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Abstract— In this paper, we bridge and extend the approaches
of 3D shape approximation and 2D grasping strategies. We begin
by applying a shape decomposition to an object, i.e. its extracted
3D point data, using a flexible hierarchy of minimum volume
bounding boxes. From this representation, we use the projections
of points onto each of the valid faces as a basis for finding planar
grasps. These grasp hypotheses are evaluated using a set of 2D
and 3D heuristic quality measures. Finally on this set of quality
measures, we use a neural network to learn good grasps and the
relevance of each quality measure for a good grasp. We test and
evaluate the algorithm in the GraspIt! simulator.

I. INTRODUCTION

In the field of intelligent grasping and manipulation, a robot
may recognize an object first and then reference an internal
object model. For unknown objects, however, it needs to
evaluate from data it can collect on the spot. How to grasp
a novel object is an ongoing field of research. Difficulties in
this area include (i) the high dimensionality of the problem, (ii)
incomplete information about the environment and the objects
to be grasped, and also (iii) generalizable measures of quality
for a planned grasp.

Since contacts and forces of the fingers on an object’s
surface make up a grasp, it is very important to have good
information both about the hand and the object to be grasped.
Both hand and object constraints together with the constraints
for the task to be performed need to be considered [1]. Though
there is interesting work on producing grasp hypotheses from
2D image features only, e.g. [2, 3], most techniques rely on
3D data. Due to the complexity of the task, much work has
been done for simplifications of 3D shape, such as planar
[4] or 3D-contour-based [5] representations. Other approaches
involve modelling an object perfectly, i.e. known a-priori, or
with high-level shape primitives, such as the use of grasp pre-
shapes or Eigengrasps [6, 7, 8]. One work that uses high-level
shape primitives, and is similar to ours in terms of learning,
but by using an SVM approach, is [9]. Another approach to
learning from 2D grasp qualities, using neural networks and
genetic algorithms, is presented in [10].

This paper builds on the work of Huebner et al. [11, 12],
which uses a hierarchy of minimum volume bounding boxes to
approximate an object from a set of 3D points delivered by an
arbitrary 3D sensor, e.g. laser scanners or stereo camera setups.
Grasping is then done by approaching each face of a box until
contact, backing up, and then grasping the object. What this
work lacked however, was a way to explicitly place the fingers

of the hand and to choose the best configuration of the hand.
Learning to predict successful grasps was done only with raw
data from the projections of points inside a box onto the face
to be grasped. Secondly, our work makes use of an algorithm
for finding and predicting the success of a grasp, but for planar
objects, as proposed by Morales et al. [4, 13]. The approach
uses 2D image analysis to find contact point configurations
that are valid given specific kinematic hand constraints. From
the geometrical properties of an object, it then calculates a
set of quality measures that can later be used for learning to
predict the success of found grasp hypotheses. The limitations
of this work lie mainly in the fact that really ‘planar’ objects
and representations are discussed in which information about
3D shape is discarded.

In this paper, we bridge and extend these two methods to
enable 2D grasping strategies for 3D object representations.

II. 3D BOoX APPROXIMATION

We will shortly revisit the pre-computation of approximat-
ing a 3D point cloud by a constellation of minimum volume
bounding boxes (MVBBs). The fit-and-split approach starts
with fitting a root bounding box and estimating a best split
by using the 2D projections of the enclosed points to each
of the box surfaces. Depending on a volume gain parameter
t, two child boxes might be produced and then be tested for
splitting. To provide an insight to this algorithm as a base for
the experiments in this paper, the two core algorithms have
been sketched in Fig. 1. For more details and examples, we
refer to Huebner et al. [11]. However, it is important to note
that in that work (i) 2D projections have been used to estimate
a split and (ii) only edge-parallel planar splits have been tested.

From these constraints, three main problems were evident
relating to the original split estimation. These problems are
outlined as follows.

