
View-Based Maps
Kurt Konolige, James Bowman, JD Chen, Patrick Mihelich

Willow Garage
Menlo Park, CA 94025

Email: konolige@willowgarage.com

Michael Calonder, Vincent Lepetit, Pascal Fua
EPFL

Lausanne, Switzerland
Email: michael.calonder@epfl.ch

Abstract— Robotic systems that can create and use visual maps
in realtime have obvious advantages in many applications, from
automatic driving to mobile manipulation in the home. In this
paper we describe a mapping system based on retaining stereo
views of the environment that are collected as the robot moves.
Connections among the views are formed by consistent geometric
matching of their features. Out-of-sequence matching is the key
problem: how to find connections from the current view to other
corresponding views in the map. Our approach uses a vocabulary
tree to propose candidate views, and a strong geometric filter
to eliminate false positives – essentially, the robot continually
re-recognizes where it is. We present experiments showing the
utility of the approach on video data, including map building in
large indoor and outdoor environments, map building without
localization, and re-localization when lost.

I. INTRODUCTION

Fast, precise, robust visual mapping is a desirable goal
for many robotic systems, from transportation to in-home
navigation and manipulation. Vision systems, with their large
and detailed data streams, should be ideal for recovering 3D
structure and guiding tasks such as manipulation of everyday
objects, navigating in cluttered environments, and tracking
and reacting to people. But the large amount of data, and
its associated perspective geometry, also create challenging
problems in organizing the data in an efficient and useful
manner.

One useful idea for maintaining the spatial structure of
visual data is to organize it into a set of representative views,
along with spatial constraints among the views, called a
skeleton. Figure 1 gives an example of a skeleton constructed
in an indoor environment. Typically views are matched in
sequence as the camera is moved around, so the skeleton
mimics the camera trajectory (red trajectory). In loop closure,
the camera enters an area already visited, and can re-connect
with older views. The overall map is generated by nonlinear
optimization of the system [2, 19, 33]. View-based maps have
the advantage of scalability: using incremental techniques, new
views can be added and the skeleton optimized online.

One problem is how to efficiently perform loop closure.
Previous approaches used exhaustive search of the current
view against all skeleton views that could possibly be in the
area, given the relative uncertainty of views. This approach
does not scale well to larger skeletons, and involves constant
calculation of relative covariance. Instead, to limit the number
of views that must be considered for loop closure, we employ
a vocabulary tree [27] to suggest candidate views, a type

Fig. 1. Top: Skeleton map constructed online from just stereo images,
registered against a laser map for reference. Red is visual odometry, blue
is corrected by loop closure from visual place recognition. Tick marks at
sides of map are 10m intervals. Bottom shows typical views, with blurring,
clutter, people, and blank walls.

of place recognition (PR). The vocabulary tree allows us to
efficiently filter thousands of skeleton views to find possible
matches, as well as add new views online. We call this online
PR re-recognition: the robot recognizes its position relative
to the stored view map on every cycle, without any a priori
knowledge of its position (unlike localization, which requires
a position hypothesis).

The addition of vocabulary tree PR to view-based maps
is a happy alignment of technologies that expands the utility
of visual mapping in interesting ways. For example, even
without sequence information, it is often possible to quickly
reconstruct a skeleton map from a set of views (Figure 9
and Section VI-D). In the Experiments section, we highlight
some other applications that show the scalability of view-
based maps. Loop closure over large distances is possible:
we show indoor maps with 800m trajectories (Figure 1), and
outdoor rough-terrain maps with 5km trajectories. On a smaller
scale, view matching with large numbers of points is inherently



accurate, showing a few centimeter accuracy over a desktop
workspace. Additional capabilities include automatic recovery
from localization failures (e.g., occlusion and motion blur) and
incremental construction of maps.

The main contributions of this paper are
• The construction of a realtime system for robust, accurate

visual map making over large and small spaces.
• The use of views (images), view matching, and geometric

relations between views as a uniform approach to short-
term tracking and longer-term metric mapping and loop
closure.

• The integration of a visual vocabulary tree into a complete
solution for online place recognition.

• An analysis of the false positive rejection ability of two-
view geometry.

• Extensive experiments with real data, showing the scala-
bility of the technique.

Our solution uses stereo cameras for input images. The de-
velopment of place recognition is also valid for monocular
cameras, with the exception that the geometric check is slightly
stronger for stereo. However, the skeleton system so far has
been developed just for the full 6DOF pose information gen-
erated by stereo matching, and although it should be possible
to weaken this assumption, we have not yet done so.

