
Planning Motion in Environments
with Similar Obstacles

Jyh-Ming Lien and Yanyan Lu
George Mason University, Fairfax, Virginia 22030

{jmlien, ylu4}@gmu.edu

Abstract— In this work, we investigate solutions to the follow-
ing question: Given two motion planning problems W1 and W2
with the same robot and similar obstacles, can we reuse the
computation from W1 to solve W2 more efficiently? While the
answer to this question can find many practical applications,
all current motion planners ignore the correspondences between
similar environments. Our study shows that by carefully storing
and reusing the computation we can gain significant efficiency.

I. INTRODUCTION

In our everyday life, we face motion planning problems. We
know how to navigate in our environment from the experiences
learned since our childhood. The learning process may be
complex but one of the reasons that we can learn such tasks is
that most objects we encounter today are identical or similar to
the objects we encountered yesterday or even years ago. That
is, we as human beings, remember how to navigate around or
manipulate similar objects using similar strategies.

(a) (b)

Fig. 1. Two similar workspaces sharing the same robot and several similar
obstacles. The red and blue objects indicate the start and goal configurations.
Similar workspaces are usually viewed as completely different problems.

In this work, we propose a method that mimics this simple
observation. The goal of our work is to solve a motion plan-
ning problem, e.g., the problem in Fig. 1(b), more efficiently
by reusing the computation from other similar problems, e.g.,
the problem in Fig. 1(a). It is important to note that the
similarity in this paper is defined by the shapes of the (C-
space) obstacles, not by the similarity of the free C-space.

Similar environments are common. For example, desks and
chairs in a classroom or in an office may be moved around
from one place to another frequently, but new items are seldom
introduced. Even different environments, such as two apart-
ments or a manufacturing factory and an airport garage, may
share many similar items. The main differences are usually
the arrangements. Similar environments can also be found in
simulated reality, e.g., in different levels of a video game or
in the different regions of a VR world, where many objects

are intentionally duplicated to reduce the (e.g., modeling and
rendering) complexity. A planner that exploits the similarity
between its workspaces, such as the one proposed in this paper,
can provide significant efficiency.

This paper also attempts to address a closely related but
slightly different question: how much pre-processing can be
done to solve a family of motion planning problems with
similar environments? If a significant portion of the compu-
tation can be done offline, we can pre-process a very large
set of geometric models (e.g., all the public 3-d models on
the internet) and store the computation in a database for fast
retrieval. An important consequence of this is that almost all
(either known or unknown) motion planning problems can be
solved more efficiently.

In this paper, we propose a motion planner (ReUse-based
PRM or simply RU-PRM) that constructs local roadmaps
around geometric models and stores the local roadmaps in
a database. When an environment is given, the planner will
match the obstacles in the environment to the existing models
in the database. Then the roadmap associated with the matched
models is transformed and merged into a global roadmap. In
essence, our planning method solves the motion problems by
reconstructing the given environment from its “memory” (i.e.,
the existing computation in the database).

Although the proposed method is simple and extends from
the existing PRM-based frameworks, RU-PRM is unique in
several ways. The most critical distinction is that much
“reusable” computation is ignored by the existing planners.
Given two workspaces with identical models (obstacles) but
with different arrangements of these obstacles (e.g., Fig. 1),
all existing planners treat these two workspaces as two distinct
problems and completely ignore the correspondences between
them. More detailed comparison to the related work is in
Section II. In addition to the RU-PRM planner, we also propose
and develop a new shape matching method (in Section V-D
and the Appendix) that allows RU-PRM to perform sub-part
matching and roadmap transformation more easily.

To the best of our knowledge, this is the first work dealing
with similar environments. Although we consider this paper
as preliminary work that provides a proof of concept in
this new research direction, our experimental results are very
encouraging. Our experimental results are very encouraging
and show significant efficiency improvement (by 1∼3 orders
of magnitude faster in most of the studied environments) over
the existing PRM planners.



II. RELATED WORK

We are not aware of any planners that consider similarities
among motion planning problems. There exist PRM planners
that identify and learn features in C-free but their goal is
to determine sampling strategies [1, 2, 3, 4, 5] using ma-
chine learning techniques. Given similar environments, these
methods still build the roadmaps from scratch. There are also
methods that pre-compute and reuse configurations for highly
constrained systems (e.g., closed-chain [6]) in which feasible
configurations are usually difficult to obtain. These methods
do not consider similarities among motion planning problems.

Our method can also be viewed as a type of “self-
improving” algorithm [7, 8]. Existing self-improving planners
consider the performance for a single environment with multi-
ple queries, e.g., [9, 10], but do not consider the performance
improvement across different environments.

In the rest of this section, we will review related work in
motion planning. We classify these work into methods that
deal with static and dynamic environments, respectively. In
our discussion, we will focus on the difficulty of applying the
existing work directly to efficiently plan motions in similar
environments. From our reviews, we notice that all existing
methods cannot efficiently handle the problem of similar
environments. In similar environments, even though the robot
and the obstacles may remain the same, the arrangement of
the obstacles can be totally different, all existing methods
essentially treat them as distinct problems.