1) Splitting of non-convex regions, e.g. u-shapes: As shown
in [11], the presented algorithm will not do any splitting in
case of u-shaped 2D projections. This is due to the fact that it
uses upper bounds and area minimization, which are constant
in such cases. This means that a split does not result in a
substantial change in the area of a region. A solution for
this problem remains a challenge [11], especially when sparse
and noisy data is provided. For 3D data from real vision
systems or laser scanners, such distortions are unavoidable,
in part because of occlusion or sensor inaccuracies. Thus,



Algorithm IL.1: BOXAPPROXIMATE(points>?)

box « findBoundingBox(points®P)

faces — nonOpposite Faces(box)

(p, q) « split(FINDBESTSPLIT( faces, points®”))
if (percentualVolume(p + q,box) < t)
BOXAPPROXIMATE(p)
BOXAPPROXIMATE(q)

else return (bozx)

then

Algorithm IL2: FINDBESTSPLIT(faces, points>D)

for i — 1to 3
p*P — project(points®?, faces[i])
for © — 1 to width(facesli])
(pl,p2) — vertical Split(p*P, x)
al — boundArea®P (p1)
a2 « boundArea?” (p2)
if (al 4 a2 < minArea)
then minArea — (al + a2)
do bestSplit — (i,x)
for y < 1 to height(faces[i])
(pl,p2) «— horizontal Split(p*®,y)
al «— boundArea?” (pl)
a2 — boundArea®P (p2)
if (al + a2 < minArea)
the {minArea — (al + a2)
bestSplit — (i,y)

do

do

return (bestSplit)

Fig. 1. Pseudocode (original algorithm): a point set and its bounding box,
respectively, are recursively split (I.1). A good split was estimated through
analysis of 2D splits of the projected points onto each of the box faces (II.2).

how to distinguish between a real non-convex object region
and just incompleteness of the data becomes a critical issue.
The models used in [11] were ideal models, extracted from
simulated 3D mesh data. As it is our aim to evaluate our
algorithm also on real sensory data, we can not generally
assume such ideal conditions.

2) Splitting along non-edge-parallel directions: The mini-
mum volume box fitting approach naturally fits extensions of
the shape into corners of a box, as this keeps the box smaller.
The handle of a cup, for example, will fit best diagonally into
one of the box corners. However, such diagonal structures in
particular can rarely be cut parallel to one of the box edges
as proposed in the previous algorithm.

3) Sensitivity to noise: The box decomposition’s robustness
showed the splitting to be very sensitive to noise. This is
not a main issue in terms of single box or face grasping in
general, since any constellation of boxes will produce grasp
hypotheses. However, if one would like to take into account
and learn from a whole constellation of boxes, then robustness
and repeatability are necessary.

A. Improved Split Algorithm using 2D Convex Hulls

For the experiments presented in this paper, we have there-
fore implemented a new algorithm based on convex hulls. The
new algorithm replaces II.2, solving the above mentioned is-
sues, and in addition producing much more confident splitting

Root
(MVBB of all points)

(b) 1st step: ©*=0.67

(a) Decomposition

(c) Final constellation

Fig. 2. (a) Example of a decomposition hierarchy, using a gain parameter
of t=0.98. With ©* < t, a valid cut is detected, as presented for the first
step in (b). Otherwise, the box is a leaf box (dashed), i.e. a part of the final
constellation which is plotted in (c).

results. For efficiently computing convex hulls on a set of 2D
points p, like our projections (see Fig. 2), we use a monotone
chain algorithm [14]. Starting from the convex hull C'H (p) of
the whole projection set p, we select those segments of the hull
that exceed a given threshold in length. We thereby assume
that those segments either span a non-convex region of the
outer contour of the data, or that they represent a very straight
edge. On these segments, we interpolate a number of sample
points. Between each pair of points on each pair of segments,
we simulate a cut that splits the point set p into two subsets
p1 and ps. The two segment points that minimize,

© = [A(CH (p1)) + A(CH (p2))l/ F, M

where A is the area function for a convex hull and F' the
overall rectangular area of the face (see Fig. 2b), define our
best split. An example of such a decomposition tree produced
with the new hull algorithm is presented in Fig. 2.