II. VSLAM AND VIEW MAPS

The view map system (Figure 2), which derives from
FrameSLAM [2, 23], is most simply explained as a set of
nonlinear constraints among camera views, represented as
nodes and edges (see Figure 5 for a sample graph). Constraints
are input to the graph from two processes, visual odometry
(VO) and place recognition (PR). Both rely on geometric
matching of views to find relative pose relationships; they
differ only in their search method. VO continuously matches
the current frame of the video stream against the last keyframe,
until a given distance has transpired or the match becomes
too weak. This produces a stream of keyframes at a spaced
distance, which become the backbone of the constraint graph,
or skeleton. PR functions opportunistically, trying to find any
other views that match the current keyframe. This is much
more difficult, especially in systems with large loops. Finally,
an optimization process finds the best placement of the nodes
in the skeleton.

It is interesting to note that current methods in visual SLAM
divide in the same way as in laser-based SLAM, namely, those
that keep track of landmarks using an EKF filter (monoSLAM
[9, 10] and variations [29, 32]), and those that, like ours,
maintain a constraint graph of views, similar to the original Lu
and Milios method [25]. The main limitation of the landmark
methods is the filter size, which is only tractable in small
(room-size) environments. An exception is [29], which uses
a submap technique, although realtime performance has not
yet been demonstrated. Landmark systems also tend to be
less accurate, because they typically track only a few tens
of landmarks per frame. In contrast, our visual odometry
technique tracks 300 points per frame, and we construct

Fig. 2. System overview.

maps containing several thousand views (and thus hundreds
of thousands of points).

In a similar vein, the recent Parallel Tracking and Mapping
(PTAM) system [20, 21] also uses 3D landmarks, but employs
standard SfM bundle adjustment to build a map from many
views. Many more points can be handled in the decoupled
tracking phase, leading to accurate and robust performance
under many conditions. Still, it is limited to small environ-
ments (around 150 keyframes) by the number of points and
by bundle adjustment. It is also subject to tracking failures on
self-similar textures (e.g., bushes), object motion, and scene
changes (e.g., removal of an object). In contrast, view-based
maps use consistent view geometry to robustly estimate poses
even in the presence of distractors.

The skeleton system deployed here comes directly from the
frameSLAM work in [2, 23]. Several other systems employ
constraint graphs as the basic map structure. Fraundorfer
et al. [13] have a monocular system that represents only
direction information between views, and produce only a
topological map. Eade and Drummond [11] employ a hybrid
approach, using EKF landmarks within a local area called
a node, then connecting the nodes via similarity relations.
An interesting point of their graph optimization is the use
of cycles to constrain relative scale between nodes. Other
robotics work that employs similar ideas about constructing
view-based constraints is in [33, 34]. These systems also keep
a constraint network of relative pose information between
frames, based on stereo visual odometry, and solve it using
nonlinear least square methods. The main difference with our
system is that frameSLAM represents the relationships as
nonlinear constraints, which are more accurate over angular
deformations, and can reduce the size of the skeleton graph
to deal with larger areas as required.

III. RELATED PLACE RECOGNITION WORK

Visual place recognition is an image classification problem;
new views are classified against a set of previously seen
views. For use in VSLAM, the classifier must support efficient
online learning of new reference views. Image matching
techniques based on bag-of-words matching are ideally suited
to this purpose. For fast lookup of similar places, we rely



on the hierarchical vocabulary trees proposed by Nistér and
Stewénius [27], which has the advantage of fast online learning
of new places. Other methods include alternative approximate
nearest neighbor algorithms [30, 26] and various refinements
for improving the response or efficiency of the tree [8, 17, 18].

Cummins and Newman [8] show how to use visual features
for navigation and loop closure over very large trajectories.
They use pairwise feature statistics and sequences of views
to address the perceptual aliasing problem, especially notable
in man-made environments containing repeated structure. Je-
gou et al. [17] incorporate Hamming embedding and weak
geometric consistency constraints into the inverted file to
improve performance. In this work, we rely instead on a strong
geometric consistency check on single views.

Jegou et al. [18] note that even using inverted files, query
time is linear in the number of reference images; they propose
a two-level inverted file scheme to improve the complexity.
Our experiments do show linearly increasing query/update
time, but with a very small constant factor (Figure 6). For
our scale of application (in the thousands of images), the
query time of the vocabulary tree is nearly constant, and such
sophistication is unnecessary.