A. Static Environments
In this paper, we focus on the problems with static environ-

ments. The problem of motion planning in static environments
has been studied extensively. It is well known that any com-
plete motion planners [11], which always return a solution
as long as there is a path or no if there is not, are unlikely
to be practical. During the two last decades, researchers have
focused on probabilistically complete planners, e.g., PRM [12,
13, 14], EST [15], and RRT [16], which are easy to implement
and are capable of solving challenging problems. A complete
review of these methods can be found in [17, 18].

Briefly, the classic PRM works by randomly generating
collision-free configurations and then connecting them using
local planners to form a roadmap in C-space [12]. Due to
the uniform sampling strategy used by the classic PRM, the
roadmap may not capture the connectivity of C-free. This is
known as the “narrow passage problem.” Therefore, many of
the PRM variants that deal with static environments focus on
problems with narrow passages. Strategies have been proposed
to increase the chance of creating samples inside the narrow
passage [13, 19, 20, 21]. Difficult problems, such as the alpha
puzzle, become the center of study in these works. Never-
theless, these difficult problems are usually created artificially
for testing purposes, and in many real-life problems, such as
planning motion in a factory or in a virtual world, are usually
easier and do not contain very narrow passages. Therefore,
instead of focusing on these difficult but rare problems, our
work attempts to increase the planner efficiency for the easier

but more commonly seen problems. Our method is based on
extending the existing work of PRMs with the functionality of
reusing computations among similar environments.

B. Changing Environments
In changing environments, obstacles become movable [22]

or even deformable [23]. The problem of changing environ-
ments can be considered as a ‘continuous’ version of the
similar environments. If we take snapshots of the changing
environments, the consecutive shots are a set of similar envi-
ronments with small changes.

Many methods have been proposed to handle changing envi-
ronments. These methods usually combine known techniques
to capture both globally static and locally dynamic connectiv-
ity of C-free and can be categorized into two main frameworks:
state-time space and hybrid methods. The state-time space
framework is (probabilistically) complete but requires perfect
knowledge of obstacle velocities and trajectory. On the other
hand, the hybrid methods are more suitable for on-line plan-
ning. For example, Fiorini and Shiller [24] combine the idea
of C-space with velocity obstacle and Petti and Fraichard [25]
incorporate the idea of inevitable collision zone. More recent
work usually uses PRMs to compute the global roadmap. In
order to quickly reflect the dynamic changes in the global
roadmap, Jaillet and Simeon [26] incorporate RRT to connect
disconnected regions, van den Berg et al. [27] propose the idea
of D∗, and Leven and Hutchinson [28] construct a regular grid
in workspace that maps each of its cell to the roadmap nodes
and edges. Once obstacles move, [28] quickly checks occupied
cells and invalidates the associated nodes and edges. Vannoy
and Xiao [29] keep a set of paths and update the fitness values
of the paths when obstacles move. Our method is closer to the
Elastic roadmap proposed by Yang and Brock [30], where the
configurations are sampled around obstacles and are moved
along with the obstacles.

Most of these methods, either explicitly or implicitly, de-
pend on the idea that the moving obstacles do not significantly
affect the roadmap connectivity (at least for a short period of
time), thus the planner should be able to quickly repair and
replan. This assumption becomes unrealistic when obstacles
are totally rearranged.

III. OUR METHOD

In either static or dynamic environments, all existing meth-
ods compute the entire roadmap from scratch once the robot
is placed in a new workspace. This is because, even though
similar environments are composed of similar obstacles, a
roadmap capturing the connectivity of a particular environ-
ments is unlikely to be reusable in other environments.

On the contrary, RU-PRM represents its “mental image”
as a roadmap constructed for each obstacle (called ob-map)
independently. For an unknown environment, RU-PRM also
provides a mechanism to transform the ob-maps to reflect the
new arrangement of the obstacles. Finally, RU-PRM solves
motion planning problems by composing a global roadmap
from all ob-maps in the new environment.



(a) a tiny ob-map database (b) transformed ob-maps (c) composed global roadmap

Fig. 2. (a) A database of pre-computed ob-maps. (b) Transformed ob-maps in a new environment. (c) A global roadmap is composed from the ob-maps.

More specifically, given a motion planning problem
(O,R,Q), where O is a set of obstacles, R is the robot, and Q is
a query, RU-PRM first looks for an existing computation (ob-
map) for each obstacle Oi ∈O. If the same or a similar obstacle
O′

i for O is found in the database, we reuse the computation
by transforming the ob-map constructed for O′

i. If there is
no such an obstacle found in the database, we compute an
ob-map for Oi and store it in the database. To construct ob-
maps, we use the idea of obstacle-based PRMs [19, 13], which
sample configurations on or near the surface of the C-space
obstacles (C-obst). Once all the ob-maps are either loaded
and transformed or constructed for all the obstacles in the
workspace, these ob-maps are merged into a global roadmap,
which then is used to answer the query Q. Fig. 2 illustrates
how RU-PRM works. Algorithm III.1 summarizes the main
steps of RU-PRM.

