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Abstract—This paper is about stochastic recruitment, a control
architecture for centrally controlling the ensemble behavior of
many identical agents, in a manner similar to motor recruitment
in skeletal muscles. Each agent has a finite set of behaviors,or
states, which can be switched based on a broadcast command. By
switching randomly between states with a centrally determined
probability, it is possible to designate the number of agents
in each state. This paper covers stochastic recruitment policies
for the case when little or no feedback is available from the
system. Feed-forward control policies based on rate equilibria
are presented, with an analysis of the performance trade-offs
inherent in the problem. Minimal feedback control laws are also
discussed, and a policy is presented which minimizes the expected
convergence time of the system given only the ability to haltthe
system when the desired output has been achieved.

I. I NTRODUCTION

Finding methods for centrally controlling the collective
behavior of many identical agents is an active research topic
across diverse communities, including robotics, bioengineer-
ing, and control. Many different systems can be modeled as
a swarm of identical agents, such as bacteria, cells, robots
in a swarm, or computers in a network. In this paper, we
will explore control of a class of finite state or hybrid state
agents that we believe to be applicable to a variety of these
problems. In particular, we wish to regulate the ensemble
distribution of many agents over their discrete states, or the
fraction of agents having a particular discrete state. The
discrete states in question could be tasks performed by swarm
robots, cell migration behaviors, or switched modes governing
the time evolution of some continuous state variable. One of
the key components of the these regulatory mechanisms is
stochasticity. In biological systems, stochasticity is a ubiqui-
tous phenomenon that can be observed in mechanochemical
cell and molecular behaviors. For example, angiogenesis cell
migration and tissue development are often treated as directed
random walks, where stochastic behaviors play key roles for
developing multi-cellular structures that meet morphological
and functional requirements [1], [2]. Natural systems are built
upon random processes, and biological systems in particular
exploit the stochastic nature of their building blocks. In
control engineering, randomness has been treated as unwanted
behavior that should be filtered out or avoided. Except for
communication technology and some of the system identifica-
tion techniques, randomness has not yet been fully exploited
as a useful concept. In general, we assume that the transition
between states can be modeled as a Markov state transition
graph whose state transition probabilities are determinedby
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some input given to all agents in the system. The authors are
actively working on applying this control framework to the
problems of endothelial cell migration and artificial muscle
actuators. Figure 1 illustrates the basic system architecture.

Fig. 1. Many systems in nature can be thought of as an ensembleof
functionally similar discrete-state agents that each respond independently to
some global stimulus. The ensemble output behavior of many such agents is
the number of agents in each discrete state.

In this paper, we discuss the performance of feed-forward
control policies for controlling the number of agents in each
discrete state. If rich information usable for feedback control
is available, then many control techniques that presume full-
state knowledge can be applied. The authors have shown that
simple feedback policies can be formulated for controllingthe
ensemble state distribution based on linear feedback laws [3],
expectation-based control laws [4], and dynamic programming
[5]. However, the output measurements from real systems
often provide only uncertain estimates of system state dis-
tribution. For example, a robot swarm might have limited
communication with a central control station. An artificial
muscle composed of many individual sub-units may (and
usually will) exhibit some output delay or hysteresis, so that
some estimating filter must be used to predict the individual
units’ states. Uncertainty of this form will lead to increased
uncertainty in the closed-loop behavior of the system.We will
show that we can formulate open-loop control policies that
cause the state distribution to reach a stochastic equilibrium
that is close to any desired state distribution, having well-
characterized variance. The performance of policies depending



o minimal or no feedback provide a good bounding case
guidelines for examining the performance of closed-loop laws.
Depending on the degree of uncertainty in the state distribution
estimated from measurements, it may actually be advantageous
to use an open-loop policy instead of a closed-loop policy.

In this paper a stochastic cellular system with limited output
feedback will be formulated in its simplest form. Basic conver-
gence properties and control policy will be discussed to gain
insights into collective behaviors of stochastic cellularsystems.
The framing of the problem is based on cell and systems
biology and motivated by needs in robotics and control. The
paper, however, does not aim to apply the results directly to
a specific area; instead the objective is to better understand
the possible regulatory mechanism that may govern a large
population of cellular agents.