In application to graph-based VSLAM, Callmer et al. [4]
propose a loop closure procedure that uses a vocabulary tree
in a manner similar to ours, along with a weak geometric
check to weed out some false positives. Eade and Drummond
[12] have extended their node approach with a PR method
based on bag of words, in which they learn the words online.
They give few statistics on the performance of PR, so it isn’t
possible to compare directly – they have the advantage of
learning based on the observed features, but have far fewer
words (3000 vs. 100,000 in our case). They have independently
introduced some of the same applications of PR as given
here: recovery from localization error and stitching together
trajectories when common views are found. Finally, Williams
et al. [35] also recover from localization errors in a landmark-
based VSLAM framework, by training a classifier to recognize
landmarks online; so far their system has been limited to 80
landmarks, mostly because of EKF processing.

There is an interesting convergence between our work and
recent photo stitching in the vision community [31]. They
employ a similar skeletonization technique to limit the extent
of bundle adjustment calculations, but run in batch mode, with
no attempt at realtime behavior. Klopschitz et al. [22] use a
vocabulary tree to identify possible matches in video stream,
and then followed by a dynamic programming technique to
verify a sequence of view matches. They are similar to our
work in emphasizing online operation.

IV. FRAMESLAM BACKGROUND

The skeleton view map encodes 6DOF relations bewteen
views. For two views ci and cj with a known relative pose,
the constraint between them is

∆zij = ci 	 cj , with covariance Λ−1 (1)

where 	 is the inverse motion composition operator – in other
words, cj’s position in ci’s frame. The covariance expresses
the strength of the constraint, and arises from the geometric
matching step that generates the constraint, explained below.

Given a constraint graph, the optimal position of the
nodes is a nonlinear optimization problem of minimizing∑

ij ∆z>ijΛ∆zij ; a standard solution is to use preconditioned
conjugate gradient [2, 16]. For realtime operation, it is more
convenient to run an incremental relaxation step, and the recent
work of Grisetti et al. [15] on SGD provides an efficient
method of this kind, called Toro, which we use for the
experiments. This method selects a subgraph to optimize, and
runs only a few iterations on each addition to the graph. Other
relaxation methods for nonlinear constraint systems include
[14, 28].

A. Geometric Consistency Check and Pose Estimation

Constraints arise from the perspective view geometry be-
tween two stereo camera views. The process can be summa-
rized by the following steps:

1) Match features in the left image of one view with
features in the left image of the other view (N×N
matching).

2) (RANSAC steps) From the set of matches, pick three
candidates, and generate a relative motion hypothesis
between the views. Stereo information is essential here
for giving the 3D coordinates of the points.

3) Project the 3D points from one view onto the other
based on the motion hypothesis, and count the number
of inliers.

4) Repeat 2 and 3, keeping the hypothesis with the best
number of inliers.

5) Polish the result by doing nonlinear estimation of the
relative pose from all the inliers.

The last step iteratively solves a linear equation of the form

J>Jδx = −J>∆z, (2)

where ∆z is the error in the projected points, δx is a change
in the relative pose of the cameras, and J is the Jacobian of z
with respect to x. The inverse covariance derives from J>J ,
which approximates the curvature at the solution point. As a
practical matter, Toro accepts only diagonal covariances, so
instead of using J>J , we scale a simple diagonal covariance
based on the inlier response.

In cases where there are too few inliers, the match is
rejected; this issue is explored in detail in Section V-C. The
important result is that geometric matching provides an almost
foolproof method for rejecting bad view matches.

B. Visual Odometry and Re-detection

Our overriding concern is to make the whole system robust.
In outdoor rough terrain, geometric view matching for VO has
proven to be extremely stable even under very large image
motion [24], because points are re-detected and matched over
large areas of the image for each frame. For this paper’s
experiments, we use a recently-developed scale-space detector



called STAR (similar to the CenSurE detector [1]) outdoors,
and the FAST detector indoors. There is no motion assump-
tion to drive keypoint match prediction – all keypoints are
redetected at each frame. For each keypoint in the current left
image, we search a corresponding area of size 128x64 pixels
for keypoints in the reference keyframe image for a match
using SAD correlation of a 16x16 patch. Robust geometric
matching then determines the best pose estimate. Keyframes
are switched when the match inlier count goes below 100, or
the camera has moved 0.3m or 10 degrees.

