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Abstract— The Unscented Kalman Filter (UKF) was applied
to state and parameter estimation of a one degree of freedom
robot link with an elastic, cable-driven transmission. Only motor
encoder and command torque data were used as input to the filter.
The UKF was used offline for joint state and model-parameter
estimation, and online for state estimation. This paper presents
an analysis of the robustness of the UKF to unknown/unmodeled
variation in inertia, cable tension and contact forces, using
experimental data collected with the robot.

Using model parameters found offline the UKF successfully
estimated motor and link angles and velocities online. Although
the transmission was very stiff, and hence the motor and link
states almost equal, information about the individual states was
obtained. Irrespective of variation from nominal conditions the
UKF link angle estimate was better than using motor position
as an approximation (i.e. inelastic transmission assumption). The
angle estimates were particularly robust to variation in operating
conditions, velocity estimates less so. A near-linear relationship
between contact forces and estimation errors suggested that
contact forces might be estimated using this error information.

I. I NTRODUCTION

A. Background

State and parameter knowledge are of prime importance
in robot manipulation. Accurate control of a robot requires
knowing the robot state and good controller design requires
an accurate model of the robot. Sensors are often noisy so
filtering is necessary to get a good state measurement. Filters,
however, can introduce a phase lag and degrade performance.
Model based state estimation may be a good way to obtain
state estimates from noisy sensors, or a reduced set of sensors.

The BioRobotics Lab at the University of Washington has
developed the RAVEN robot, a new six degree of freedom
(DoF) surgical robot prototype [1]. The RAVEN is cable-
driven, allowing the motors to be removed from the arms
and attached to the base. This decreases the arms’ inertia, but
the cables introduce elasticity into the system. That, in turn,
creates additional states since the link is elastically coupled to
the motor. The RAVEN has encoders mounted on the motors
but not on the link side, since encoders on the links themselves
would require additional, complex wiring. Furthermore, the
encoder signal is highly quantized making noise-free velocity
estimation difficult to compute. In addition, several of the
model parameters are not directly observable, namely the cable
stiffness and damping, and friction. This paper focuses on a
single-DoF RAVEN-like testbed to study the problems of state
estimation and parameter estimation in an elastic transmission.

B. Related Work

Most published studies on elastic transmissions have fo-
cused on elastic-joint robots. For a cable-driven robot theanal-
ysis is normally more complicated due to coupling between
cable runs for multiple joints. However, there is no coupling
in a 1-DoF cable-driven robot, and the modeling coincides
with that of a 1-DoF elastic-joint robot.When extrapolating
the results of this paper back to a multi-DoF robot such as the
RAVEN the coupling, which is a kinematic relationship, must
be taken into account.

Research on state and parameter estimation in elastic-joint
robots gained momentum in the 1980’s, together with the
development of controller designs that required knowledge
of the robot’s state and model. Nicosia and Tornambé [2]
developed a method to estimate the parameters of an elastic-
joint robot using the output injection technique used in ob-
servers for nonlinear systems. The state of the robot was
assumed known. In [3] Nicosia et al. designed approximate
state observers for elastic-joint robots, and derived conditions
under which exact observers exist. Their work required some
measurement of the state at both sides of the transmission.
Jankovic [4] proposed a reduced order high-gain state observer
for elastic-joint robots that only required measurement ofthe
motor side state, i.e. motor angle and velocity. A variable
structure observer was designed by Léchevin and Sicard in
[5] for elastic-joint manipulators. Their observer used link
angle measurements. Abdollahi et al. [6] built a general state
observer for nonlinear systems where a neural network was
used to learn the system’s dynamics. The observer’s potential
was demonstrated with an application to elastic-joint robots
with measurement of motor angle and velocity.