B. Evaluation

To be able to make a large scale test of the box decom-
positions stability, an algorithm was developed that estimates
if two box decompositions are similar or not. First, the
algorithm summarizes the total volume V; of all boxes which
a decomposition ¢ is composed of. Secondly, it calculates the
Euclidean distances between the centers of all pairs of leaf
boxes and summarizes them as D;. In order to determine if
two compositions ¢, 7 are similar, the differences in overall
volume and distance measures between the decompositions
are simply compared with empirically found thresholds:

if [D; — D;| < 0.1A|V; —V;| < 0.9then similar(i,5). (2)



TABLE I
PERCENTAGE OF DECOMPOSITIONS WITH SIMILAR COUNTERPARTS. 19 NOISE LEVELS AND 14 LEVELS OF POINT REMOVAL WERE USED.
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Bunny Car Cup Duck Goblet Goose Heart ~Homer Horse Human Mug PaperCup Pen Pillow Radio  Squirrel ToyDog
Old [ 78,62 100,00 77,78 61,59 21,21 24,28 100,00 55,07 53,99 19,93 8043 100,00 91,67 91,67 84,62 5942 2754
New [ 9400 100,00 97,78 91,67 2277 46,00 100,00 66,67 3033 5800 62,67 7424 92,00 100,00 100,00 7500 28,33

To test the stability of the box decomposition algorithms,
we simulated 17 different object models and modified them:
19 different levels of close proximity noise and 14 different
levels of point removal were used for the experiment to
let modified point clouds emerge from each original object
point cloud. Both algorithms were then executed (¢=0.9) on
each of those point clouds before comparing the resulting
box decompositions of each unmodified with its modified
models. The results presented in Table I show that the previous
algorithm is quite sensitive to noise. However, simpler objects
like Car or Pen gave very good results. This is mainly because
they all produced only one box due to their compact shape. On
the other hand, more complex models like the toydog or the
human model gave quite poor results. We note that the bound-
based algorithm tends to produce a single large box enveloping
the whole object also in such cases. This raises the similarity
rate significantly, but is not preferred in our application.

The new hull-based algorithm produces much better approx-
imation for the objects, very few single-box decompositions,
and a significantly better similarity rate. The models that
produced single-box decompositions with the bound-based
algorithm produce worse values in some cases. This is caused
by better approximations with multiple boxes that are more
sensitive to the comparison than a single-box-to-single-box
comparison. Since we prefer multi-box decompositions which
give better object approximation, this is a good improvement,
while the new algorithm is considerably less affected by noise.

The old and the new techniques are also compared to each
other in Fig. 3 according to robustness to the change of the
gain parameter ¢ (for ¢, see II.1 and Fig. 2), e.g. the duck
model decomposition repeatedly shows the same constellation.
Another visible effect is that the decompositions seem more
intuitive, e.g. in case of the cup handle.

III. 2D GRASP HYPOTHESES

In this paper, we are concerned with finding 2D grasps
for 3D objects. Thus, we need to find a suitable grasping
strategy based on the above mentioned box decomposition.
We base our grasping hypotheses on the faces of the final box
decomposition. The set of hypotheses is further reduced by
including geometrical heuristics on which faces are valid in
terms of visibility, reachability, and more [12]. For each leaf
box in the hierarchy, the points enveloped by it are projected
onto the valid faces of the box and stored in a grayscale image.
The distance of the closest point to each pixel cell onto which
it is projected is stored as a grayscale value between 0 and

255, where 1 is the depth of the box and 255 means zero depth
(see Fig. 4a). This provides us with 2.5D representations of
the object parts. The decomposition captures symmetries of
objects quite well, resulting in faces and thus projections that
are often perpendicular to the axes of most variance. This
yields suitable information about approach directions of planar
grasps and a good dissection of the object. In short, for each
of the projections attained, grasps will be planned similarly
to a top-view on a planar object. Thus grasp points on the
contour of the projection images need to be found.

For grasp hypotheses from 2D contours, we will use an
algorithm that is closely related to the work of Morales [4].
This algorithm involves a four step procedure for finding a
number of grasp hypotheses, followed by a fifth to disqualify
unfeasible grasps and selecting the best of the hypotheses.