Algorithm III.1: RU-PRM(O,R,Q)

comment: Obstacles O, Robot R and query Q

for each Oi ∈ O

do






if % ∃MOi , an ob-map of Oi

then
{

Create(MOi)
Store(MOi)

Read(MOi)
Transform(MOi)

MO ←Merge(∪i{MOi})
Query(MO,Q)

In Algorithm III.1, the sub-routines Store(·), Read(·), and
Query(·) are straightforward. The other three main sub-
routines: Create(·), Transform(·) and Merge(·) will be dis-
cussed in detail in Section IV.

For the rest of this section, we will provide a short discus-
sion on the necessary conditions and assumptions that make
RU-PRM efficient. When a given problem does not satisfy
these assumptions, RU-PRM degrades to the traditional PRM.

A. Assumptions

The benefits provided by our method is based on the
following assumptions and conditions.

1) The robot remains the same in the similar environments.

2) The unknown workspace Wi has high correspondences
to other known workspaces W1 · · ·Wi−1.

3) A large storage space is available to store all ob-maps.
4) Pre-processing time is available.
These assumptions are general enough to cover many

practical situations. As we have pointed out earlier, the first
two assumptions are from the observation that many motion
planning problems in real life and in virtual worlds share
many similar items in their workspaces. Moreover, the type
and the number of the robots used in these environments, e.g.,
characters in a game or robot arms in a factory, are usually
limited and do not change often.

Other assumptions are also supported by the current tech-
nologies. Most off-the-shelf hard-drive disc with Tera-byte
capacity can be obtained for just a few hundred US dollars.
Multi-core processors are becoming cheaper and allow more
background computation for creating a database of ob-maps.
In addition, due to the advances of modeling software and
digitizing techniques, constructing complex geometric models
becomes easier than ever. Several 3-d geometric databases,
e.g., [31], that contain thousands of geometric models, are also
available to the public and provide us a set of common objects,
e.g., desks, tables, and chairs, to bootstrap the proposed
planner.

RU-PRM combines all these ingredients and reuses the
computation from the pre-processed geometric models. We
envision that our method will allow these computation to
be shipped with a new robot or a new character (e.g., in
a video game). As far as we know this is the first work
dealing with this types of problems. In this paper, we present
a preliminary work to provide a proof of the concept in this
research direction.

IV. CREATE, TRANSFORM AND MERGE OB-MAPS

In this section, we present three main sub-routines for RU-
PRM in their basic forms. Advanced techniques for optimizing
the efficiency of these operations will be discussed in the next
section (Section V).

A. Create Ob-maps

Creating roadmaps around C-obst allows us to reuse the
computation when the same or similar obstacles are given.
We call these roadmaps ob-maps. There exist several planners



creating ob-maps, e.g., OBPRM [13] and Gaussian PRM [19].
Although RU-PRM can work with any of these planners, in the
experiment shown in Section VI, we use both Gaussian PRM
and the Minkowski sum based approach (called MSUM-PRM)
[32]. Because Gaussian PRM is well known, we will briefly
describe the idea of MSUM-PRM.

MSUM-PRM samples configurations by computing the
Minkowski sums of the robot and the obstacles. It is known
that the contact space of a translational robot is the boundary
of Minkowski sum of the obstacles and the negated copy
of the robot [33]. Although it is difficult to compute the
exact Minkowski sums of polyhedra [34], we have shown that
sampling points from the Minkowski sum boundary without
explicitly generating its mesh boundary, can be done much
more easily and efficiently [35]. To handle the case of non-
translational robots, we simply draw samples from a set of
Minkowski sums, each of which is constructed by randomly
assigning different orientations and joint angles to the robot.

In [32], we have shown that MSUM-PRM generates a free
configuration significantly faster than OBPRM and Gaussian
PRM. We have also demonstrated that these configurations can
be connected into roadmap using more powerful local planners
based on the geometric properties of the Minkowski sum. We
refer the interested reader to [32] for details regarding this
sampling strategy.

MSUM-PRM provides an important advantage for RU-PRM
that is missing from the other obstacle-based samplers. A con-
figuration created by MSUM-PRM can be transformed easily
because the configuration is represented by a pair of points
from the robot and an obstacle. Details of the transformation
operation will be discussed in the next section.

B. Transform Ob-maps

When an unknown obstacle X is matched to an existing
model O by translating, rotating, and scaling O, we consider
how these transformations can affect O’s ob-map (denoted as
MO) for free-flying robots. More precisely, we seek methods
that transform MO to approximate the ob-map of X .

