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Abstract—We consider the task of training an obstacle de-

tection (OD) system based on a monocular color camera using y
minimal supervision. We train it to match the performance of a

system that uses a laser rangefinder to estimate the presence
of obstacles by size and shape. However, the lack of range
data in the image cannot be compensated by the extraction of
local features alone. Thus, we investigate contextual technigse
based on Conditional Random Fields (CRFs) that can exploit
the global context of the image, and we compare them to a
conventional learning approach. Furthermore, we describe a
procedure for introducing prior data in the OD system to increase
its performance in “familiar” terrains. Finally, we perform
experiments using sequences of images taken from a vehicle for|
autonomous vehicle navigation applications.

I. INTRODUCTION

Obstacle detection (OD) is important in many mobile robq
applications and autonomous vehicles. The most succes;j
OD systems rely on range information to detect obstacles b _
size and shape. Among all the range sensors, laser rangsfind A John Deere tractor (4710 series) was used for some of

are the most popular and widely used range sensors, dudlfp exPeriments in agricultural applications. It was eqaip
their quality of data. with cameras, positioning sensors, a computer and a SICK

Unfortunately, laser rangefinders contain mobile parts |ﬁser for perception.
their design which makes them complex and expensive. Fur-
thermore, they may require extra hardware to scan the scene
and a precise calibration. In contrast, color cameras agsma Moreover, we present an algorithm to improve the OD sys-
produced and are comparatively inexpensive. However, tin performance in agricultural environments and, in galiner
lack of range data makes the OD problem more challengirif. applications where the system re-visits the same areas. |
Local features alone are not enough to extract enough inféis case, we build a database of hand -or automaticallg- cla
mation to detect obstacles reliably. We alleviate this fewb sified images of the terrain and integrate them in a contéxtua
by exploiting the contextual information in the image. Fofodel to improve the obstacle detection process.
example, since we cannot measure the shape of the rocRhe contextual methods presented in this paper are com-
directly, we learn that rocks are gray objects with certaipared to conventional non-contextual learning approadives
texture properties and surrounded by brown dirt. use a OD system equipped with a SICK laser, a color camera,

This paper investigates several contextual techniquesdbagositioning sensors (IMU, GPS and wheel encoders for speed
on Conditional Random Fields (CRFs), which have been suveasurements) to extract the precise location of the dbestac
cessfully used in the past for classification and segmemtati(see fig. 1). Then, all the algorithms are trained to match the
tasks, and allow to exploit contextual features in the imageerformance of this OD system.
One of the CRF models presented in this paper uses a logThis paper is structured as follows. The next section gives
linear model which imposes a linear combination of the inpat short overview of prior work in this area. In section llI
features. Then, we apply the “kernel trick” to this model tave introduce the basic CRF model. Section IV describes our
allow the use of different kernels with the hope that, in thprocedure to apply the kernel trick to a log-linear CRF model
projected space, classes become linearly separable. In section V we show an algorithm to make use of prior data.



° ° a Q a a ° a [Il. CONDITIONAL RANDOM FIELD MODEL
\" A. CRF model
° ° ° ° ° A Conditional Random Field (CRF) is an undirected graph-
ical model in which edges represent conditional depenésnci
between random variables at the nodes. The distribution of
each random variablg; is conditioned on an input sequence
x. The conditional dependency of the random variables on

_ _ _ _ x is defined by using feature functions with some associated
Finally, we show the effectiveness of our algorithm in a batayeights. Together, they can be used to determine the priebabi

2: Left: MRF graph structureRight: CRF graph structure.

of experiments in section VII. ity of eachy;. Dependencies among the input variabkedo
not need to be represented because the model is conditional,
Il. RELATED WORK affording the use of complex and rich features of the input.