A. Finding Good Regions to Grasp

We use the notion of grasp region, as defined in [4] and
assume that a good region for grasping is a region that is
as straight as possible. The fact that studies have shown that
slightly concave curvature may be better suited [15] is left as a
possible extension to the work. For this task a combination of
the Canny edge detector and the k-angular bending algorithm
[16] was used. First, the projection images described above
are preprocessed by erosion and dilation steps. By removing
pixels with fewer than 2 neighbours the number of outliers
in the image is reduced. Expanding each remaining pixel (a
projected point from 3D) to its neigbouring 8 pixels, gaps
caused by sparse 3D point information are filled. Without these
steps internal contours will be found that do not actually exist
in the object and many grasp regions will be invalid. By using
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Fig. 3. Results of the box approximation for two models. Compared
to the results produced with the bound-based algorithm [11] to the left,
new hull-based constellations (right) stay more robust despite of different
decomposition granularities (described by gain thresholds ¢ in each row).
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Fig. 4. (a) Projection image of the Duck model’s head box (from above).
(b) Canny edges image. Size of the Gaussian, lower and higher thresholds are
automatically chosen by the Matlab edge algorithm. (c) A set of grasp regions
(contour and 2D normal vectors) and grasp points (diamonds). The regions are
found with ¢ = 2.5, curvature threshold ¢, = 0.4 (max. angle in radians),
accumulated curvature threshold 7). = 4, minimum length /,,,;,, = 20mm
(similar to Barrett finger width), and maximum length [, 4z = 50mm.

the edge detector with comparably high smoothing, see Fig. 4
for an example, we extract edges in the image.! These edges
correspond to inner and outer contours of the projected object
part as well as places where depth is rapidly changing. We
assume that for these edges, grasps can be executed similarly
to planar objects.

With the discrete edge points detected, these are ordered in
a list following the contour. From the contour we will extract
regions that satisfy four main conditions:

1) The curvature in any point of the region should be low,

2) the total accumulated curvature of a region should not
be too high,

3) a minimum length of a region should be achieved, in
order to reduce the number of hypotheses and reduce
the effect of positioning errors,

4) a maximum length of a region should not be exceeded,
in order to break long straight parts of the contour into
several regions such that two fingers can be placed at
the same side of an object such as a cube.

The curvature part is handled by the k-angular bending
algorithm [16], that considers k neighbours in each direction
of a point to determine its curvature by calculating the angles
to these neighbours. Let C' be the ordered list of points on the
contour, ¢; = (z;,y;) the i*" point in this list, @; j = ci1x —¢;
and gzk = ¢;_r — ¢;. The angle between these vectors is then
calculated as,

k; = arccos(ag; - —I;;“-). 3)

Convolving x« with a Gaussian provides smooth curvature
values at any point along the contour. This removes remaining
noise in the image so that a pixelated straight diagonal will
not be discarded because the angle between each pixel and the
next is too high. This enables us to assign a threshold on the
local curvature, i.e. a region is only chosen considering that
no point in it has a curvature value above the threshold.

An additional requirement for a region on the contour to
be accepted is that the accumulated curvature of a region is

'We use the Matlab standard function edge with parameter ‘Canny’ and a
value for o = 2.5 and automatically calculated threshold.

not higher than a chosen threshold. This condition is checked
by summing up all k-values for the region and comparing to
the threshold. This takes care of problems with low constant
curvature such as for a circle. Without the use of accumulated
curvature, the circle would be regarded to have either no
feasible regions to grasp or one region going straight through
the center. With accumulated curvature, the circle will be
broken into several regions. This also applies to other shapes
with regions of low curvature with the same sign. Each region
is approximated with the line connecting the endpoints of that
region. Thus, each region is only represented by these two
points and the inwards pointing normal, see Fig. 4.

The two remaining conditions for a region to be considered
are the minimum and maximum length of a region. A mini-
mum length is needed in order to account for positioning errors
and to have a value close to the finger width. A maximum
length is needed so that the representation does not become
too simplified. If for a simple object like a cube no maximum
length of regions was set, its projection images would only be
represented by four regions that would be very hard to combine
into a working grasp. By dividing the regions such that none
are larger than the assigned maximum length produces more
regions and therefore enables the possibility to place two
fingers on one single side of the square, for example. Lower
maximum length gives more regions and thus higher number
of hypotheses, which means more possibilities. One should be
cautious, however, since computation time increases rapidly
with the number of regions.