We let CO be the C-obst of O. We further let T , R, and
S be the translation, rotation and uniform scale applied to O,
respectively. Given a configuration c from ∂CO, our goal is
to obtain the corresponding configuration c′ of c so that c′ is
in ∂CO of O transformed using T , R and S.

To ease our discussion, we assume that (1) when we
generate MO, the center of O is placed at the origin of the
coordinate system and (2) the robot is a free-flying articulated
robot. The configuration c is composed of three components
(cT ,cBR,cJR), where cT and cBR are the values of the trans-
lational and rotational degrees of freedom (dof) for the base,
respectively. and cJR represents the rotational dof of the joints.

When we consider only the translation T and rotation R,
obtaining the corresponding c′ is straightforward, i.e.,

c′ = (T +R · cT ,R · cBR,cJR) . (1)

Note that T and R have no effect on cJR.

When we consider the scale S, the only component of
c affected by S is cT . Therefore, c′ will have the form of
(c′T ,cBR,cJR). However, it is not always possible to obtain c′T
that can place c′ in ∂CO after O is scaled. In fact, this is only
possible when (1) both the robot and O are convex or (2) O
is convex and S shrinks O.

Because the contact space of the robot can be represented by
the Minkowski sum operation, we can always decompose cT
so that cT = r+o, where r and o are points from the boundary
of −R and O, respectively. Here, R is the robot and −R =
{−x | x ∈ R}. When R, O and S satisfy the aforementioned
requirements, c′ is in the contact space by letting

c′T = r +S ·o . (2)

If O and R are not convex or if O is convex but S
enlarges O, we can work around this problem using con-
vex decomposition. However, convex decomposition can slow
down the computation significantly and can generate a lot
of components. Therefore, instead of decomposing exactly,
we use approximate convex decomposition [36] and represent
the model using the convex hulls of the components in the
decomposition. Details of this approach is discussed in the
Appendix when we describe our shape matching method.

Alternatively, we can apply Eq. 2 to non-convex shapes.
The consequence of this is that c′ may make the robot collide
with S(O). Therefore, collision detection is used to check the
feasibility of every transformed configuration.

C. Merge Ob-maps
So far, we have treated each obstacle independently. After

the pre-processing step that either loads or generates ob-maps,
we proceed to compose a global roadmap.

The configurations in a (transformed) ob-map, although are
near the surface of the associated obstacle, may be outside the
bounding box or colliding with other obstacles. We validate
each configuration in an ob-map using a collison detector.
For edges connecting two collision-free configurations, we
evaluated them in a lazy manner [37], i.e., we only check
the feasibility of the edges in the extracted paths during the
query phase.

After all configurations are verified, we merge the ob-maps
pairwisely. For every pair of obstacles Oi and O j in the
workspace, we connect their ob-maps by simply adding edges
for k pairs of the closest configurations. Each pair consists
of a configuration from the ob-map of Oi and a configuration
from the ob-map of O j. Again, we do not check the feasibility
of these edges, although some edges may collide with the
obstacles.

Once the global roadmap is constructed, we iteratively
extract and evaluate new paths and delete invalid edges from
the roadmap until a collision-free path is found, otherwise “no
solution” will be reported.

V. PLANNER OPTIMIZATION

In the previous section, the basic framework of RU-PRM is
described. In this section, we will present several optimization



techniques to improve the efficiency of the framework. We
also present a new shape matching method using approximate
convex decomposition.

A. Create Ob-maps with Quality Control

Like most PRM-based methods, the quality of the roadmap
generated by MSUM-PRM also depends on the number n of
configurations sampled. The value of n is usually provided by
the user based on the “difficulty of the problem.” However,
when we consider similar workspaces, their difficulties may
not be known at the ob-map creation time. Therefore, requiring
users to specify the value of n not only puts too much burden
on the users, but it is also unrealistic and impractical.

Xie et al. [38] have attempted to remove this limitation
from PRMs by incrementally increasing the resolution of a
roadmap. Their method adds and connects additional nodes
to the roadmap until certain criteria are met. We follow the
same approach to avoid specifying the value of n. In each
iteration of our map generation process, we add and connect
ni new configurations to the existing ob-map (which is initially
empty) using MSUM-PRM. Then, we check the number nCC of
connected components that comprise m% of the configurations
in the map. If nCC is decreasing for the last z consecutive
iterations, we stop. Note that, although it seems that we
introduce more parameters (ni, m and z) by constructing ob-
maps incrementally, these parameters are easier to set and
usually remain fixed regardless the workspace.

We realize that this simple heuristic method may not handle
all possible scenarios properly. However, from the results of
our experiments, the ob-maps generated by this method cover
the obstacles well, and, in most examples, ob-maps usually
contain a single connected component.

B. Transform Ob-maps Hierarchically

An ob-map may still contain many nodes. Since we do not
know in advance if all these nodes are necessary. For example,
in an open workspace, only few of these nodes are needed
to solve the problem. Transforming and validating all the
nodes in the ob-map significantly slows down the computation.
However, in a cluttered workspace, it is necessary to keep all
the nodes in order to capture the global connectivity.