In a 400 m circuit of our labs, with almost blank walls,
moving people, and blurred images on fast turns, there was
not a single VO frame match failure (see Figure 5 for sample
frames). The PTAM methods of [20], which employ hundreds
of points per frame, can also have good performance, with
pyramid techniques to determine large motions. However, they
are prone to fail when there is significant object motion, since
they do not explore the space of geometrically consistent data
associations

C. Skeleton Graph Construction

The VO module provides a constant stream of keyframes to
be integrated into the skeleton graph. To control the size of the
graph for large environments, only a subset of the keyframes
need to be kept in the graph. For example, in the 5km outdoor
runs, a typical distance between skeleton views is 5m.

As each keyframe is generated by VO, it is kept in a small
sequential buffer until enough distance has accumulated to
integrate it into the skeleton. At this point, all the views
in the buffer are reduced to a single constraint between the
first and last views in the buffer. The reduction process is
detailed in [2]; for a linear sequence of constraints, it amounts
to compounding the pose differences ∆z01 ⊕ ∆z12 ⊕ · · · ⊕
∆zn,n−1.

One can imagine many other schemes for skeleton con-
struction that try to balance the density of the graph, but this
simple one worked quite well. In the case of lingering in the
same area for long periods of time, it would be necessary to
stop adding new views to the graph, which otherwise would
grow without limit. The frameSLAM graph reduction supports
online node deletion, and we are starting to explore strategies
for controlling the density of views in an area.

After incorporating a new view into the skeleton, the Toro
optimizer is run for a few iterations to optimize the graph.
The optimization can be amortized over time, allowing online
operation for fairly large graphs, up to several thousand views
(see the timings in Figure 6).

V. MATCHING VIEWS

In this section we describe our approach to achieving effi-
cient view matching against thousands of frames. We develop
a filtering technique for matching a new image against a
dataset of reference images (PR), using a vocabulary tree to
suggest candidate views from large datasets. From a small
set of the top candidates, we apply the geometric consistency
check, using Randomized Tree signatures [5] as an efficient

viewpoint-invariant descriptor for keypoint matching. Finally,
we develop statistics to verify the rejection capability of this
check.

A. Compact Randomized Tree Signatures

We use Randomized Tree (RT) signatures [5] as descriptors
for keypoints. An RT classifier is trained offline to recognize
a number of keypoints extracted from an image database,
and all other keypoints are characterized in terms of their
response to these classification trees. Remarkably, a fairly
limited number of base keypoints—500 in our experiments—is
sufficient. However, a limitation of this approach is that storing
a pre-trained Randomized Tree takes a considerable amount of
memory. A recent extension [6] compacts signatures into much
denser and smaller vectors resulting in both a large decrease
in storage requirement and substantially faster matching, at
essentially the same recognition rates as RT signatures and
other competing descriptors; Table I compares creation and
matching times. The performance of compact signatures means
that the N×N keypoint match of the geometric consistency
check is not a bottleneck in the view matching process.

Descriptor Creation N×N Matching
(512 kpts) (512×512 kpts)

Sparse RTs (CPU) 31.3 ms 27.7 ms
Compact RTs (CPU) 7.9 ms 6.3 ms

U-SURF64 (CPU) 150 ms 120 ms
73 ms (ANN)

U-SURF64 (GPU) 6.8 ms

TABLE I
TIMINGS FOR DESCRIPTOR CREATION AND MATCHING.

B. A Prefilter for Place Recognition

We have implemented a place recognition scheme based
on the vocabulary trees of Nistér and Stewénius [27] which
has good performance for both inserting and retrieving images
based on the compact RT descriptors. We call this step a
prefilter because it just suggests candidates that could match
the current view, which must then be subject to the geometric
consistency check for confirmation and pose estimation. VO
and PR both use the geometric check, but PR has the harder
task of finding matches against all views in the skeleton,
while VO only has to match against the reference keyframe.
The prefilter is a bag-of-words technique that works with
monocular views (the left image of the stereo pairs).

The vocabulary tree is a hierarchical structure that simulta-
neously defines both the visual words and a search procedure
for finding the closest word to any given keypoint. The
tree is constructed offline by hierarchical k-means clustering
on a large training set of keypoint descriptors. The set of
training descriptors is clustered into k centers. Each center then
becomes a new branch of the tree, and the subset of training
descriptors closest to it are clustered again. The process repeats
until the desired number of levels is reached.