II. I NTRODUCING STOCHASTIC RECRUITMENT

In an attempt to investigate a regulatory mechanism that
works with limited or no feedback, we look at biological
control systems, extract key features from there, and formulate
a simple, abstract problem for detailed analysis. One striking
difference from traditional engineered systems is that bio-
logical cells are living in a wet environment, where signals
propagate through diffusion. Stimuli to the process pervasively
affect all the cells involved in the wet environment. It is not
likely that each cell receives a specific control signal from
a central controller. Rather, the control signal, if it exists, is
broadcast in nature.

In response to stimuli, an important property of biological
systems is that each cell’s behavior is stochastic in nature.
Although receiving the same stimuli, the cell’s response is
randomly chosen, conditioned on the environmental factors.
Endothelial cell migration, for example, each cell’s move-
ment is a random process, switching directions stochastically
[1]. Furthermore, the state transition probabilities often vary
depending on the stimuli that individual cells receive. It is
known that biochemical kinetics highly depend on temperature
and other factors, resulting in changes to state transition
probabilities. In the case of endothelial cell migration, state
transition probabilities are modulated by the stimuli eachagent
receives as well as the conditions of the wet environment to
which it is exposed [2].

These stochastic behaviors of biological cells suggest a
new control methodology for engineered systems; a central
controller broadcasts signals that modulate state transition
probabilities to be used at individual agents, or directly broad-
casts state transition probabilities across the cell population.
Whichever the case, the central controller does not dictateeach
agent to take a specific transition, but only specifies the prob-
abilities of transition. The actual control action is up to each
cellular agent, but the collective behavior may be effectively
controlled with the central controller. This broadcast control
protocol will be useful for engineered systems, since it requires
very little bandwidth, and allows each cellular agent to be
completely anonymous.

The authors have developed several types of stochastic
broadcast control [3], [5], [6]. The major difference is that the

previous control architecture exploits feedback of aggregate
output, while this paper addresses control issues with no
feedback or limited feedback. We call this control “Stochastic
Recruitment”, which will be formally described next.

Fig. 2. Muscles are composed of many small motor units, whichare either
relaxed or activated, producing force. The net power and stiffness of the
muscle depend on the number of recruited motor units.

Fig. 3. A small automaton having two states,ON and OFF , can be
commanded to transition between states with probabilitiesp andq.

The concept of recruitment is best explained by examining
the function of skeletal muscle. A muscle is not a homogenous
collection of individual cells; rather it is organized as a net-
work of many small motor units, which respond autonomously
to stimulus from the spinal column, as shown in Figure 2. A
command from the nervous system produces a varied level
of force by affecting the percentage of motor units which
contract. [7]. Each motor unit has a threshold for response to
the nervous excitation, so that varying the excitation being sent
to the muscle acts to modulate the force produced [8]. This
architecture can be replicated in engineered systems composed
of a similar arrangement of subunits, like an artificial muscle
[3]. A central controller broadcasts some excitation to allof
the subunits, which change their behavior at a rate based on
the excitation. The authors have been using two-state agents of
this kind to control shape memory alloy muscle actuators made
up of many binary units [5]. Collectively,N small actuators
produce binary outputs which are modulated so that varied
force and displacement are produced as a function of the
number ofON (force-producing) agents,Non

t . The probability
per unit time of state transitions between theON andOFF
states are described by parametersp andq, as shown in Figure
3.

A. The Dynamics of Randomized Recruitment

A key appealing feature of this state transition framework
is its similarity to statistical models for many real-world



phenomena, including the dynamics of gene regulation [9],
chemical reactions [10], and even swarms of insects [11].
It is well understood how kinetic chemical reaction mod-
els yield well-described transient and steady-state behaviors.
These dynamics can be exploited in engineered systems, since
an artificial system can be designed to arbitrarily vary the
state transition probabilities of its agents. To demonstrate this,
we will consider the simplest recruitment problem, a system
made up ofN small subsystems or agents having just two
states,ON andOFF . The control task is to recruit a specific
number of agents,N ref , into theON state. These states could
represent two different modalities or behaviors exhibitedby
each individual agent. To keep track of the state evolution of
the system, we will introduce a discrete distribution variable,
xt, describing the probability with which each agent isON
at time t,

xt = P (state = ON) (1)

Of course, usingxt as a sufficient statistic for predicting
system behavior does not guarantee thatNON

t can be known
exactly. Instead, the likelihood thatk units are on is calculated
as a function ofxt using a binomial distribution,