C. Present Work

The task at hand in this paper is simultaneous state and
parameter estimation of an elastic transmission with only
motor angle measurements available. The aforementioned
studies either require the knowledge of more states, or they
only allow the estimation of certain parameters, such as the
transmission elasticity. We would like to estimate several
parameters, including friction. Therefore, we approach the
problem through straight-forward application of the Unscented
Kalman Filter (UKF) [7, 8, 9]. The primary difference between
the UKF and the Extended Kalman Filter (EKF) is that the
UKF is capable of performing nonlinear estimation without



linearization, whereas the EKF linearizes the nonlinear system
and applies a regular Kalman filter algorithm. The UKF was
chosen as it has been argued that it should replace the EKF
in estimation applications for nonlinear systems because of its
simpler implementation and better performance [7, 9]. Araki et
al. [10] estimated the parameters of a robot with rigid joints
using a UKF, and experiments were done with a two-DoF
robot. Other works not related to robotics that employ the
UKF for state and/or parameter estimation include Zhao et al.
[11], Gove and Hollinger [12] and Zhan and Wan [13].

We present a study of simultaneous state and parameter
estimation for offline system identification, and an online state
estimator for smooth, noise-free state measurement with no
phase distortion. The UKF is used in both cases.The main
contribution of this work is an experimental examination of
robustness of the UKF to unknown variations in inertia, cable
tension and force disturbances.We are primarily interested in
applications to teleoperation, and the motivating factorsbehind
the robustness experiments are

1) to investigate the possibility of estimating contact forces
with an elastic-joint robot with partial state measurement
in a bilateral teleoperation setting, and

2) to get an indication of the performance of a simple joint-
level UKF for state estimation and feedback control in
a multi-DoF robot.

A more general, but important question that also needs to be
answered is whether, and with what accuracy we can estimate
the link state using motor angle measurements. In other words,
can we infer better information about the actual link state by
the application of an advanced filter like the UKF, or will using
the motor state as an approximation to the link state be just
as useful, i.e. a rigid robot assumption?

II. SYSTEM & M ODELING

A. Hardware

To test the UKF robustness in a real world setting, a simple
1-DoF test platform was employed (see Fig. 1). Termed the
“pulleyboard” it uses all the same hardware as the RAVEN
surgical robot, and is intended as a testbed for that device.

The pulleyboard uses a single Maxon EC40 brushless DC
motor and a DES 70/10 motor controller (Maxon Motors).
The end effector is a rotational link with nominal moment
of inertia 3.63 · 10−4 kgm2 about the axis of rotation. The
moment of inertia can be varied by additional weight rigidly
affixed to the link. The link is cable driven with a cable run
from the motor to the link and back for a total cable length of
1.58 m. The stainless steel cable goes through a total of four
idler pulleys with a diameter of 15 mm and eight idler pulleys
with a diameter of 7.5 mm, in addition to the motor and link
shafts with a diameter of 14 mm. This cable route is similar
to the second axis of the surgical robot. Also, a force gauge
with an additional 15 mm pulley is included in one part of the
cable run to measure cable tension.

On this simplified testbed it is easy to have two shaft
encoders, one colocated at the motor and another noncolocated

Fig. 1. The pulleyboard with a force gauge in the lower right corner.

at the link. These sensors directly measure motor angleqm and
link angleql (see Fig. 2). So that the results will be applicable
to the RAVEN robot, the noncolocated sensor was used only
for validation, and not for control or parameter estimation.

Also, identical to the RAVEN the pulleyboard includes an
RTAI Linux PC. The PC is a 32-bit AMD Athlon XP with
1GB RAM. I/O with the the pulleyboard uses the BRL USB
board developed in the BioRobotics Lab at the University of
Washington [14]. The robot control software is an RTAI-Linux
kernel module, and the control loop runs at 1kHz.

B. Modeling

The main modeling assumption is that, although the pulley-
board has several idler pulleys, it can be modeled as one motor
side and one link side connected by one cable run. Idler pulley
inertias and transmission friction can be lumped into either one
of the two sides without any significant loss of accuracy.

Fig. 2 shows a schematic drawing of the pulleyboard the
way it is modeled. The pulleyboard model comprises a motor
inertia, Jm, and a link inertia,Jl, connected by two cables
each with a longitudinal stiffnesske and dampingbe. For the
purpose of modeling, the two cables are considered as one
torsional spring/damper connecting the two inertias, where the
total torsional effect is the combination of the longitudinal ef-
fect of the two cables. The spring is modeled as an exponential
spring, i.e. for a generic displacementd we have

Fspring = ke(e
αd

− 1).