The discriminative ability of the vocabulary tree increases
with the number of words, at a cost of greater quantization



error [3] and increased memory requirements. Nistér and
Stewénius have shown that performance improves with the
number of words, up to very large (>1M) vocabularies. In
our experiments, we use about 1M training keypoints from
500 images in the Holidays dataset [17], with k = 10, and
create a tree of depth 5, resulting in 100K visual words. The
Holidays dataset consists of mostly outdoor images, so the
vocabulary tree is trained on data visually dissimilar to the
indoor environments of most of our experiments.

The vocabulary tree is populated with the reference images
by dropping each of their keypoint descriptors to a leaf and
recording the image in a list, or inverted file, at the leaf. To
query the tree, the keypoint descriptors of the query image
are similarly dropped to leaf nodes, and potentially similar
reference images retrieved from the union of the inverted files.
In either case, the vocabulary tree describes the image as a
vector of word frequencies determined by the paths taken
by the descriptors through the tree. Each reference image is
scored for relevance to the query image by computing the L1
distance between their frequency vectors. The score is entropy-
weighted to discount very common words using the Term
Frequency Inverse Document Frequency (TF-IDF) approach
described in [27, 30].

To evaluate the vocabulary tree as a prefilter, we constructed
a small test set of some 180 keyframes over a 20m trajectory,
and determined ground truth matches by performing geometric
matching across all 180×180 possibilities. In this dataset,
each keyframe averages 11.8 ground truth matches. We in-
serted these keyframes, along with another 553 non-matching
distractor keyframes, into the vocabulary tree. Querying the
vocabulary tree with each of the 180 test keyframes in turn,
we obtained their similarity scores against all the reference
images. The sensitivity of the vocabulary tree matching is
shown by the ROC curve (Figure 3, left) obtained by varying
a threshold on the similarity score.

Since we can only afford to put a limited number of can-
didates through the geometric consistency check, the critical
performance criterion is whether the correct matches appear
among the most likely candidates. Varying N , we counted the
percentage of the ground truth matches appearing in the top-
N results from the vocabulary tree. For robustness, we want
to be very likely to successfully relocalize from the current
keyframe, so we also count the percentage of test keyframes
with at least one or at least two ground truth matches in the
top-N results (Figure 3, right).

In our experiments, we take as match candidates the top
N = 15 responses from place recognition. We expect to find at
least one good match for 97% of the keyframes and two good
matches for 90% of the keyframes. For any given keyframe,
we expect almost 60% of the correct matches to appear in the
top 15 results.

C. Geometric Consistency Check

We can predict the ability of the geometric consistency
check (Section IV-A) to reject false matches by making a
few assumptions about the statistics of matched points, and

Fig. 3. Left: ROC curve for the vocabulary tree prefilter on the test dataset.
Right: “Average” curve shows percentage of the correct matches among the
top N results from the vocabulary tree (blue); other curves are the percentage
of views with at least 1 or 2 matches in the top N .

estimating the probability that two unrelated views I0 and I1
will share at least M matches, given a relative pose estimate.
Based on perspective geometry, any point match will be an
inlier if the projection in I1 lies on the epipolar line of the
point in I0. In our case, with 640×480 images, an inlier radius
of 3 pixels, the probability of being an inlier is:

Atrack/Aimage = (6 ∗ 640)/(640 ∗ 480) = .0125 (3)

This is for monocular images; for stereo images, the two
image disparity checks (assuming disparity search of 128
pixels) yield a further factor of (6/128)*(6/128). In the more
common case with dominant planes, one of the image disparity
checks can be ignored, and the factor is just (6/128). If the
matches are random and independent (i.e., no common objects
between images), then counting arguments can be applied.
The distribution of inliers over N trials with probability p of
being an inlier is Bp,N , the binomial distribution. We take the
maximum inliers over K RANSAC trials, so the probability of
having less than x inliers is (1−Bp,N (x))K . The probability
of exactly x inliers over all trials is

(1−Bp,N (x))K − (1−Bp,N (x− 1))K (4)

Figure 4 shows the probabilities for the planar stereo case,
based on Equation 4. The graph peaks sharply at 2 inliers
(out of 250 matches), showing the theoretic rejection ability
of the geometric check. However, the real world has structure,
and some keypoints form clusters: these factors violate the
independent match assumption. Figure 4 compares actual
rejections from the three datasets in the Experiments section,
with two different types of keypoints, FAST and STAR. These
show longer tails, especially FAST, which has very strong
clustering at corners. Note that repetitive structure, which
causes false positives for bag-of-words matching, as noted in
[8], is rejected by the geometric check – for example, the
windows in Figure 7. Even with the long tail, probabilities are
very low for larger numbers of inliers, and the rejection filter
can be set appropriately.