B. Determining Finger Positions on the Regions

For each possible triplet (in the case of a 3-finger hand such
as the Barrett hand [17] that is used) of regions, two criteria
must be met. The normals must positively span the plane and
finger placement must be such that all the friction cones of
these fingers intersect. In this paper we will assume Coulomb
friction and point contacts. By considering the union of all
friction cones of one region and looking at the intersection
of such ‘combined friction cones’, one can determine if the
intersections of all three regions are empty and the hypothesis
discarded, or non-empty and considered. This becomes a
geometrical problem for each triplet and can be solved with
standard linear programming methods. In the case of non-
empty intersections, the centroid of the intersection area is
calculated and projected back to the regions. These points will
be used for finger positions, as discussed in [4].

C. Determining Hand Configuration

From the finger positions and the Barrett hand kinematics
one can test if there is a configuration that can reach the
selected points. By varying the angle of the thumb? to the
surface and searching for those angles that correspond to
configuration of the hand that can reach all three grasp points,
one can find hypotheses for grasps. The angle of the thumb
is varied on the interval (-arctan p,arctan ) in 100 steps,

2Note that the thumb of the Barrett hand does not allow rotation. Thus, the
angle of the thumb to the object is closely connected to the hand orientation.
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Fig. 5. Plot of 2000 random grasps, hypotheses found with the method from
[11], and hypotheses found with our new approach, on the Bunny model. On
the axes are the two built-in quality measures from Grasplt!. Only one grasp
per finger positioning is chosen randomly and plotted. As can be seen, the
best hypotheses are close to the best of the 2000 random grasps, suggesting
that with only these 23 hypotheses one could get one or more good grasp.

where p is the same friction coefficient used for calculating
the friction cones in the previous section. Those configurations
that satisfy the conditions are stored as grasp hypotheses. For
a more detailed description, see [13]. A plot of the quality
for grasp hypotheses found for the Bunny compared to 2000
random grasps is shown in Fig. 5.

D. Determining the Quality of a Grasp

From the algorithm presented one can generate a number
of grasp hypotheses. However, we still need to determine
which grasps are more likely to be successful. This is done
by different measures of quality. Firstly however one needs to
discard grasp hypotheses that are not reachable. This means
that all grasp hypotheses outside of the physical reach of the
hand will be discarded. This includes those grasps where one
part of the object is in the way for grasping another part of the
object. One example for the duck appears when a top grasp
is attempted, but with finger positionings on the body of the
duck: the head would be occluding the body, thus this grasp
is discarded even before attempting it.

Many of the quantitative quality measures are the same
as the ones developed by Morales et al. [4, 13], and will
thus only be mentioned by name. There is one important
difference, however: the empirical normalization constants
used by Morales et al. will not be used here, as an artificial
neural network will be used to determine the weights of each
measure instead.

The measures derived from Morales are the following:

q1: Grasp Triangle Size,
q2: Point Arrangement,
q3: Force Line,

q4: Finger Extension,

qs: Finger Spread,
qe: Focus Deviation,
q7: 2D Force Focus.

These measures however are developed for planar objects.
To adapt to non-planar objects to be grasped in our case we
add two extra quality measures. These are:

1) Finger Depth Difference: The projection image contains
information about the depth of the shape. Thus, it is possible
to compare the selected grasp point depths d; for each finger
1 with the linear approximations of the real finger extensions

g(e;) by
gs = (ger) —d1)® + (g(e2) — d2)* + (g(e3) — ds3)?, ()

where g(-) is the linear depth approximation function.® This
measure depicts how close to the desired grasp points the grasp
is likely to be. Note that this measure is the one that explicitely
takes into account the 2.5D information provided by the box
approximation and projection steps from Section II.

2) 3D Force Focus: ldeally, one would like to measure
the distance from the force focus in three dimensions to
the actual center of gravity. This is, however, not possible
since the information about the object is incomplete and the
representations of grasps are only in two dimensions. We
provide a rough approximation of this quality by using the
center of the root box in the decomposition (containing all
points in the point cloud) and the mean of the calculated finger
positions in three dimensions,

q9 = ||I§finger - prootCenter| | (5)
IV. EVALUATION

The evaluation of the algorithm has mainly been made
with data from simulation. This object data consists of 42
different 3D models, consisting of 14 different objects in 3
different scales to provide more data to train on. First, each
model was decomposed with the box decomposition algorithm,
using a gain threshold ¢=0.90. Over all models, this resulted
in 570 projections from leaf boxes. 5951 grasp triplets were
finally found from those projections and used as the data set
for evaluation of grasps. Different types of results for the
used models and decompositions are presented in Fig. 6. In a
next step, the presented quality measures were computed, and
grasp success measures extracted by simulating the grasps in
Grasplt! [18]. The correlation between these quality measures
and success measures is going to be learned by a neural
network. We also explore how different network architectures
affect the overall result.