Thus, CRFs are discriminative models, that is, they model
In the obstacle detection and avoidance field, Dima prefy|x)®.

sented an algorithm which combined the information pragide In a general way, to model the conditional probability
by different sensors in the image frame [3]. The data fronmeadistribution of a sequence of labejsgiven the observations
sensor was transformed to image coordinates, thus each panp(y|x) takes the form shown in (1):
of the image contained features from the image plus features 1
from other sensors (i.e. infrared, LADAR, etc). Whereas the p(ylx) = 7 1T weve), )
algorithm enabled the fusion of heterogeneous sensors, the S

classifier that was used assumed independence among all\{fi@re w.(v.) is a potential function that depends on the
parts in the image. . variables in a cluster: (defined asv.). Z(x) is called the
Many cues needed for obstacle detection are contextgalrtition function, and it is a normalization factor to make

information, and Markov Random Fields (MRFs) are widelgyre thatZy, p(y;|x) = 1. It depends on the data, therefore
used machine learning tools to exploit this informationwHo it takes different values as the input)(changes.

ever, in the MRF framework, the observed data is assumed tqn this paper, we use a |og-|inear model for the CRF. Thus,

be conditionally independent which can be very restrictive ¥ are potentials of the form shown in (2):

some applications (see fig. 2). Unlike MRFs, CRFs model di-

rectly the conditional distribution. Thus, the relatioretveeen .

the input variables do not need to be explicitly represerited We(ve) = exp {Zk: A (X, yc)} ’ )

the past, their main limitation was the use of slow training ) .

algorithm (such as iterative scaling -1IS-); however, race Wheréxe,ye € v. andf; is featurek function overx,y.

advances in CRF theory have found efficient algorithms for N the image labeling task, the CRF model we use is a

parameter learning and inference in general CRF graphs [18ftice, forming an undirected graphi = (V,E). V are the
Log-linear CRFs have been successfully used in the p&9des or vertices anH are the edges. Every node and every

for image labeling. In this form, CRFs allow for a parametefdd€ contain a potential function that operates on a subset

estimation guaranteed to find the global optimum due to tRé the random variables present @. Thus, we define the

convex property of their conditional likelihood functioror ~conditional probability distribution of the CRF as shown in
instance, CRFs have been used for detection of man-me(ﬁE

structures in natural images [7]. CRFs have been used forp(y|x) = ﬁHiev\Il(gji’yi)H(Lj)eE\Il(yi’yj’xi’xj)
object detection and recognition given its parts in magés}.[ Z(x) = Zy iy ¥(zi,4i) H(i,j)eE U (ys, yj, i 5),

They have been also used for object segmentation tasks in (3)
images [14], and with occlusion handling [17]. Also, thig&d \here, functionsl are of the form:

has been extended to segmentation in video sequences [16].

Saxena el al. [12] uses a discriminative MRF model to esémat V(i yi) = exp {3k iy, 9o (@)} %)
the depth using a single still camera, which could be used as U(yi, 5> i, ;) = exP {3k Mgy, fo(7i,35) }
the input to an obstacle detection algorithm. We sety € REXE and \ € REXEXL. [ is the number of

A linear relation between features and random variables different labels or classes and is the number of features.
the CRF model has been widely used, but in some cases this

can be a restrictive constraint. To overcome this limitatian Bold letters denote an array of elements or variables. Fomgtiare
. he CRE del I h f k r«fgresented by non-bold letters followed by parenthesesp(x). All non-
extension to the model to allow the use of custom €MPRd no-function letters represent variables. In the CRftext, unless stated

was proposed by [8]. In this paper, we present an alternatiigerently, x denotes data ang denotes labels. Sub-indexes denote elements
algorithm. In genera| the possibility of Changing the ladrn of the array, i.ex; denotes the data at the i-th noge denotes the label at the

' o .i-th node.{y;,y;} denotes a pair of labels of at nodesi, j. y = {v;,y;}
§l||OWS the model to adapt better to a specific problem rewlti represents all pair of labels of adjacent nodey @qual to the paify;,y; }.
in better performance. y™ denotes the m-th sequenceyflabels.