VI. EXPERIMENTS

As explained in Section II, the view-based system consists
of a robust VO detector that estimates incremental poses of a
stereo video stream, and a view integrator that finds and adds
non-sequential links to the skeleton graph, and optimizes the
graph. We carried out a series of tests on stereo data from
three different environments:



Fig. 4. The probability of getting x inliers from a random unrelated view
match. Theoretic probability (see text) compared to three different datasets.
Note log scale for probabilities.

Type length image image stereo skeleton
res rate base views

Office 0.8 km 640x480 30 Hz 9 cm 4.2k
Urban 0.4 km 768x568 25 Hz 100 cm 0.5k
Terrain 10 km 512x384 15 Hz 50 cm 14.6k

Rectification is not counted in timings; for the indoor sequence
it is done in the stereo hardware. VO consumes 11 ms per
video frame, leaving 22 ms for view integration, 2/3 of the
available time at the fastest frame rate. As in PTAM [20],
view integration can be run in parallel with VO, so on a dual-
core machine view matching and optimization could consume
a whole processor. Given its efficiency, we publish results here
for a single processor only. In all experiments, we restrict the
number of features per image to ∼300, and use 100 RANSAC
iterations for geometric matching.

A. Large Office Loop

The first experiment is a large office loop of about 800m
in length. The trajectory was done by joysticking a robot at
around 1m/sec. Figure 1 shows some images: there is sub-
stantial blurring during fast turns, sections with almost blank
walls, cluttered repetitive texture, and moving people. There
are a total of 24K images in the trajectory, with 10k keyframes,
4235 skeleton views, and 21830 edges (Figure 1 shows the first
400m). Most of the edges are added from neighboring nodes
along the same trajectory, but a good portion come from loop
closures and parallel trajectories (Figure 5).

View matching has clearly captured the major structural
aspects of the trajectory, relative to open-loop VO. It closed
the large loop from the beginning of the trajectory to the end,
as well as two smaller loops in between. We also measured
the planarity of the trajectory: for the view-based system, RMS
error was 22 cm; for open-loop VO, it was 50 cm.

Note that the vocabulary tree prefilter makes no distinction
between reference views that are temporally near or far from
the current view: all reference views are treated as places
to be recognized. By exploiting the power of geometric
consistency, there is no need to compute complex covariance
gating information for data association, as is typically done
for EKF-based systems [9, 10, 29, 32].

The time spent in view integration is broken down by

Fig. 5. A closeup from the office dataset showing the matched views on a
small loop. The optimizer has been turned off to show the links more clearly.

Fig. 6. Timing for view integration per view during the office loop trajectory.

category in Figure 6. The vocab tree prefilter grows linearly,
to about 100 ms at the end; the geometry check is constant at
65 ms. Toro does almost no work at the beginning of the
trajectory, then grows to average 120 ms at the end, with
maximum time of 500 ms. VO can run at frame rates, while
simultaneously adding and optimizing skeleton frames at 2 Hz.

B. Versailles Rond

We ran viewmap on an outdoor urban sequence from a car in
Versailles, a trajectory of about 400m (Figure 7). The skeleton
map contained 140 views, and PR found 12 matches after
looping around, even when the car moved into an adjacent
lane. The Versailles images have a lot of self-similarity in the
windows, but the geometric check rejects false positives. This
sequence easily runs online.

C. Rough-Terrain Loops

Large off-road trajectories present the hardest challenge
for VSLAM. Grass, trees and other natural terrain have self-
similar texture and few distinguishing landmarks. The dataset
we used was taken by a very aggressive offroad autonomous
vehicle, with typical motion of 0.5 m between frames, and
sometimes abrupt roll, pitch, and vertical movement. VO fails
on about 2% of the frames, mostly because of complete
occlusion of one camera; we fill in with IMU data. There are
two 5 km trajectories of 30K frames that overlap occasionally.
To test the system, we set the skeleton view distance to only



Fig. 7. Versailles Rond sequence of 700 video frames taken from a moving
vehicle, 1m baseline, narrow FOV. (Dataset courtesy of Andrew Comport
[7]) Top: matched loop closure frames. Bottom: top-down view of trajectory
superimposed on satellite image.