P (Non
t = k|xt) =

(

N
k

)

xk
t (1 − xt)

N−k (2)

There are multiple reasons why usingxt makes more
sense than consideringNon

t , if little feedback information
is available. First and foremost, it is quite simple to predict
the future behavior ofx given an initial condition and a
broadcast command. In the absence of other information, such
as a measured ensemble output, this will provide a good
guess of long-term behavior. Second, asN becomes large, the
central limit theorem will guarantee thatNon

t will approach
its expected value,

E(Non
t |xt) = Nxt (3)

The evolution ofxt can be written as a recursive sequence
based on the Markov graph parametersp andq,

xt+1 = (1 − q)xt + p(1 − xt) = (1 − p − q)xt + p (4)

The time evolution ofxt can also be written as a determin-
istic sequence which satisfies (4),

xt+1 =
p

p + q
+

(

x0 −
p

p + q

)

(1 − p − q)t (5)

Herex0 is the initial likelihood that an arbitrarily selected
unit is in the ON state. Some physical meaning can be
gleaned from (5). The time-independent term of the sequence
corresponds to the fraction ofON agents at steady state. This
is equal to the probabilistic rate at which agents transition from
OFF to ON , normalized by the sum of all transition rates
between states,

xss =
p

p + q
(6)

The rate at whichxt exponentially approachesxss from an
initial conditionx0 is is represented in the transient term,

λ = 1 − p − q (7)

These observations are important in formulating an open-
loop control policy.

III. A NO-KNOWLEDGE CONTROL POLICY

In previous work, the authors formulated closed-loop con-
trol laws by finding the state transition graph parameters that
minimize the expected future error,

E(Non
t+1|p, q, Non

t ) = N ref (8)

If the central controller has no knowledge of the number of
agents in each state, then the control policy must produce feed-
forward dynamics that move the state distribution toward the
desired goal. Equation (6) demonstrated that the time evolution
of xt has a steady-state component. Instead of choosingp and
q to minimize the one-step ahead error conditioned on the
present state distribution,p and q could be chosen so that
some desired number of cellsN ref is expected in the steady
state according to (3),

E(Non
ss |p, q) = Nxss = N

p

p + q
= N ref (9)

Many policies satisfy this constraint for any givenN ref .
For example, settingp = 0.1 and q = 0.1 will drive the
agents to a 50% likelihood of being in either state. So will
setting p = q = 0.3. In order to distinguish between these
cases, a scaling analysis can be used to weigh the performance
tradeoffs between these policies.

A. Convergence Rate and Steady State Distribution are Inde-
pendent.

The control policy parametersp and q can be rewritten as
βp0 andβq0, wherep0 + q0 = 1 andβ is a scaling factor that
varies subject to the constraint that0 < p < 1 and0 < q < 1.
When the transition probabilities are scaled in this way, The
steady-state distributionxss is independent ofβ,

xss =
βp0

β(p0 + q0)
=

p0

p0 + q0

(10)

However, the rate of convergence still depends onβ,

1 − p − q = 1 − β(p0 + q0) = 1 − β (11)

This means thatβ is a free parameter with which the
convergence time can be arbitrarily varied while still satisfying
the condition imposed in (9). In the most extreme case,β is
chosen to be 1, so thatλ = 0. In this case,xt converges
to p/(p + q) after only one time interval. Figure 4 showsxt

converging to the same steady-state behavior from the same
initial conditions, for several values ofβ.



B. Accuracy Varies Only as xss and N .

The other point of concern for this control system is the
accuracy of the control system once it reached steady state.
Specifyingxss does not guarantee that the number of recruited
cellsNon

ss will converge. Instead, the distribution from (2) will
have some variance. When expressed as a variance normalized
by the total number of units, this yields a measure of accuracy
for recruitment,

V ar (Non
ss /N |xss) = xss(1 − xss)N =

pq

(p + q)2N
(12)

The β scaling argument from (10) and (11) can be applied
to the variance calculation. The numerator and denominatorof
(12) both vary by a factor ofβ2, so the variance is independent
of the rate at which the actuator converges to its steady state
probability distribution,

β2p0q0

β2(p0 + q0)2N
=

p0q0

(p0 + q0)2N
(13)

This is an important observation; it means that nothing is
to be gained by taking “baby steps”, that is, selecting very
small values ofp and q in hopes of improving the accuracy
of recruitment in exchange for a slower rate of response. The
only parameter that can be varied to improve accuracy isN .