Unlike other representations found in the literature, weseh avoid over-fitting. The negative regularized log-likeldtbfor
functions g, and f;, which only depend on the data, and noa CRF model is given by (6):

on the labels. Because of this representation, the weigbts a A

the ones that depend on the labels. Thus, to account for the nll(¢) = — Z log{p(y[x", ®)} + §¢T¢ (6)

different classesl — 1 hyper-planes are needed. meM
~ The total number of node weights ig. — 1)K and it gnoring the regularization term, the derivatives of the-lo
is equivalent to usel, x K node weights and setk = |ikelihood over the parameters yield to equations in (7).

L.K pyr = 0. We chose the edge weights to be the absolue first term is the value of the features under the empirical
value of the difference of features in adjacent nodes. Henggstribution. The second term, which arises from the déiviea
the total number of edge weights in this representation d$ 1o Z(x), is the expectation of the features under the model

Lx Lx K because we need as many weights as node featuggstribution. Equation (7) shows the derivatives correstiog
and combinations of pairs of labels. However, we restrigy ;, and A, respectively:

Aiis = —AguVl # s, which reduces the number of edge omii()
weights toL x K. e = ~Epy=1,0[9] + Epy=iix;6)5(x) [9%]

It i§ ir_1teresting_to note thz_it the model define(_j in (3) c_orﬂain %ﬁg‘f) = —Ejiy={1,5},2) k] T Epiy={1,5})x:6)5(x) Lft]
a logistic regression classifier in each node. Simply, birget
the edge weights t0 (i.e., defineVi,j e E \,,,, = 0) it Unfortunately, there is no analytic solution to this eqomti
is easy to see that every node contains a multi-class logigisetting the gradient t0 and solving for\ does not always
regression classifier. yield to a closed-form solution). Thus, an iterative altjur

In summary, the set of parameters for the CRF in oisg needed in order to approximate the optimal solution. Note
representation is the union of the node weights and the edbat the functionnli(¢) is concave, which follows from the
weights ¢ = {u1. x1..1-1,M1. Kx1..0}) giving a total of convexity of functions of the forny(x) = log ), expz;.

K x (2L — 1) parameters. This property shows that every local optimum is also a global
optimum. AddingL2 regularization to the NLL ensures that
B. Inference in 2D CRF logl(¢) is strictly concave, which implies that it has exactly

It is worth noting that inference problems like marginal®"< global optimum.
L ng th P g Thanks to this property, methods like steepest descent can
ization and maximization are NP-hard to solve exactly ar’gj ) . )

. . . ; . e used, although they may require many iterations to cgaver
approximately (at least for relative error) in lattice grégal aking them slow. Newton’s method can converge much faster
models, and in general, for most of the graph structures. hexing th ; ge mt
a CRF graph model, maximization is to find the most Iikelgecause it takes into account the curvature of the liketihoo

' . . owever, computing the Hessian can be expensive, too, since
sequence of labelg given an inputx, that is: it is quadratic in the size of the parameters. An intermediat
¥y = argmaxp(y|x, ¢) (5) solution for this problem is to use quasi-Newton methodshisu
y as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [1

However, findingy™®* exactly is infeasible in practical 4, 6, 13], in which the Hessian is updated by analyzing

cases for 2D CRFs. A brute force algorithm would need t%ucc.esswe grad|enf[ vgctgrs. BFGSis the algorllthm thatsge u
. . S . ._in this work for optimization (through ni nunc in Matlab),
explore all possible labelings, which in a binary CRF of size

24 x 32 would be1.5 x 10?3, In theory, the marginalization and, as itis discussed in [15], it provides a rapid convesgen

problem for graphical models with loops is #P-complete ar;[8 the optimal solution.

maximization is NP-complete. Thus, approximate infereisce IV. KERNEL CONDITIONAL RANDOM FIELDS

used to solve these problems. “ o . .
. . . A. “Kernel Trick” and Logistic Regression
There are several methods in the literature for approximate

inference in graphs (i.e. maxent -although only works for Logistic Regression (LR) is a discriminative linear cléssi

binary labels-, variational methods, Monte Carlo method§'at estimates the(y|x) by using a linear combination of