To address this issue, we organize the roadmap nodes into a
hierarchy and process these nodes in the same manner. More
specifically, we compute the core of an ob-map, which is a
sub-graph that maintains the same connectivity as the ob-
map. In a new workspace, all the nodes in the core will be
transformed and their feasibility will be checked. When the
core does not have the desired connectivity, we repair the core
by transforming additional nodes from the ob-map.

The core is constructed by determining and removing the
redundant nodes in the ob-map. Given a pair of adjacent nodes
u and v in the ob-map, we say that v is redundant if the
roadmap contains the same number of connected components
after (1) removing v and (2) connecting u to v’s adjacent nodes
without colliding with the associated obstacle. Finally, the core

(a) (b)

Fig. 3. Merge the ob-maps of two overlapping obstacles. (a) Before merging.
Free, collision, and boundary nodes are shown in dark gray, white and light
gray, respectively. (b) After merging, the boundary nodes are connected.

is simply a sub-graph of the ob-map without redundant nodes.
We store the core with the ob-map in the database.

In a new workspace, the core is loaded from the database
first. After transformation and evaluation, the core may be
split into many connected components due to the removal of
in-collision nodes. When this happens, more nodes are added
to the core from the original ob-map. Let CC1 and CC2 be
two connected components in the core, we improve the core’s
connectivity by finding a path in the ob-map that connects
a pair of nodes from CC1 and CC2. This process repeats
until both the core and the ob-map have the same number
of connected components or when no path in the ob-map can
be found.

C. Merge Ob-maps Using Boundary Nodes
The merging operation can also be optimized by classifying

the relationships of the C-space obstacles. Let Oi and O j be
a pair of obstacles in the workspace, we can classify their
relationships in C-space based on the feasibility of the config-
urations in their ob-maps, MOi and MO j . More specifically, we
identify the boundary nodes in the ob-maps. Let B{Oi,O j} be a
set of boundary nodes in MOi w.r.t. O j. For each configuration
c ∈ MOi , we say c ∈ B{Oi,O j} if an adjacent node of c makes
the robot collide with O j. Fig. 3 shows an example of the
boundary nodes. Note that B{Oi,O j} %= B{O j ,Oi} unless they are
both empty. We use the boundary nodes to classify and connect
the ob-maps. There are three cases to consider:

1) MOi and MO j are far away from each other, i.e.,
B{Oi,O j} = B{O j ,Oi} = /0.

2) MOi and MO j overlap, i.e., B{Oi,O j} %= /0 and B{O j ,Oi} %= /0.
3) MOi and MO j are near each other, i.e., B{Oi,O j} %= /0 and

B{O j ,Oi} = /0 or vice versa.
Case 1. When the C-obsts of Oi and O j are far away

from each other, we connect their ob-maps using the method
described in Section IV-C, which simply connects the k-closest
pairs between the ob-maps.

Case 2. This is the situation that the C-obsts of Oi and O j
overlap. The ob-maps are connected by adding edges between
B{Oi,O j} and B{O j ,Oi}. Fig. 3 shows an example in this case.

Case 3. This situation requires us to combine the techniques
for Case 1 and Case 2. For B{Oi,O j} %= /0 and B{O j ,Oi} = /0, ob-
maps are connected by adding edges between ci ∈B{Oi,O j} and
its k closest nodes c j ∈MO j . For B{Oi,O j} = /0 and B{O j ,Oi} %= /0,
ob-maps are merged in the same manner.



(a) (b)

(c) (d)

(e) (f) (g)

Fig. 4. Environments used in the experiments. (a, b) 2-d workspaces with
an articulated robot. (c, d) Similar workspaces with a rigid robot and cubes.
(e, f, g) Similar workspaces with a U-shaped rigid robot and walls.

D. Shape Matching using Approximate Convex Decomposition
So far, we have assumed that the same obstacle can be

found in the database. To reuse ob-maps for different but
similar obstacles, we propose a new shape matching method.
Essentially, our matching method estimates the dissimilarity
of two objects by measuring their morphing distance. The
proposed matching method is composed of two main steps: (1)
decomposing shapes using approximate convex decomposition
(ACD), and (2) computing dissimilarity using morphing and
bipartite matching. Details of the shape matching method and
some preliminary results are discussed in the Appendix.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we show experimental results. All the
experiments are performed on a PC with two Intel Core 2
CPU at 2.13 GHz with 4 GB RAM. Our implementation is
coded in C++. Our current implementation only supports free-
flying robots and 2-d shape matching.