Initial estimation tests were carried out where bothke and
α were considered unknown. However, we were unable to



Fig. 2. The pulleyboard model.

make the UKF estimate forα converge. Possibly, this is
because the relative displacements of the stiff transmission
are very small, and within these displacements a wide range
of values forα yield approximately the same force. Instead,
α = 1 throughout this paper. The use of an exponential spring
model is nevertheless worthwhile, as the increased degree
of nonlinearity will put the UKF further to the test. The
damper is modeled as a linear damper. The mass of the cables
is neglected. It is assumed that the cables are pretensioned
equally, and to a sufficiently high tension that neither cable
goes slack under normal operation. Friction in the transmission
is lumped into a motor side termFm and a link side termFl.

Let rm = rl be the motor and link capstan radii, respec-
tively. Since they are equal the pulleyboard’s gear ratio is1:1.
Let τm be the torque applied to the motor,qm the angle of the
motor andql the angle of the link. The motor and link angles
are zero when the link is in a vertical position, the tensionsin
the two cables are equal and the system is not moving. The
dynamic equation is then written as

Jq̈ + T + F + N = τ (1)

whereq = [qm, ql]
T , τ = [τm, 0]T , and

J =

[

Jm 0
0 Jl

]

, T =

[

rmγ
−rlγ

]

,

F =

[

Fm

Fl

]

and N =

[

0
mlLcmg sin(ql)

]

.

The motor inertiaJm can be found by consulting the motor’s
data sheet, and the link inertiaJl can be calculated using the
parallel axis theorem. The variableγ is used to denote the total
longitudinal force of the spring/damper effect of both cables.
It is calculated as

γ = ke(e
qmrm−qlrl − eqlrl−qmrm) + 2be(q̇mrm − q̇lrl).

The lumped transmission frictionF is modeled by the simple
Coulomb and viscous combination:

Fi = Fc,isign(q̇i) + Fv,iq̇i, i = m, l

where Fc,i and Fv,i are the Coulomb and viscous friction
constants, respectively. Motor and link shaft friction is also

included in these terms. Finally,N contains the gravitational
torque acting on the link, withml being the mass of the link,
Lcm is the distance from the axis of rotation to the center of
mass, andg is the acceleration of gravity.

Some of the parameters in the dynamic equation are known,
while some are unknown. In particular, the inertiasJm andJl

are known, and so areml and Lcm, so that the gravitational
term N can be computed. The capstan radiirm and rl are
also known. On the other hand, the stiffness constantke and
the damping constantbe are unknown. So are the four friction
constantsFc,i andFv,i, for a total of six unknown parameters.
These parameters have to be estimated.

III. M ETHODS

The Unscented Kalman Filter (UKF) was used in two
ways: offline for simultaneous state and parameter estimation
and online for state estimation. System parameters identified
offline were used online for state-only estimation. Although
the pulleyboard has motor and link angle available, only motor
angle was used so as to emulate a system with colocated
sensors and actuators.

A PD controller was implemented for all data collection,
both during the offline estimation and the following robustness
experiments. The pulleyboard performed sinusoidal trajectory
following tasks, and except for the force disturbance teststhe
pulleyboard was operated in free-space motion. As the topic
of our study was state estimation performance, and not control
performance, the state estimate wasnot used for feedback
control. Instead, the motor shaft encoder information was used
directly for PD control. A low-pass filter was applied to avoid
the resonant high-frequency modes inherent in the elastic cable
transmission, and velocity was calculated by a first-difference
of the low-pass filtered position samples.

A. Offline State and Parameter Estimation

The key to parameter estimation with the UKF is to regard
the unknown parameters as part of the state. That way the
basic UKF algorithm does not have to be modified. The
pulleyboard’s dynamic equation (1) is written in state-space
form, discretized, and the state vector is augmented with the
unknown parameters.

To write the dynamic equation in state-space form we first
define the state vector of the continuous-time systemx(t) as

x :=
[

qm ql q̇m q̇l

]T
.

We also define the generic input signalu := τ . The pulley-
board’s dynamics in state-space form are then given as

ẋ = f(x,u), (2)

y = Cx (3)

where

f :=

[

q̇

J−1(τ − N − F − T )

]

,

C :=
[

1 0 0 0
]

.