A. Measure for Success

We want to produce a set of grasp hypotheses where the
outcome is known in order to supervise the training. Since to
do this with a real robot would be both time-consuming and
costly in order to get enough data to train on, a more time and
cost-efficient simulation option was used. By simulating the
grasp hypotheses found for different objects, and by measuring
the success for these in the simulator a set of input / output

3For the Barrett hand: g(e) = 0.953 * e + 128.8, empirically found. Using
this linear approximation causes little loss in precision compared to calculating
the actual inverse kinematics for the hand.
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Fig. 6. The 14 models used in the experiment in order of complexity. The number of boxes resulting from the final decomposition hierarchies (2nd and 5th
row) is assigned to each model in brackets. Since (a)-(e) are very compact and only the root box is included, the 3rd row visualizes examples of box face
projections that will be used for the experiments. For the more complex models (h)-(n), the 6th row depicts the final box constellations. We refrained from
showing constellations for (a)-(g), since they would only show 1-2 boxes, as also from showing projections for (h)-(n), since they would be hard to recognize.

pairs was found. The Grasplt! simulator [18] provides two
different measures of success, introduced in [19].

The first measure, denoted v here, measures the volume of
the intersection of friction cones from the finger contacts. The
second measure, called ¢ here, is a measure of the radius of
the largest sphere that can fit in this space. For the purpose
of learning it is more suitable to use only one measure since
it is easier to learn a one-dimensional function than a two-
dimensional. However, in order to utilize all of the information
provided and since there is no firm consensus on which
measure is best [20], we use a combination of the two:

S = (Vi/l/mam)z + (5i/5maz)2 P (6)

where s; is the success of grasp i, Vpgz and €,,4, are the
maximum v and ¢ values found for the current object and all
hypotheses, respectively.

Other measures that could be used would be the division of
grasps into two classes, namely successful and unsuccessful,
or to train the system using only one of the above measures.
Since potentially this could be a waste of useful grasp quality
information, the above combination measure was chosen.

Given that the net is used to grasp an unknown object
in the final application, the system will continue learning
from newly observed hypotheses. However, since we have
the possibility to initially gather vast amounts of simulation
data to use for training, one additional example will not
impact the prediction results noticeably. Combining this with
the possibility to retrain an eager learner when the system
is offline makes the advantages of a lazy learner, like kNN,
diminish. Therefore, we used a feed-forward neural network to
implement a supervised eager learning approach. The training
algorithm used was the Levenberg-Marquardt backpropagation



algorithm included in the Matlab Neural Networks Toolbox. It
is a fast training algorithm with good generalization properties,
which is needed for predicting unknown objects.

B. Leave-One-Object-Out Validation

For evaluation, we apply a leave-one-object-out validation.
This method validates by picking out one of the 14 objects that
is not the test object, while all grasp hypotheses that belong
to this object will be used as part of the validation set. There
are both advantages and disadvantages to this approach. Con-
sidering that the prediction error for an unknown validation
object is at a minimum, it would be intuitive to assume that
the prediction error for an unknown test object would also be
minimal. However, these two objects can be very different,
both in complexity and suitable grasps, more than the ones in
the training set and the test set. Another drawback with this
technique is that the size of the validation set is different for
each object used for validation. An advantage to using this
approach is that it seldom overfits and thus stops the training
when generalization still performs well.

C. Network Architecture

We used a network architecture with 9 input nodes, from
the 9 quality measures, and 1 output node corresponding to
the success measure s. From here, we still must decide how
many hidden layers and how many hidden nodes in each layer
to use. To be able to decide what is a good architecture and
what is not we need to measure the overall success of the
network. This measure should incorporate the s-measure for a
grasp, but being as independent of an object as possible, e.g.
an easy object to grasp will give better s-measures, but should
(with the same prediction success) give the same success of
the net, S,,.;. We want to rank the grasp hypotheses and only
use the ones highest ranked. This is reflected in the network
success measure by using only the top-ranked 10% hypotheses
and comparing them with the lowest-ranked 10%:

0.1n n
Shet = (Shigh — Stow) _ (Zi:l i 21:0.% ”) @)
0.1n 0.1n ’
where r; is the ranked list of hypotheses, the hypothesis with
highest predicted success being at index 1, and n is the total
number of hypotheses.