We test RU-PRM in three sets of similar environments (see
Fig. 4). We assume that the robots and the obstacles in these
environments are known, therefore we can pre-process them
and store their ob-maps in a database. We use two types of RU-
PRMs in our experiments: (1) RU-PRM with Gaussian PRM
and (2) RU-PRM with MSUM-PRM. During the pre-processing
step, RU-PRM with Gaussian PRM takes about 4.9, 96, and 382
seconds to create and store the ob-maps for the obstacles in
Env. (a-b), Env. (c-d), and Env. (e-g), respectively. RU-PRM
with MSUM-PRM takes about 35 and 131 seconds to create

and store the ob-maps for the obstacles in Env. (c-d) and Env.
(e-g), respectively. Because currently MSUM-PRM has not
been implemented to handle 2-d workspaces, RU-PRM with
MSUM-PRM is not used in Env. (a-b). In these experiments,
we compare RU-PRMs against several well-known planners:
MSUM-PRM [32], Uniform [12], Gaussian [19] and Visibility
PRMs [39].

RU-PRM is significantly faster The running times for all
three environments are shown in Fig. 5. Notice that the y-
axes of the charts in Fig. 5 are in logarithmic scale. The
running time for RU-PRMs includes the time for reading the
ob-maps from the hard disk drive, as well as the time for
transforming, evaluating and merging the ob-maps and the
time for performing the query in the global roadmap.

From the results, RU-PRM shows significant efficiency
improvement in all studied environments. Env. (a-b) and
Env. (c-d) are simple environments where the Uniform PRM
usually solves the problems with a few hundred nodes and
outperforms Gaussian and Visibility PRMs and MSUM-PRM.
In these simple environments, RU-PRM with MSUM-PRM or
Gaussian PRM still provides noticeable improvements (up to
100 times faster) over the Uniform PRM (and therefore over
Gaussian PRM only and MSUM-PRM only). This evidence
demonstrates the strength of reusing computation. These plots
also shows that combining RU-PRM with either MSUM-PRM
or Gaussian PRM does not seem to affect its performance in
simple environment, however, the difference becomes more
noticeable in more difficult environments.

In more difficult environments, e.g., Env. (e-g) that contains
narrow passages, RU-PRM with MSUM-PRM or Gaussian is
significantly faster (by 5∼8 orders of magnitude) than Uniform
and Gaussian PRMs and is still significantly faster than using
MSUM-PRM or Gaussian only (by 2∼5 orders of magnitude).
A possible source of the improvement is from MSUM-PRM,
which has been shown to be better than the classic PRMs
[32], however, our results also show that combining RU-
PRM with MSUM-PRM further improves MSUM-PRM. The
main reason for this performance improvement is obvious.
Obtaining connectivity in the free C-space is usually the
most time-consuming step in PRMs, RU-PRM saves significant
amount of time by reusing the connectivity provided by the
ob-maps.

VII. CONCLUSION

In this paper, we proposed the first work considering motion
planning in similar environments. We developed a new method
called RU-PRM that reuses the computation from the previ-
ously solved problems. Essentially, RU-PRM stores the local
roadmap built around each C-obst. When a new environment is
given, RU-PRM matches the obstacles and loads the matched
roadmaps. These roadmaps are transformed, evaluated and
finally merged to solve the queries in the new environments.
We discussed several optimization techniques that improve the
efficiency of the basic RU-PRM framework. We also proposed
a new shape matching method that allows RU-PRM to do sub-
part matching and roadmap transformation more easily.



100

101

102

103

104

105

Env. (a) Env. (b)

Ti
m

e 
(m

illi
se

co
nd

s)
RU+Gaussian

Gaussian
Uniform
Visibility

100

101

102

103

104

105

106

Env. (c) Env. (d)
Ti

m
e 

(m
illi

se
co

nd
s)

RU+MSUM
MSUM

RU+Gaussian
Gaussian

Uniform

100

101

102

103

104

105

106

107

108

Env. (e) Env. (f) Env. (g)

Ti
m

e 
(m

illi
se

co
nd

s)

Fig. 5. Experimental results for the environments in Fig.4. Notice that the y-axes are all in logarithmic scale and Envs. (c)-(g) share the
same legend. We stop the planner when it takes more than 108 milliseconds. The running times for all PRMs are collected over 30 runs.

Although we consider this paper as a preliminary work
that provides a proof of the concept in this new research
direction, our experimental results are very encouraging and
show significant efficiency improvement (by 5∼8 orders of
magnitude faster) over the classic PRM planners (including
Uniform, Gaussian, and Visibility PRMs) and is faster then
MSUM-PRM by 3∼5 orders of magnitude.
Limitations and Future work. Many aspects in the proposed
work can be improved. One of the most critical bottlenecks
of our current implementation is the efficiency of the shape
matching method. We also plan to investigate better criteria
for evaluating the connectivity of the ob-map and its core.

REFERENCES

[1] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato,
“A machine learning approach for feature-sensitive motion planning,”
in Proc. Int. Workshop Alg. Found. Robot.(WAFR), Utrecht/Zeist, The
Netherlands, July 2004, pp. 361–376.

[2] B. Burns and O. Brock, “Toward optimal configuration space sampling,”
in Proc. Robotics: Sci. Sys. (RSS), 2005.