The measurementy is equal to motor angleqm = x1.



Sincef is nonlinear we cannot compute the exact discrete-
time equivalent of the continuous-time system. Instead we
numerically integrate the state-space equations using a fourth
order Runga-Kutta method. Denoting the Runga-Kutta 4 op-
erator byF RK4 we get

x(k + 1) = F RK4(f(x(k),u(k))) =: F (x(k),u(k)), (4)

y(k) = Cx(k) (5)

wherek is the time index. The measurement equations (3) and
(5) for the continuous and discrete-time systems are the same.

The final step before applying the UKF algorithm is to
construct the augmented dynamic equation of the pulleyboard.
We define the augmented state vector as

xa :=
[

xT ke be Fc,m Fc,l Fv,m Fv,l

]T
.

The augmented system is then described by

xa(k + 1) = F a(xa(k),u(k)), (6)

y(k) = Caxa(k). (7)

where

F a(xa(k),u(k)) :=





















F (x(k),u(k))
ke(k)
be(k)

Fc,m(k)
Fc,l(k)
Fv,m(k)
Fv,l(k)





















,

Ca :=
[

C 01×6

]

.

With the system (6), (7) we are ready for direct application
of the UKF algorithm. Essentially, the UKF uses a deter-
ministic sampling approach to calculate the state estimatex̂

a

and covariance. A set of samples are chosen that completely
capture the true mean and covariance of the statexa. These
samples are calledsigma pointsand they are propagated
through the nonlinearityF a instead of the state itself. The state
estimate and covariance are then found by weighted average
computation. For the offline state and parameter estimationa
square-root implementation of the UKF algorithm is used to
shorten the execution time [9]. Although process noisev(k)
and measurement noisen(k) are not included in (6) and (7)
the knowledge of the10×10 process noise covariance matrix
Rv and the measurement noise covarianceRn is required.
In this paper these are used solely to control the convergence
properties of the algorithm. For further details on the derivation
and use of the UKF, see e.g. [7, 8, 9].

Before data collection, the six unknown parameters were
divided into two groups; one group consisted of the cable
parameterske and be, while the other group consisted of the
friction parametersFc,m, Fc,l, Fv,m andFv,l. A separate data
set was collected for each group, both with a duration of
140 seconds. For the cable parameters a data set with high
frequency motion was used, because it maximizes the relative
motion between motor and link side, and thereby provides the

most information to the UKF. Also, with respect to the total
torque acting on the joints, friction parameters are usually less
dominant at high velocities, so they were assumed negligible.
The desired motor angleqd

m given to the PD controller was

qd
m(t) = sin(2πt) − 0.7 sin(3πt) + 0.5 sin(4πt)

+ 0.4 sin(5πt) − 0.2 sin(6πt) + 0.1 sin(7πt).

For the friction parameters a data set with low frequency
motion was used, since friction is a dominant term at low
velocities. The low frequency angular trajectory was identical
to the high frequency trajectory with frequencies divided by
three. The cable parameters found with the first data set were
used during this second round of estimation.

In the end all six parameters were estimated. For the
online estimation and robustness tests these parameters were
considered known and fixed.

B. Online State Estimation Under Nominal Conditions

Online state estimation was initially tested under nominal
conditions to check the baseline state estimation performance,
and to validate the parameters found offline. For state-only
estimation there is no need to define the augmented system
(6), (7), the original system (4), (5) can be used as is.
Therefore state-only estimation is easier to implement than
combined state and parameter estimation, and the smaller
system dimension makes execution faster. Thus, a square-root
implementation of the online state estimator was not deemed
necessary. As before, the4×4 process noise covariance matrix
Rv and the measurement noise covarianceRn were only set
to control the convergence properties of the UKF, and did not
reflect the real noise in the system. The trajectory used for
validation was

qd
m(t) = 0.75 sin(1.6πt) − 0.63 sin(2.6πt)

+ 0.225 sin(3.66πt) + 0.15 sin(4.4πt)

− 0.12 sin(6.6πt) + 0.075 sin(6.9πt). (8)

Data were collected for 60 seconds.
The main reason not to adaptively estimate the unknown

parameters online is that contact force estimates would be
adversely affected. If the end effector were in contact withthe
environment an adaptive UKF would alter the system parame-
ters to reflect the coupled system’s (pulleyboard+environment)
behavior. Hence, wrong parameter estimates would be used for
contact force estimation.