Fig. 4. The expected value ofNon
t and probability distribution ofNon

t at
several points in time are shown forN = 500, p0 = 0.8, q0 = 0.2, and
β = 0.2, 0.5 and 1. This plot illustrates the fact that the variance ofNon

t is
independent of the rate of convergence. All three cases approach the same
probability distribution inNon

t .

C. The Number of Transitions per Unit Time

In a physical system, there is often a significant energy cost
associated with switching agents from one behavior to another.
For example, a mobile robot switching between patrolling two
different areas will expend energy in driving from place to
place. A shape memory alloy actuator has significant latent
heat associated with the phase transition used for actuation, so
spurious phase transitions are costly. As a consequence, itmay
be useful to consider the expected number of state transitions
per unit time when formulating a control policy. The expected

number of transitions can be calculated conditioned onxt, p
andq,

E(N trans
t |xt, p, q) = N(qxt + p(1 − xt)) (14)

In the steady state (9) can be substituted in, so that (14) is
a function ofN , p andq,

E(N trans
ss |p, q) =

2Npq

p + q
(15)

Using the scaling argument again, (15) can be rewritten
in terms ofβp0 and βq0. This implies that an increase inβ
implies more expected transitions per unit time in the steady
state,

E(N trans
ss |βp0, βq0) =

β22Np0q0

β(p0 + q0)
= β(2Np0q0) (16)

The value ofβ minimizing the number of expected transi-
tions is, naturally, 0, corresponding to the control policythat
allows no random transitions between state.

D. Generalization to Many States

Both closed-loop and open-loop control laws of this form
are not limited to the two-state case. In general, the centrally-
specified state transition probabilities for a k-state graph could
be represented as a matrixM ,

M =











p11 p21 · · · pk1

p12 p22 · · · pk2

...
...

. . .
...

p1k p2k · · · pkk











(17)

Each column ofM must add up to 1. Thesek2 − k
independent parameters could be chosen to minimize the
expected error conditioned on the present knowledge for the
number of agents in statesN1

t+1 . . .Nk−1

t+1 , as was done in (8),

E(N i
t+1|M , N1

t , . . . Nk
t ) = N i,ref (18)

Similarly, (9) can be extended to multiple states so that the
steady-state expected number of agents in each state is equal
to the reference,

E(N i
ss|M ) = Nv1(M) = N i,ref (19)

Here v1(M ) is the eigenvector ofM having eigenvalue 1.
The second-largest eigenvalue will dominate the rate at which
the feed-forward policy converges corresponding to the rate
found in (7). Solving for these two conditions (the steady-
state distribution and the rate of convergence) can be done
algebraically or numerically. The other performance criteria
also translate nicely to the multi-state case. The varianceof
the number of agents in statei is still determined only by the
steady state probability of an agent being in that state,v1i(M ),
and by the total number of agents,N ,

V ar
(

N i
ss|M

)

= v1i(M )(1 − v1i(M))N (20)



Finally, the expected number of transitioning agents from
(15) can be written for the k-state case in terms of the steady-
state distribution,

E(N trans
ss ) = N

k
∑

i=1

v1i(1 − pii) (21)

The trade-offs for the multi-state case are not as easy to
quantify nicely. However, the general observation is that as
the second-largest eigenvalue ofM decreases, the convergence
time decreases and the expected number of transitions in-
creases.

E. The One-Shot Policy

So far we have observed that it is impossible to minimize
both convergence time and the number of transitions at steady
state. This performance trade-offs in the no-knowledge, con-
stant policy recruitment problem can be addressed by varyingp
andq with time. Suppose that we want to recruit, as accurately
as possible, a specific number of agents, given no knowledge
of Non

t or x0, in minimal time with minimal steady-state cost.
It was demonstrated above that the accuracy of recruitment
depends only onN andxss. As a consequence, the accuracy
obtained by theβ = 1 policy will not improve for more than
one round of state transitions. This motivates the one-shot,
time-varying recruitment policy:

1) Computep andq that satisfies the steady state condition
from (9), and sets the second-largest eigenvalueλ equal
to 0.

2) Broadcastp andq to all agents.
3) After one round of stochastic state transitions, broadcast

a command to all agents to setp = 0 andq = 0, so that
all transitions cease.

This policy will guarantee that the agents get as close to
the desired distribution as possible, subject to the variance of
Non

ss determined by (13).