[3] A. Yershova, L. Jaillet, T. Simeon, and S. M. Lavalle, “C-space sub-
division and integration in feature-sensitive motion planning,” in Proc.
of IEEE Int. Conf. on Robotics and Automation, April 2005, pp. 3867–
3872.

[4] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato., “(resampl): A
region-sensitive adaptive motion planner,” in Proc. Int. Workshop Alg.
Found. Robot.(WAFR), July 2007.

[5] S. Finney, L. Kaelbling, and T. Lozano-Perez, “Predicting partial paths
from planning problem parameters,” in Proceedings of Robotics: Science
and Systems, Atlanta, GA, USA, June 2007.

[6] L. Han and N. M. Amato, “A kinematics-based probabilistic roadmap
method for closed chain systems,” in Robotics:New Directions. Natick,
MA: A K Peters, 2000, pp. 233–246, book containts the proceedings of
the International Workshop on the Algorithmic Foundations of Robotics
(WAFR), Dartmouth, March 2000.

[7] N. Ailon, B. Chazelle, S. Comandur, and D. Liu, “Self-improving
algorithms,” in SODA ’06: Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm. New York, NY, USA: ACM,
2006, pp. 261–270.

[8] K. L. Clarkson and C. Seshadhri, “Self-improving algorithms for de-
launay triangulations,” in SCG ’08: Proceedings of the twenty-fourth
annual symposium on Computational geometry. New York, NY, USA:
ACM, 2008, pp. 148–155.

[9] T.-Y. Li and Y.-C. Shie, “An incremental learning approach to motion
planning with roadmap management,” in Proc. of IEEE Int. Conf. on
Robotics and Automation, 2002, pp. 3411–3416.

[10] R. Gayle, K. R. Klingler, and P. G. Xavier, “Lazy reconfiguration forest
(LRF): An approach for motion planning with mulitple tasks in dynamic
environments,” in Proc. of IEEE Int. Conf. on Robotics and Automation,
2007, pp. 1316–1323.

[11] J. F. Canny, The Complexity of Robot Motion Planning. Cambridge,
MA: MIT Press, 1988.

[12] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp.
566–580, August 1996.

[13] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,” in Robotics:
The Algorithmic Perspective. Natick, MA: A.K. Peters, 1998, pp. 155–
168, proc. Third Workshop on Algorithmic Foundations of Robotics
(WAFR), Houston, TX, 1998.

[14] N. M. Amato and Y. Wu, “A randomized roadmap method for path and
manipulation planning,” in Proc. of IEEE Int. Conf. on Robotics and
Automation, 1996, pp. 113–120.

[15] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” Int. J. Comput. Geom. & Appl., pp. 2719–2726,
1997.

[16] S. M. LaValle and J. J. Kuffner, “Rapidly-Exploring Random
Trees: Progress and Prospects,” in Proc. Int. Workshop Alg. Found.
Robot.(WAFR), 2000, pp. SA45–SA59.

[17] R. Geraerts and M. H. Overmars, “Sampling techniques for probabilistic
roadmap planners,” in Intelligent Autonomous Systems (IAS), 2004, pp.
600–609.

[18] S. M. LaValle, Planning Algorithms, 6th ed. Cambridge University
Press, 2006.

[19] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian
sampling strategy for probabilistic roadmap planners,” in Proc. of IEEE
Int. Conf. on Robotics and Automation, vol. 2, May 1999, pp. 1018–
1023.

[20] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “MAPRM: A proba-
bilistic roadmap planner with sampling on the medial axis of the free
space,” in Proc. of IEEE Int. Conf. on Robotics and Automation, vol. 2,
1999, pp. 1024–1031.

[21] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “Bridge test for sampling narrow
passages with proabilistic roadmap planners,” in Proc. of IEEE Int. Conf.
on Robotics and Automation, 2003, pp. 4420–4426.

[22] J. van den Berg and M. Overmas, “Roadmap-based motion planning
in dynamic environments,” in Proc. IEEE Int. Conf. Intel. Rob. Syst.
(IROS), 2004, pp. 1598–1605.

[23] S. Rodriguez, J.-M. Lien, and N. M. Amato, “Planning motion in



completely deformable environments,” in Proc. of IEEE Int. Conf. on
Robotics and Automation, May 2006, pp. 2466–2471.

[24] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. Journal of Robotics Research, vol. 17,
no. 7, pp. 760–772, 1998.

[25] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), 2005, pp.
2210–2215.

[26] L. Jaillet and T. Simeon, “A prm-based motion planner for dynamically
changing environments,” in Proc. IEEE Int. Conf. Intel. Rob. Syst.
(IROS), 2004, pp. 1606–1611.

[27] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), May
2006, pp. 2366 – 2371.

[28] P. J. Leven and S. Hutchinson, “A framework for real-time path planning
in changing environments,” Int. Journal of Robotics Research, vol. 21,
no. 12, pp. 999–1030, 2002.