C. Robustness Experiments

The main purpose of the present work is to study the
robustness of the Unscented Kalman Filter to changes in
system parameters. Robustness was measured in terms of the
ability of the UKF to maintain satisfactory real-time state
estimation using system parameters identified offlineeven as
the system undergoes dynamic changes. The robustness of the
UKF was studied when

• the link inertia was increased from its nominal value,
• the cable tension varied around its nominal value,



• a contact force on the link increased from its nominal
value of zero, and

• the motion of the link was physically constrained.
For each test the motor and link angles were recorded together
with the estimated state and input motor torque. Actual veloci-
ties were computed during post processing using a zero-phase
low-pass filter on the first differences of the encoder signals.
The relative root-mean-square (RMS) error and maximum
error between actual and estimated state was computed for
each test.

1) Link Inertia: When a robot picks up an object the
effective inertia changes, which impacts the system dynamics.
Also, the inertia matrix of a multi-DoF robot is not constant,
as is the case for the 1-DOF pulleyboard, but varies with the
robot’s configuration. To simplify the system dimension and
reduce computing time, it may be desirable to use a 1-DoF
UKF for each joint of a multi-DoF robot. For these reasons
the UKF must be robust to changes in inertia.

For this experiment the link inertia was changed by attach-
ing weights to the link at several distances from the axis of
rotation. Inertia was increased from the nominal link inertia of
3.63·10−4 kgm2 up to1.33·10−3 kgm2, an increase by a factor
of 3.65. For practical reasons it was impossible to decrease
the inertia. At each inertia the same sum-of-sinusoids angular
trajectory was used as for the validation in section III-B.

2) Cable Tension:The amount of pretension in the cable
indirectly determines the cable’s spring and damping parame-
ters, and also the lumped friction parameters. Since the cable
tension will change over time, so will the parameters that
depend on it. By varying the tension around the nominal value
used for parameter estimation we measured the robustness of
the UKF to changes in estimated parameters.

Tension was varied in steps of approximately 260g from the
maximum tension of 3.3kg, via the nominal tension of 2.2kg,
down to 1.17kg. The tensions tested ranged from about 0.5 to
1.5 times the nominal tension. Again, the same sinusoid was
used as for the validation in section III-B.

3) Contact Force:Contact force estimation is of interest in
teleoperation as a potential replacement for force sensors. The
contact force can be computed with complete knowledge of
the input torque, system state and dynamics. However, it is
often the case that the complete state is not known, and it is
therefore desirable to see how the state estimates are affected
as a result of the applied contact force.

Accurate contact forces were simulated by attaching a
cable perpendicular to the link and pulling with weights in
a hanging basket. Meanwhile the pulleyboard followed the
desired trajectory:

qd
m(t) = 0.5 sin(πt).

A single 0.5Hz sine wave was used instead of (8) to keep
the basket from jumping around. The quasi-static conditions
ensured that the additional inertia was not affecting the dy-
namics, and that the weight was simply a constant force.
At first the contact force corresponded to the weight of
the basket only (12.5 g), and then weights of 12.5g were

Fig. 3. Offline convergence of the six estimated parameters.

added every 20 seconds. Weights were added 7 times for
a total of 8 data points. The maximum contact force was
8 × 12.5g × 9.81m/s2 = 0.981N. Since there was a small
transient when new weights were added only the data in the
middle 10 seconds of every 20-second interval were used.

4) Constrained Motion:When the link of the pulleyboard
is physically constrained, a worst case scenario is created
wherein the UKF assumes the robot is moving when it is not.
Due to the constraint, the link will not move at all, but the
motor will because of the elastic transmission. Since the cable
transmission is very stiff (ke = 3 · 104

± 1 · 104 N/m), the
difference between motor angle and link angle will always be
small (typically< 0.15 rad). Hence, the UKF state estimator
must be very accurate in order to provide any additional
information about the actual link state. The alternative would
be to assume that the motor and link states are equal. We can
get a clear picture of whether the implementation of the UKF
is worthwhile if the UKF link state estimate is better than
using the colocated sensor to approximate the link state.