Belief Propagation (BP), etc...). We used BP for approxdarnaieatures ofz. The conditional likelihood for LR is defined in

inference, because it gives good results in practice [9] ak):

provides solution to the marginalization and maximization (y|z) = exp {2y ry 9k ()} (8)
py y=L—-1

problems. L4302 exp {32, trygr(z)}

By applying the “kernel trick”, one can convert a linear
classifier algorithm into a non-linear one by using a non-
In our work, we use the MLE principle to learn thelinear function to map the original observations into a lkeigh
parameterg) such that the regularized negative log-likelihoodiimensional space; this makes a linear classification in the

is minimized. The algorithm assumes that we are given setrdw space equivalent to non-linear classification in thgioai
i.i.d. labeled image$X™,Y™) € M. Regularization is added space (see fig. 3). We apply the Mercer’s theorem, whichsstate
in the form of a Gaussian centered(adver the parameters tothat any continuous, symmetric, positive semi-definiten&er

C. Maximum Likelihood parameter learning
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3: Example of a dataset not linearly separable in the oring: Exampl
inal dimension space (on tHeft), but it becomes separable
after using a quadratic kernel (on thight), augmenting the
dimensionality of the input space ky

e of boundaries obtained by a multi-class IVM
classifier,36 import vectors and a a Gaussian kernek 0.1).

in order to extract the set of node features that will be used

. ~ by KCRF. Finally, we use the algorithm described in section
function K (z;,z;) can be expressed as a dot product in @.c for parameter learning till its convergence.

high-dimensional space, to equation 8: In this work, we experiment with Gaussian kernels because
exp{Y, cq iy K (z,7;)} they often provide good performance [2]. When they are used,

plylz) = R . (9) the corresponding feature space is a Hilbert space of iefinit
1+Zy:1 eXp{ZziGS aiyK(x’Ii)} dimension. However, the regularization used for parameter

where S is the space of vectors that span the kernel. Asarning avoids the infinite dimension to spoil the resuits.
with LR, the log-likelihood is a convex function, and it isthis paper, we refer to the Gaussian kernels the ones that tak
possible to compute the gradient and the Hessian of tthee form in (10):

log-likelihood, making suitable Newton-Raphson methauts f =2 12

rapid optimization. However, there are several perforreanc K(wi,xj) =e 27, (10)

penalties by using this method: wherez;, z; are input vectors.

o Computing the kernel matrix can be computationally
expensive Q(N?), whereN is the number of vectors). V. PRIOR DATA AND K-CRFs (PK-CRF)

« A N x N matrix must be inverted at each iteration of In this section, we introduce an algorithm to take advan-
Newton-Raphson method, increasing the computatiorfage of situations where prior labeled data is availabke,(i.
cost of the training algorithm to the order 6f( N?). agricultural applications where vehicles revisit the sareas

« In practice, most (if not alljn; have non-zero values, multiple times). If we label the data that corresponds to the
which increases the cost of classifying samples (each n@@rking area once, we may be able to use these labelings to
sample needs to be projected into all then the kernel). improve future labeling performances. Thus, in cases where

These problems can be solved by fixifigo use a small subsetthe input image is similar to one in the prior data set, we
of ;. However, we need an algorithm to determine which arfBiay be able to re-use the prior labels. The parts of the image
how manyz; should be inS. which experience changes (i.e. illumination, pose, neggng

In this paper, we will use the method proposed by [18]. THDJects, etc) may need new evaluations.
sub-modelS found by IVM algorithm is an approximation to The algorithm described in this section assumes that the
the full model found by KLR. The algorithm starts with arinPut data is tagged with pose (which does not need to be
empty set of vectors fof. Then, at every iteration the vectorexact), and that the ground plane is mostly flat. For this, task
that minimizes de NLL the most is added £ The vectors We build a database with the prior labeled images tagged with
in the kernel spacé are called import vectors. The algorithmPose. Then, for every new input image, the closest image
stops when the NLL does not decrease after some numbefbf0se is recovered from the database and aligned with the
iterations. A toy example is shown in fig. 4. input image (see section VI). At this point, we can refer each