[29] J. Vannoy and J. Xiao, “Real-time planning of mobile manipulation in
dynamic environments of unknown changes,” in Proc. Robotics: Sci.
Sys. (RSS), 2006.

[30] Y. Yan and O. Brock, “Elastic roadmaps: Globally task-consistent motion
for autonomous mobile manipulation in dynamic environments,” in Proc.
Robotics: Sci. Sys. (RSS), 2006.

[31] M. K. Philip Shilane, Patrick Min and T. Funkhouser, “The princeton
shape benchmark,” in Proceedings of the Shape Modeling International,
2004.

[32] J.-M. Lien, “Hybrid motion planning using Minkowski sums,” in Proc.
Robotics: Sci. Sys. (RSS), Zurich, Switzerland, 2008.

[33] T. Lozano-Pérez, “Spatial planning: A configuration space approach,”
IEEE Trans. Comput., vol. C-32, pp. 108–120, 1983.

[34] G. Varadhan and D. Manocha, “Accurate Minkowski sum approximation
of polyhedral models,” Graph. Models, vol. 68, no. 4, pp. 343–355, 2006.

[35] J.-M. Lien, “Point-based minkowski sum boundary,” in PG ’07: Pro-
ceedings of the 15th Pacific Conference on Computer Graphics and
Applications. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 261–270.

[36] J.-M. Lien and N. M. Amato, “Approximate convex decomposition,” in
SCG ’04: Proceedings of the twentieth annual symposium on Computa-
tional geometry. New York, NY, USA: ACM Press, 2004, pp. 457–458,
video Abstract.

[37] R. Bohlin and L. E. Kavraki, “A randomized algorithm for robot
path planning based on lazy evaluation,” in Handbook on Randomized
Computing, P. Pardalos, S. Rajasekaran, and J. Rolim, Eds. Kluwer
Academic Publishers, 2001, pp. 221–249.

[38] D. Xie, M. A. Morales, R. Pearce, S. Thomas, J.-M. Lien, and N. M.
Amato, “Incremental map generation (IMG),” in Proc. Int. Workshop
Alg. Found. Robot.(WAFR), July 2006.

[39] C. Nissoux, T. Simeon, and J.-P. Laumond, “Visibility based probabilis-
tic roadmaps,” in Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), 1999,
pp. 1316–1321.

[40] R. C. Veltkamp and M. Hagedoorn, “State of the art in shape matching,”
Principles of visual information retrieval, pp. 87–119, 2001.

APPENDIX

Shape approximation using ACD In the first step, we decom-
pose the polygon P into several approximately convex pieces
[36]. A component C in the decomposition is approximately
convex if the concavity of C is less than a user pre-defined
tolerance. It has been shown that ACD contains much fewer
components compared to the exact decomposition and, more
importantly, it maintains the key structural features. Because
of these advantages, we can represent P using the convex hulls
of the components in its ACD. An example of ACD is shown
in Fig. 6(a) and (b).

We first compute the dissimilarity between a pair of convex
components by estimating their morphing distance. Let {Ci}
and {D j} be two sets of convex components obtained from the
ACDs of the polygons P and Q. Given two convex components
Ci with m vertices (colored in green in Fig. 6(d)) and D j

(input) (a) decompose

(b) approximate

C
(c) align (d) morph

Fig. 6. An example of the proposed shape matching method.

with n vertices (colored in blue in Fig. 6(d)), we compute
the morphing distance as the follows:

1) Align Ci and D j by overlapping their centers and their principal
axes, (see Fig. 6(c)).

2) Draw m rays from the common center to the vertices of Ci and
n rays to those of D j, (see Fig. 6(d)).

3) Compute the intersections of the rays with vertices Ci and D j.
For each ray, a line segment between the intersection and the
vertex is identified.

4) Let the morphing distance of Ci and D j be the sum of the
lengths of all m+n segments.

Once the morphing distances between all pairs of com-
ponents in {Ci} and {Di} are computed, we arrange the
components {Ci} and {Di} into a bipartite graph and solve
the minimum bipartite matching problem.

Note that although we only demonstrate using polygons in
this section, the proposed matching method can be extended
to handle polyhedra without modification.

Although there exist many shape matching methods (e.g.,
see survey [40]), this new method provides unique function-
alities for RU-PRM. In particular, it represents shape using
a set of convex objects. This not only allows the scale
transformation discussed in Section IV-B, but also allows sub-
part matching. For example, the ob-map for a hand gesture can
be “deformed” to fit around another gesture by transforming
the fingers even if the gestures are very different. Due to
the space limitation, we will skip the technical details of the
proposed method.

The proposed method correctly returns its best match for
every test case using 10 randomly selected polygons (shown
in Fig.7). Moreover, it takes 70 ms on average for a polygon
to find the best match. Therefore, even when we consider the
time spent on shape matching, RU-PRM still outperforms the
other three planners.

A B C D E F G H I J

Fig. 7. Matching Results. 10 models used in this shape matching experiments.