IV. A MINIMAL KNOWLEDGE FEEDBACK POLICY

Often, it may be useful to consider the case in which the
central controller has limited knowledge of the number of
ON agents. Letyt be a Boolean measurement which lets
the controller know if the current distribution has reachedthe
desired distribution, or is close enough. One definition of this
could be when exactly the desired number of agents are in the
ON state,

yt =

{

true, Non
t = N ref

false, Non
t 6= N ref (22)

The policy space to be searched is all policies for which
a constant command(p, q) is broadcast, until the minimal
feedback measurements determine that the desired state has
been reached. At this point, all state transitions are commanded
to cease, by settingp = q = 0. The broadcast command is
assumed to be constant because, in the absence of additional
information, there is no good reason for changing the com-
mand. This problem will be posed as a stochastic shortest path
problem. In this framework, the cost function to be minimized

in formulating a policy is the expected time that the system
takes to converge to the desired state or output. We will
formulate the costJ to be minimized as a function of the
initial probability that agents are ON,x0, given the additional
knowledge that the system has not converged at timet = 0.

J = 1 + E

[

∞
∑

t=1

g(yt)

∣

∣

∣

∣

∣

x0

]

(23)

Here g(yt) is the cost per stage of the system, equal to 1
when the system has not yet reached the target, and 0 when
the system is already there:

g(yt) =

{

1, yt = false
0, , yt = true

(24)

At each point in time, Bellman’s equation can be used to
express the truncated costJt recursively forward in time,

Jt = E [g(yt)|xt] + E [Jt+1|xt] (25)

Keep in mind that the sequence{x0, x1, x2, ..., xt, ...} is
determined by (5), as long as the broadcast command(p, q)
is constant. The stochastic nature of the cost function arises
from the uncertainty about when the exact number of desired
ON agents has been reached. After this point, the cost
function becomes zero. The practical result of this is that the
expectation of the cost-to-go will be equal to the probability of
not converging at timet multiplied by the expected cost-to-go
assuming that the desired state has not yet been reached. The
likelihood of reaching the desired state can be described by
thinking of the number ofON agents as a Bernoulli variable
(the sum of many binary random variables),

Ht = P (yt|xt) =

(

N
N ref

)

xNref

t (1 − xt)
N−Nref

(26)

Similarly, the likelihood of not reaching the desired state
will be defined asH̄t,

H̄t = P (ȳt|xt) = 1 − Ht (27)

Using this, the expectation in (25) can be evaluated,

Jt = H̄t + H̄tJt+1 = H̄t[1 + Jt+1] (28)

The benefit of rewriting the series representation ofJt re-
cursively is that each term in the series carries a multiplicative
term from the previous time step,

Jt = H̄t + H̄tH̄t+1 + H̄tH̄t+1H̄t+2 + ... +

m−1
∏

k=t

HkJm

The recursive form of this expression can be used to derive
the optimal policy. In order to demonstrate that a policy locally
minimizes this cost function, we must first find a policy for
which the gradient ofJ with respect to the policy parameters
is zero, indicating that the policy lies at an extremum ofJ
in parameter space. As in the no-knowledge case, nothing
is known about the number ofON agents until the target



distribution is achieved, so a policy with constantp and q
must be pursued untilyt is true. The optimal policy to pursue
is not hard to imagine; Essentially, it is to re-run the one-shot
policy again and again untilyt is true. This can be proved
analytically.

(p, q) =
(

Nref

N
, 1 − Nref

N

)

(29)

The first condition is that the gradient ofJ with respect
to p and q is zero, for any initial probabilityx0. J can be
expanded recursively forward as a recursive series from any
point in time using (28),

∂Jt

∂p
=

∂H̄t

∂p
[1 + Jt+1] + H̄t

∂Jt+1

∂p
(30)

The sign of each term in this series is determined by the sign
of the partial derivative of̄Ht at each point in time. The other
terms in the expression are probabilities, which are positive,
or truncated cost functions, which must also be positive. The
derivative ofH with respect toxt reduces to an expression in
terms ofHt,

∂Ht

∂xt

= Ht

N ref − Nxt

xt(1 − xt)
(31)

The partial derivative ofH̄t with respect top is:

∂H̄t

∂p
= Ht

Nxt − N ref

xt(1 − xt)

∂xt

∂p
(32)