) part/region in one image to the other. Thus, if we know the

B. “Kernel trick” for CRFs (K-CRFs) ground truth for the labels of one of the images, we can use

K-CRFs were originally introduced in [8], and they allowthis information in the image that we are trying to label.
the use of implicit feature spaces through Mercer kernels. O In practice, there are differences between the input image
approach differs mainly in the way we find the kernel spacand the reference image, even after the alignment, duedoserr
In our algorithm, we use the IVM algorithm as described im the alignment process, errors in pose, possible chamges i
section IV-A to find the vectors;; that will span the kernel the environment, moving obstacles, etc. However, we let the
spaceS in the node potentials. Then, we compute the CRF to decide for us whether the label in the reference image
projected into the kernel space found by the IVM algorithrehould be used.
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6: Axes alignment for two images. Images are rectified,

5: PK-CRF model. White nodes represent random variabld&nsformed to a top-down view, and rotated to align their
axes.

We added the prior data into the CRF model in the forr
of binary features for the nodes and real features for ti
edge. These features incorporate labeling informationhef t
reference image to the input image. The node features hav
value of1 if the hypothesis about the label in the input imag
is the same as the reference image, @mtherwise. The edge
features contain information about the differences betvike
region in the input image and the region in the reference @na
(similar to the edge features in the CRF). We refer to the:
features asy.

Each of these features is multiplied by a weight that depen
on the class~,,!). Putting together this new features with the
CRF model, we get the following node potentials:

7: Normalized correlation between two images.

K N
W(z;,y;) = exp {Z Py, Ok (23) + D Yy, hn(xi)} (11)
k n Once both images are transformed in these coordinates,

Where,K is the number of node features aidis the number the optical axes are parallel. We can use the yaw angle to
of prior features for each node. Fig. 5 shows a graphic&tate one of the images and align the axes of the two images
representation of the model. Discrete random variables & shown in fig. 6. Due to differences in the actualY, Z
connected to the image features and also connected to ¢qerdinates where each image was taken, the resulting snage
features and label information from the reference imageéso May not align, yet. However, after these transformatiohs, t
of the prior features may be missing in the cases where fi@mera axes are parallel and we can compensate for these
match is found for a patch in the reference image. differences in pose by a simple translation. We use noreliz
By adding these features we expect the CRF model to le&igfrelation to compute the relative translation of one imag
that if the node of the image and the node in the referent’-t- the other (see fig. 7 for details). Finally, we can tela
image are similar, then there should be a bias towards using _gach patch from the reference image to each one in the input
same label in the input image as the one used in the refereHB@ge (see fig. 8).
image. However, if the regions differ, then the information !N our experiments, images with differences in position
coming from the image taken in the past should be discardg@¥aller than3m, and differences in yaw smaller tt) de-
and a full evaluation of the region would be required. W@rees were successfully registered. Beyond these nuntbiss,

called this model Prior K-CRF (PK-CRF). method may fail to successfully recover the correct trditsia
for every patch in one image to match the patches in the
VI. IMAGE REGISTRATION reference image. Hence, it is important to find images in the

We use an algorithm for aligning two images with differenélatabase which are very close in pose to the image that we
poses based in [10]. We work under the assumption ti€ labeling.
our test environment has a planar surface. Thus, we use an
homography to transform the image to an orthonormal view
(top-down in our case) by means of four fixed reference pointsin this section, we show that the use of contextual models
in the ground. This transformation works for the ground {if improves the performance for obstacle detection tasks from
is planar) but does not work for trees or other objects whiégmages. We compare the different contextual models predent
are not in the same plane which will often experience seveial this paper (CRF, KCRF, PK-CRF), a logistic regression
distortion (see bushes in rightmost images in fig. 6). classifier (LR) and the Import Vector Machine (IVM).