Fig. 8. Matched loop closure frames from the rough-terrain dataset. The
match was made between two separate autonomous 5km runs, several hours
apart: note the low cloud in the left image.

1m. The resultant graph has 14649 nodes and 69545 edges, of
which 189 are cross-links between the two trajectories. The
trajectories are largely corrected via the crosslinks – the error
at the end of the loop changes from over 100m with raw VO to
less than 10m. Note that there are no loop closures within each
trajectory, only between them. Figure 8 shows such a match.
The PR system has the sensitivity to detect close possibilities,
and the geometric check eliminates false positives – in Section
V-C we tested 400K random image matches from this dataset,
and found none with over 10 inliers (Figure 4).

D. TrajectorySynth

To showcase the capability of view integration, we per-
formed a reconstruction experiment without any temporal
information provided by video sequencing or VO, relying just
on view integration. We take a small portion of the office loop,

Fig. 9. Trajectory synthesis with no sequencing information: view constraints
from PR at left; final optimized map at right.

extract 180 keyframes, and push them into the vocabulary
tree. We then choose one keyframe as the seed, and use view
integration to add all valid view matches to the view skeleton.
The seed is marked as used, and one of the keyframes added
to the skeleton is chosen as the next seed. The process repeats
until all keyframes are marked as used.

The resultant graph is shown in Figure 9, left. The nodes
are placed according to the first constraint found; some of
these constraints are long-range and weak, and so the graph
is distorted. Optimizing using Toro produces the consistent
graph on the right. The time per keyframe is 150 ms, so that
the whole trajectory is reconstructed in 37 seconds, about 2
times faster than realtime. The connection to view stitching
[31] is obvious, to the point where we both use the same term
“skeleton” for a subset of the views. However, their method is
a batch process that uses full bundle adjustment over a reduced
set of views, whereas our approximate method retains just
pairwise constraints between views.

E. Relocalization

Under many conditions, VO can lose its connection to the
previous keyframe. If this condition persists (say the camera
is covered for a time), then it may move an arbitrary distance
before it resumes. The scenario is sometimes referred to as
the “kidnapped robot” problem. View-based maps solve this
problem with no additional machinery. To illustrate, we took
the small loop sequence from the TrajectorySynth experiment,
and cut out enough frames to give a 5m jump in the actual
position of the robot. Then we started the VO process again,
using a very weak link to the previous node so that we
could continue using the same skeleton graph. After a few
keyframes, the view integration process finds the correct
match, and the new trajectory is inserted in the correct place in
the growing map (Figure 10). This example clearly indicates
the power of constant re-recognition.

F. Accuracy of View-Based Maps

To verify the accuracy of the view-based map, we acquired
a sequence of video frames that are individually tagged
by “ground truth” 3D locations recorded by the IMPULSE
Motion Capture System from PhaseSpace Inc. The trajectory
is about 23 m in total length, consisting of 4 horizontal loops



Fig. 10. Kidnapped robot problem. There is a cut in the VO process at
the last frame in the left trajectory, and the robot is transported 5m. After
continuing a short time, a correct view match inserts the new trajectory into
the map.

with diameters of roughly 1.5 m and elevations from 0 to 1m.
There are total of 6K stereo images in the trajectory, with 224
graph nodes, and 360 edges. The RMS error of the nodes was
3.2 cm for the view-based system, which is comparable to the
observed error for the mocap system. By contrast, open-loop
VO had an error of 14 cm.

VII. CONCLUSION

We have presented a complete system for online generation
of view-based maps. The use of re-recognition, where the
robot’s position is re-localized at each cycle with no prior
information, leads to robust performance, including automatic
relocalization and map stitching.

There are some issues that emerged in performing this
research that bear further scrutiny. First, SGD optimization
takes too long on very large graphs, since its convergence
is sublinear. A better strategy is to use a few iterations of
SGD, followed by Gauss-Seidel iterations to converge quickly.
Second, we would like to investigate the monocular case,
where full 6DOF constraints are not present in the skeleton
graph.

REFERENCES

[1] M. Agrawal and K. Konolige. CenSurE: Center surround extremas for
realtime feature detection and matching. In ECCV, 2008.

[2] M. Agrawal and K. Konolige. FrameSLAM: From bundle adjustment
to real-time visual mapping. IEEE Transactions on Robotics, 24(5),
October 2008.

[3] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor
based image classification. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2008.