One multiplicative term within this expression,Nxt−N ref ,
is particularly interesting. Using the allegedly optimal policy
from (29), the value ofxt can be found for all t using (5):

xt =

{

x0, t = 0
N ref/N, t > 0

(33)

For all t > 0, Nxt−N ref is equal toN ·N ref/N−N ref =
0. Consequently∂H̄t/∂p = 0 for t > 0, and by extension
every term in the series defining∂Jt/∂p. Furthermore, this
line of reasoning also works to show that∂Jt/∂q = 0, because
each term of the series defining it will also contain a factor of
N ref−Nxt. The task remaining is to show thatJ is increasing
as the policy parameters deviate from the optimal policy. Itwill
not be shown here, but it is straightforward to demonstrate
that J increases with even infinitesimal perturbations inp0.
As Figure 5, shows, however, the increase inJ as β varies
is very gradual, and second derivative tests do not suffice.
One approach is to show that the gradient ofJ at some finite
distance away from the critical point is always pointing away
from the optimal policy. This is shown by making sure that
the inner product between the vector distance to the optimal
policy and the gradient at that point is positive:

(∆p, ∆q) · ∇Jt = Zt =
Ht[1 + Jt+1]

xt(1 − xt)
Gt + H̄tzt+1 (34)

The sub-expressionGt determines the sign of each term in
the series,

Gt =
(

Nxt − N ref
)

(

∆p
∂xt

∂p
+ ∆q

∂xt

∂q

)

(35)

As above, the only terms in the series defining the inner
product which can be negative are withinGt. Gt can be
evaluated forp = βN ref/N and q = β(1 − N ref/N), to
obtain the expression:

Gt = Nt(x0 − p0)
2(1 − β)2t (36)

This is greater than zero forβ 6= 1, so the cost function
is also increasing in that direction.Gt can be shown to
be positive for any small perturbation inp and q, but the
expressions involved are lengthy and will not be repeated here.

Contour plot of J, N=500, Nref=200

β

p 0

0.5 1 1.5
0.35

0.4

Fig. 5. The contour lines of the cost function forN = 500, Nref
= 200

show the shallowness of the minimum with respect to the scaling factorβ. The
cost steeply increases asp0 is varied for a fixedNref . In contrast, changes
in β result in only modest increases inJ .

V. COMPUTATIONAL RESULTS

A swarm of 500 two-state agents was simulated with the
goal of recruiting 200 agents into theON state. The results
illustrate the behaviors described above. Simple feed-forward
control policies were computed, one settingβ = 0.1 and
the otherβ = 1. As predicted, the number ofON agents
approaches 200 in both cases. The recruitment behavior of
the β = 0.1 policy seems less random; however, this is the
result of the auto-covariance of the system, not a difference
in the actual variance ofNon

t . The cumulative distribution of
values ofNon

t in the steady-state regime of both simulations
shows that the overall distribution of both processes is nearly
identical, as shown in Fig. 7 using the cumulative distribution
function ofNon

t for each policy. However, the number of state
transitions per unit time, shown in red on Figure 6, is much
lower for theβ = 0.1 policy, as predicted by (15).

The one-shot policy was simulated using the same reference
as the constant policies,N ref = 200. Figure 8 shows the
result of 20 simulations. This control policy produces constant



steady-state errors, unlike the constant policies. However, the
distribution of these errors is exactly equal to those plotted
in Fig. 7. Figure 9 demonstrates this using the result of 1000
simulations.

The minimal feedback policy introduced in Section IV was
simulated forN ref = 200, showing the typical convergence
behavior. Figure 10 shows a simulated result, as well as
the expected the expected convergence time to the desired
distribution, 27.5 time intervals. The authors’ previous work
found that the expected convergence time under these same
conditions, but with full knowledge ofNon

t was about 4.5
time intervals [5]. This gives a sense scale when considering
the value of state information for feedback in recruitment
problems.
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Fig. 6. A simulation of the constant policy recruitment algorithm. The
number ofON cells for Nref

= 200 is plotted (blue) forβ = 0.1 and
β = 1, with the number of transitions per unit time (red). As predicted,
reducingβ by a factor of 10 reduces the number of transitions per unit time
by a factor of 10.
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Fig. 7. The cumulative distribution ofNon
t in steady state, for the two

simulations shown in Fig. 6. Despite the difference in convergence rate
and smoothness of the time evolution, any value ofβ produces the same
cumulative distribution.