VII. EXPERIMENTS



8: Left: Flow for every16 x 16 pixels patch to match patches b

in the right imageRight: Reference image. (a) Original images  (b) CRF labelings (©) LR labelings

9: Red boxes denote detectioisp row: Orchard detection.
Bottom row: People detection.

A. Data acquisition platform and features

In our experiments, we use data collected with a vehicle

equipped with several sensors: a color camera, an Inerg@l the tasks is to be able to drive a vehicle (i.e. trac-
Measurement Unit (IMU), a wheel encoder (for vehicle speqgr) through orchard tree lanes. The classifier must prop-
input), a scanning laser and a Global Positioning Systegly segment and detect the orchard tree lanes. We acquired

(GPS). two sequences of images and we used one for training

Camera and laser sensors are registered w.rt. each ofigr classifiers and the second one for producing the video:
and the vehicle. We use a Kalman filter to compute the 10Galt p: / / ww. cs. crmu. edur ~cval | es/ vi deos! or char d. avi

pose of the vehicle using the speed of the vehicle and theas can be seen in the video and in fig. 9 (top row),

information collected by the IMU. Finally, the GPS is used tgRF provides a cleaner segmentation of the orchard tree
acquire the global position of the vehicle at the start tithes  |anes. Furthermore, the number of false positives produced
we can reference the local position among different see®ngy the CRF classifier is much lower. LR produces false
of data collected at different times (we call them logs). positives continuously, some of them just in front of the
Every image is divided into a grid of patchesldfx 16, and  vehicle, which would make the vehicle to stop. However, CRF
we extract feature information from each patch indepenylentgoes not produce any false positive in front of the vehicle
as described in [3] The features extracted contain the m%ﬂne proper|y Segmenting the orchard tree lanes throughou
and standard deviation for the U,V components in the LUe video sequence. CRF significantly outperformed LR for

color space and texture information for a tOtaIZBffeatureS: detection and Segmentation of peop|e in our experiments as i
Every feature was scaled to haemean and standard devias shown bottom row of fig. 9.

tion of 1.
The ground truth contains binary labels (obstacle/not ob~ Comparison of LR, CRF, IVM, KCRF and PKCRF

stacle) for every patch in each image and it is automatically\we collected8 sequences of data in a mostly flat and
Computed USing the laser data. The 3D data extracted from g’}gssy environment, driving am/s for about 4 minutes, with
laser is very accurate and it is used to get a good estimati@eral obstacles scattered around. We loggjéchages per
of the ground. Once the ground is estimated, the detectigficond. Two sequences were used for training and the other
of obstacles becomes very simple (i.e. any 3D point abogewere used for testing. Our definition of obstacle in this
the ground more than 0.5 m is an obstacle). We project tBfivironment is anything that is above the ground more than
object location to the image frame and use that informatigiicertain distance (i.€.5m). Thus, in our gathered data, the
for automatically getting the labels for every image pateh ippstacles are bushes, cones, trees, vehicles, fencesseetc (
the grid. fig. 10). The data was collected in two different days, and
LR classifier is trained using thes features + a constantsome of the obstacles were placed in different positions. We
feature to account for the bias. Similarly, we use the samsllowed similar trajectory for every log we took, just aliing
features for the CRF node potentials and a totabdfedge deviations from the original path smaller than 5m.
features 28 x 2(classes)- 1(bias)). The edge features were CRF and LR were trained as described in section VII-A.
computed as the Euclidean distance of two adjacent nogle used a Gaussian kernel for IVM, KCRF and PKCRF
features. Therefore, the total number of variables of thear classifiers, and we experimenta”y found the 0ptima| kernel
CRF was 86, which were successfully learned using theiidth to be o = 3 by plotting the histogram of distances
algorithm described in section I1I-C. mapped by the kernel as proposed in [5]. The IVM algorithm
) found 119 import vectors. K-CRF used an extbd variables
B. Comparison of LR and CRF for the edge potentials (same ones as in the linear case) and
We compare the performance of LR and CRF (trained for bias, totaling177 variables. In the case of PK-CRF,
using the same features as described in section VII-Ahe of the sequences was used as reference to extract geature
for obstacle detection in an agricultural application. Ongescribed in section V, and was used as database for the test