[4] J. Callmer, K. Granström, J. Nieto, and F. Ramos. Tree of words for
visual loop closure detection in urban slam. In Proceedings of the 2008
Australasian Conference on Robotics and Automation, page 8, 2008.

[5] M. Calonder, V. Lepetit, and P. Fua. Keypoint signatures for fast learning
and recognition. In ECCV, 2008.

[6] M. Calonder, V. Lepetit, K. Konolige, P. Mihelich, and P. Fua. High-
speed keypoint description and matching using dense signatures. In
Under review, 2009.

[7] A. Comport, E. Malis, and P. Rives. Accurate quadrifocal tracking for
robust 3d visual odometry. In ICRA, 2007.

[8] M. Cummins and P. M. Newman. Probabilistic appearance based
navigation and loop closing. In ICRA, 2007.

[9] A. Davison. Real-time simultaneaous localisation and mapping with a
single camera. In ICCV, pages 1403–1410, 2003.

[10] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam:
Real-time single camera slam. IEEE PAMI, 29(6), 2007.

[11] E. Eade and T. Drummond. Monocular SLAM as a graph of coalesced
observations. In Proc. ICCV, 2007.

[12] E. Eade and T. Drummond. Unified loop closing and recovery for real
time monocular slam. In BMVC, 2008.

[13] F. Fraundorfer, C. Engels, and D. Nistér. Topological mapping, localiza-
tion and navigation using image collections. In IROS, pages 3872–3877,
2007.

[14] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localisation and mapping. IEEE Transactions on
Robotics, 21(2):1–12, 2005.

[15] G. Grisetti, D. L. Rizzini, C. Stachniss, E. Olson, and W. Burgard.
Online constraint network optimization for efficient maximum likelihood
mapping. In ICRA, 2008.

[16] J. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proc. IEEE International Symposium on Computa-
tional Intelligence in Robotics and Automation (CIRA), pages 318–325,
Monterey, California, November 1999.

[17] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak
geometric consistency for large scale image search. In ECCV, 2008.

[18] H. Jegou, H. Harzallah, and C. Schmid. A contextual dissimilarity
measure for accurate and efficient image search. Computer Vision
and Pattern Recognition, IEEE Computer Society Conference on, 0:1–8,
2007.

[19] A. Kelly and R. Unnikrishnan. Efficient construction of globally
consistent ladar maps using pose network topology and nonlinear
programming. In Proceedings 11th International Symposium of Robotics
Research, 2003.

[20] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, November
2007.

[21] G. Klein and D. Murray. Improving the agility of keyframe-based slam.
In ECCV, 2008.

[22] M. Klopschitz, C. Zach, A. Irschara, and D. Schmalstieg. Generalized
detection and merging of loop closures for video sequences. In 3DPVT,
2008.

[23] K. Konolige and M. Agrawal. Frame-frame matching for realtime con-
sistent visual mapping. In Proc. International Conference on Robotics
and Automation (ICRA), 2007.

[24] K. Konolige, M. Agrawal, and J. Solà. Large scale visual odometry
for rough terrain. In Proc. International Symposium on Research in
Robotics (ISRR), November 2007.

[25] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, 4:333–349, 1997.

[26] M. Muja and D. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In VISAPP, 2009.

[27] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree.
In CVPR, 2006.

[28] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose
graphs with poor estimates. In In ICRA, 2006.

[29] L. Paz, J. Tardós, and J. Neira. Divide and conquer: EKF SLAM in
O(n). IEEE Transactions on Robotics, 24(5), October 2008.

[30] J. Sivic and A. Zisserman. Video google: A text retrieval approach
to object matching in videos. Computer Vision, IEEE International
Conference on, 2:1470, 2003.

[31] N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal sets for efficient struc-
ture from motion. In Proc. Computer Vision and Pattern Recognition,
2008.

[32] J. Solà, M. Devy, A. Monin, and T. Lemaire. Undelayed initialization
in bearing only slam. In ICRA, 2005.

[33] B. Steder, G. Grisetti, C. Stachniss, S. Grzonka, A. Rottmann, and
W. Burgard. Learning maps in 3d using attitude and noisy vision sensors.
In IEEE International Conference on Intelligent Robots and Systems
(IROS), 2007.

[34] R. Unnikrishnan and A. Kelly. A constrained optimization approach to
globally consistent mapping. In Proceedings International Conference
on Robotics and Systems (IROS), 2002.

[35] B. Williams, G. Klein, and I. Reid. Real-time slam relocalisation. In
ICCV, 2007.