To test the effect of adding hidden layers, three different
setups were used: the first had only one hidden layer with 10
hidden nodes, the second had two hidden layers each with 10
hidden nodes, and the third had three hidden layers each with
10 hidden nodes. There was no improvement of prediction
success for more than one hidden layer. The time for training,
however, increased dramatically.

Extensive testing was performed in order to choose the
number of nodes in the one hidden layer. This testing was
done with the leave-one-object-out validation described above.
Tests were made with 1 to 30 hidden nodes. After studying
the performance results depicted in Fig. 7, the optimal number
of hidden nodes was chosen to be 8. Using this architecture,
no training phase in our experiment required more than 100
epochs.

D. Learning to Grasp Unknown Objects

In order to learn to grasp unknown objects, the leave-one-
object-out validation method was applied again. Each time the
network is trained one object is left out of the training data
to be used for testing. This unknown object will be used to
determine how well the algorithm has performed. In order to
get a reliable result these tests were run 10 times. As such, one
can conclude that the method for grasp synthesis, the quality
measures and the learning approach used can indeed find and
rank a set of grasps for an unknown object. Fig. 8 shows
distribution of predicted success measures for each model.
Some of the high-ranked grasps are presented in Fig. 9. These
were encountered after separately performing a training on all
other models in the set (except for one validation object). Note
that the input for the overall approach is only a 3D point cloud
representation that could also be delivered from real sensor
input. The approach therefore does neither need training on
every possible object model, nor does it rely on connected
surface structure, like triangle meshes.
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Fig. 7. Success (solid) and training time (dashed) for different number of

hidden nodes with the leave-one-object-out validation, averaged over 10 runs.
The maximum success value of S,e+ = 0.078 was detected at 8 nodes.
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worst. Lines correspond to the possible span of predictions, with a perfect
prediction of the best in the top and a perfect prediction of the worst in the
bottom. The squares represent the best and the worst grasp for each object.



Fig. 9.

Visualization of some high-ranked predicted grasps for all models.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for grasping 3D
objects by using 2D grasping strategies and heuristics. We
applied and extended approaches from each of these domains,
namely the 3D box approximation [11] and the 2D grasping
quality measures [4]. We showed that, given a point cloud of
3D data, an optimized version of box approximation produced
repeatable decompositions in addition to resolving the issues
encountered in our previous algorithm. This will contribute
to further connected applications based on box constellation
representations, e.g. learning from and grasping on whole
constellations instead of just single boxes. Learning might
also include a classification of the enveloped point cloud of
each box and object part as another shape primitive, i.e. cylin-
ders or spheres. Another classification will be approached by
learning from the box constellation itself. Not only similarities
between constellations could be used, e.g. all ‘duck’-like box
decompositions afford similar types of grasps, but also finger
positioning on more than one face will be enabled.

From a 2.5D representation such as the ones used here,
one can produce a set of feasible grasp hypotheses. For these
hypotheses one can evaluate a set of physically intuitive quality
measures for a 3D object and use them for learning to predict
success. It is important to note that representation, synthesis
and evaluation are three independent parts and do not need
the other parts to be present. The only requirement for a
representation is that it has to contain information not only
about the position in image space for a point, but also the
depth. The grasp synthesis algorithm works independently of
the other two and only needs the contour and the kinematics of
the hand used. For the last step, most of the quality measures
are extendible to all hands with the same or a higher degree
of freedom than the Barrett hand used here. This can be done
either by the use of virtual fingers, or by an extension of the
measures themselves to include sums and differences for more
than three fingers. A continuation of the work could include an
extension of the quality measures to better take into account

3D shape. With the use of more flexible hands the complete
inverse kinematics could be used for finding reachable points
in 3D space. A natural extension to the learning part is to
include not only data from simulation, but to continue learning
from real-world objects. By retraining the network with the
increased data set, the evaluation would get more precise and
be a useful learning system.
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