FPR LR IVM CRF KCRF PKCRF
1/1000] 4.5% £ 0.2 15.0% £ 1.3 57.1% £ 2.5 70.5% £ 3.3 75.3% £ 3.3
1/750| 7.6% £ 0.50 21.2% + 0.9 63.5% + 2.8 73.2% £+ 3.3 77.2% £+ 3.3
1/500| 12.7% £ 1.3 28.4% + 1.5 68.5% £ 3.0 76.9% + 3.0 80.0% =+ 3.3
1/250| 29.7% £ 1.5 43.3% £ 1.8 76.3% £ 2.7 82.1% £ 2.9 84.7% £ 3.0
1/100| 50.2% £ 1.8 64.3% + 2.2 84.7% + 2.6 87.4% + 2.8 88.2% + 2.6
1/75 56.3% £+ 2.0 70.2% + 2.5 86.2% + 2.6 88.7% £ 2.6 89.0% £ 2.7
1/50 | 66.46% £ 2.0 75.9% + 2.6 88.1% =+ 2.4 90.3% + 2.5 91.0% £ 2.4
1/25 77.3% £ 2.3 83.6% + 2.7 89.9% + 2.4 91.8% £ 2.3 92.7% + 2.1
1/10 85.5% £+ 2.3 89.9% + 2.3 91.9% £2.293.7% £ 1.9 94.4% + 1.8

II: True Positive Rate (TPR) for a given False Positive Rate
(FPR) for each algorithm evaluated in this paper.

LR IVM CRF KCRF PKCRF
> 100 img/s ~20img/s ~ 10img/s ~ 3img/s ~ 1img/s

I1l: Number of processed images per second in a Intel Core
2 Duo class machine.

rate of 75% generating a false positive eveity)00 positive-

10: Some snapshots of the environment in which data wgl@ssified patches. IVM and LR produgdalse positive every
collected. Note that an obstacle can be anything that may ¥eand25 positive-classified patches to get the same obstacle
a hazard for the vehicle (bushes, cones, other vehicless, tréletection rate. At this performance point, PKCRF perfopis

etc.) and40 times better, respectively.
We briefly evaluated the computational complexity of these
TPR R VN CRF KCRE PKCRE methods. We ran these experiments in a Intel Core 2 Duo class
0.95] 61.6% £ 0.4 37.3% £+ 0.7 37.0% £ 1.3 20.1% & 2.8 13.5% £ 5.4 machine running at 2.0 Ghz. Code was not optimized to make
0.92| 38.9% + 0.5 16.6% + 3.0 10.5% £ 6.1 4.3% +£3.3 2.9% +2.4
090| 24.3% +4.410.9% +2.2 4.1% +3.2 1.9% + 1.6 1.6% + 0.8 use of the two cores, though. Table Il shows the number of
0.88| 15.2% £3.5 7.2% £1.0 2.0%£1.6 1.2%+£0.5 0.9% £0.3 images per second that every classifier was able to process.
085 9.5% +1.4 4.7% +0.5 1.0% +0.3 0.6% +£0.2 0.4% +0.2 . . . .
0.80| 5.1% +0.6 2.8%+0.2 0.6%+0.1 0.3% +0.1 0.2% + 0.1 This timing does not take into account the time needed to
0.75 3.3% +0.3 1.9% +0.1 0.4% +0.1 0.2% +0.1 0.1% £ 0.1 pre-process the image and extract its features.
I: False Positive Rate (FPR) for a given True Positive Rate\We included the full Receiver Operator Characteristic
(TPR) for each a|gorithm evaluated in this paper. (ROC) curves In f|g 11 and in table IV, we show the Area