VI. CONCLUSION

This paper has demonstrated that “recruiting” finite state
agents into specified states in specified numbers is possible
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Fig. 8. Twenty simulation runs of the one-shot policy. This plot illustrates the
trade-off made in this controller. In exchange for a steady-state error having
the same variance as the constant policy, the agents make no state transitions
at steady state.
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Fig. 9. A cumulative distribution function for the steady-state errors in
the one-shot distribution. This distribution will approach exactly the same
binomial limit distribution as the constant control policies.
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Fig. 10. The minimal feedback policy consists of using theβ = 1 constant
policy until some measurement confirms that the desired number of agents
are recruited; The central controller then commands all agents to cease any
state transitions.



using stable, feed-forward control policies as long as the
controller can find inputs that satisfy a few eigenvector and
eigenvalue constraints on the state evolution equation. Unlike
the previously described closed-loop policies, these feed-
forward control laws cannot cause the system to converge.
However, the random distribution of agents among states
will be tightly grouped about the desired distribution with
a well-characterized variance. Because the variance is well-
characterized and relatively independent of the other perfor-
mance measures for the system, it is straightforward to assess
whether a closed-loop law or a feed-forward law provides
greater accuracy simply by comparing the variance in the re-
sponse of the closed-loop policy with uncertain information to
the variance of the feed-forward law. This analysis is restricted
to very limited knowledge of the state of agents in the swarm;
Past work on recruitment policies having full knowledge of
Non

t has yielded good results in finding numerically optimal
control policies. Finding policies for systems in which partial
knowledge is obtainable in the form of an estimating filter, or
for systems with a limited range of control inputs both remain
interesting future directions.

REFERENCES

[1] N. Mantzaris, S. Webb, and H. Othmer, “Mathematical modeling of
tumor-induced angiogenesis”,Mathematical Biology, Vol. 49, pp.111-

187, 2004
[2] S. McDougall, R.A. Anderson, and M. Chaplain, “Mathematical mod-

eling of dynamic adaptive tumor-induced angiogenesis: Clinical im-
plications and therapeutic targeting strategies”,Journal of Theoretical
Biology, Elsevier, 2006.

[3] J. Ueda, L. Odhner, S. Kim, H. Asada, “Distributed Stochastic Con-
trol of MEMS-PZT Cellular Actuators with Broadcast Feedback,” in
2006 IEEE-RAS International Conference on Biomedical Robotics and
Biomechatronics, 20-22 February 2006, p. 272-277.

[4] L.Odhner, J. Ueda, H. Asada, “Feedback Control of Stochastic Cellular
Actuators,” in The 10th International Symposium on Experimental
Robotics, 2006, p. 481-490.

[5] L. Odhner, J. Ueda, H. Asada, “Stochastic Optimal Control Laws
for Cellular Artificial Muscles,” in 2007 International Conference on
Robotics and Automation, 1-14 April 2007, p. 1554-1559.

[6] J. Ueda, L. Odhner, H. Asada, “Broadcast Feedback of Stochastic
Cellular Actuators Inspired by Biological Muscle Control”, International
J. of Robotics Research, v.26, n.11-12, pp.1251-1265

[7] Zajac, Felix, ”Muscle and Tendon: Properties, Models, Scaling and
Application to Biomechanics and Motor Control”,Crit. Reviews in
Biomedical Engineering, v.17, n.4, 1989, pp. 359-411

[8] E. Henneman, G. Somjen, and D.O. Carpenter, “Functionalsignificance
of cell size in spinal motoneurons,”J Neurophysiol, 1965, v. 28, p. 560-
580.

[9] A. Julius, A. Halasz, V. Kumar, G. Pappas, “Controlling biological
systems: the lactose regulation system of Escherichia coli,” in 2007
American Control Conference, 9-13 July 2007 p. 1305-1310.

[10] D. Gillespie, “Exact Stochastic Simulation of CoupledChemical Reac-
tions,” The Journal of Physical Chemistry, Vol, 8 1, No. 25, 1977

[11] S. Berman, A. Halasz, V. Kumar, S. Pratt, “Bio-InspiredGroup Behav-
iors for the Deployment of a Swarm of Robots to Multiple Destinations,”
in 2007 International Conference on Robotics and Automation, 1-14
April 2007, p. 2318-2323.


