closed-loop policy with uncertain informatio

the variance of the feed-forward law. This analysis is retgtd

to very limited knowledge of the state of agents in the swarm[;7]
Past work on recruitment policies having full knowledge of
N¢™ has yielded good results in finding numerically optimal(®]
control policies. Finding policies for systems in which {er
knowledge is obtainable in the form of an estimating filter, o[9]
for systems with a limited range of control inputs both remai
interesting future directions. [10]
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