Under the Curve(AUC) for each of the methods. Note that the
differences among the various algorithms shown in thisetabl
experiments. are small, and AUC is not significative enough to establish
In order to compare the performance of the different agonclusions. However, in practice, non-contextual atbons
gorithms, we considered a false positive an alarm from ti§§ not offer enough performance to be used in practice in
classifier in an area of & x 3 image patches that does nothese experiments, due to its bad obstacle detection rates a
contain an obstacle. In this application, a false positivaey mlow false alarm rates.
cause the vehicle to stop for no apparent reason, degradingrinally, we generated a video for one of the sequences
the performance of the autonomous vehicle. However, a faw#h the outputs of each classifier discussed in the paper:
negative may be fatal. Hence, it is very important to achiewét p://wwwv. cs. cnu. edu/ ~cval | es/ vi deos/ t est - obs. avi
high obstacle detection rates when working at low fald@ this sequence, the vehicle was manually driven and there
positive rates. were obstacles at different locations. The video shows red
Table | shows the false positive rate of the various classifigPatches for detections, and a blinking red box around the
at different performance points. In this case, differeramasng image of the classifier that produces a false positive that
the classifiers become apparent, specially at low falseipesi would make the vehicle to stop. A snapshot of the video is
rates. The false positive rate (FPR) for a fixed true positiown in fig. 12 where the outputs of the different classifiers
rate (TPR) is shown in table Il. Whereas neither LR ndtvaluated in this paper are displayed.
IVM could be used in practice because of its large FPR at
any performance point in the table, contextual methods give
enough performance boost to be considered. In this work, we presented an obstacle detection algorithm
At low FPRs, contextual methods perform several timder autonomous vehicles using a monocular color camera. We
better than non-contextual ones. For instance, at a fixeddfPRextended a CRF model to allow the use of non-linear kernels
1/250, LR and IVM achieve obstacle detection rates36f and prior data. In the experimental section, we showed that
and43%, respectively (see table Il). Contextual methods (CR#e use of lattice models for image labeling tasks helps to
KCRF and PKCRF) give performances oves%. PKCRF obtain globally more accurate segmentations than classifie
gives a performance just shy 85% at the same FPR. that make locally independent decisions. Furthermore, we
Also, note that PKCRF achieves an obstacle detectishowed that Gaussian kernels work better than linear kernel

VIII. CONCLUSION



LR
91.9% £ 1.4

IVM
94.9% £ 1.1

CRF
95.7% £ 1.2

IV: Area Under the Curve (AUC) for each algorithm.

1

KCRF
97.0% £ 0.9

PKCRF
97.4% £ 0.8
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11: ROC curves for LR, IVM, CRF, KCRF and PKCRF.

in our obstacle detection experiments. Finally, prior dass

12: From left to right and top to bottom: comparison of
original image, LR, IVM, CRF, KCRF and PKCRF for one of
the test images. Obstacles are marked with red boxes.

(1]

(2]
(3]

(4

introduced in the CRF model to produce better segmentatiorﬂscl

in “familiar” environments.

Even though the set of features we used for every image

part was very limited (just color and texture features), th

obtained results are promising towards building an obstacl7]
detection system based only on a monocular color camera.
Gaussian K-CRFs were the best performers when no prigg
data was available. However, PK-CRFs performed even better

when prior data was available.

. . : . [9]
The algorithms proposed in this paper are not limited to
monocular camera approaches_ Future work includes the use Annual Conference on Uncertainty in Artificial Intelligen¢UAI-99)

of multiple camera solutions with different filters on thetime

use of stereo features, experiments with different patzéssi
(or non-uniform image divisions, such as super-pixels,uke
of more node features, and extracting specific edge feafoires|11;

(10]

the CRF model. As one of the main issues when dealing with

camera-only solutions is the exposure, High Dynamic Rang&]

(i.e. capture images at different exposures) could be used t

address this problem.

[13]
In conclusion, CRFs provide a probabilistic framework

with superior performance compared to classifiers that do no
exploit context in image labeling applications. The modael f -
CRFs is flexible enough to support different kernels, or the
addition of a large variety of features. In our experiments,

features that incorporate prior data helped to boost thaoles [16]

detection performance, making PK-CRFs suitable for some

robotic applications that use a monocular color camera.
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