To check this, the pulleyboard was operated with the link
physically constrained for 20 seconds. The link was rigidly
fixed to the base using a C-clamp, and a sinusoidal trajectory
of 0.5 Hz was commanded to the PD controller.

IV. RESULTS

A. Offline State and Parameter Estimation

The results of the offline parameter estimation are shown
in Fig. 3. The top two graphs show the convergence of the
spring and damper constants, which were found with the high
frequency data set. The bottom four graphs show the friction
terms, which were found with the low frequency data set. All
six of the estimated parameters showed convergence. For this
data set, the Coulomb friction tended to converge quickly in



Fig. 4. Online state estimation under nominal conditions: 15-second excerpt
and zoom detail.

10-20 seconds, while the stiffness and damping parameters
showed slower convergence. The viscous friction took even
longer to converge; the link viscous friction in particulartook
nearly 100 seconds to reach steady state.

B. Online State Estimation Under Nominal Conditions

Fig. 4 shows a 15-second excerpt from the 60-second data
set, plus a detail at high zoom level. The state estimates are
denoted byq̂m, q̂l, ˙̂qm and ˙̂ql. At high magnification the
difference between motor and link angles becomes evident,
whereas the difference in velocity is less pronounced. The
zoom window in the lower plot shows oscillations in the
actual motor velocity, and the state estimator tracking those
oscillationsin phase. The link velocity is less oscillatory, and
the link velocity estimate reflects that.

C. Robustness Experiments

Table I contains relative RMS estimation errors in percent
for nominal and off-nominal experiments, calculated as

RMS%= 100 ∗ RMS(estimation error)/RMS(actual value).

Absolute errors are used for constrained motion. The errors
are q̃m :=qm−q̂m, q̃l :=ql−q̂l, ˙̃qm := q̇m− ˙̂qm and ˙̃ql := q̇l−

˙̂ql.
1) Link Inertia: Fig. 5 shows the relative RMS error and

the maximum error of the state estimation as link inertia is
increased. All four graphs show the same phenomenon; the
error stays almost constant until the inertia reaches 2.5 times
its nominal inertia. It is then much higher for an inertia of 3.5
times nominal, and especially pronounced for the link angle.

2) Cable Tension:Fig. 6 shows the relative RMS and
maximum values of the state estimation error as the cable
tension varies around its nominal value. The motor angle
estimation error stays relatively constant. Link angle error,
however, is lower than nominal for lower tension, and gets
worse with higher tensions. The RMS error of the velocity
estimates stays flat up to the nominal tension, and then

TABLE I

RELATIVE RMS ERRORS(%) FOR ROBUSTNESS EXPERIMENTS. FOR

COMPARISON, THE RELATIVE RMS ERROR OF MOTOR ANGLE TO LINK

ANGLE IS INCLUDED. †THE LAST ROW CONTAINS ABSOLUTERMS ERROR

VALUES IN RAD OR RAD/S.

q̃m q̃l
˙̃qm

˙̃ql qm − ql

Nominal 0.29 0.98 17 13 1.5

R
el

at
iv

e
In

er
tia

1.08 0.33 1.2 19 15 1.6
1.14 0.37 1.0 21 17 1.7
1.2 0.40 1.1 23 19 1.8
1.71 0.44 1.1 26 23 2.3
2.52 0.58 1.2 34 32 3.5
3.65 1.5 4.4 93 82 4.8

R
el

at
iv

e
Te

ns
io

n

0.54 0.29 0.77 16 13 1.7
0.65 0.30 0.79 17 13 1.6
0.77 0.29 0.90 16 13 1.6
0.88 0.28 1.0 16 13 1.5
1.1 0.30 1.3 18 16 1.5
1.2 0.32 1.3 20 17 1.6
1.4 0.33 1.5 21 18 1.6
1.5 0.35 1.4 23 20 1.7

F
or

ce
[N

]

0.12 0.77 2.8 126 116 3.4
0.25 1.1 3.1 179 164 3.9
0.37 1.4 3.2 234 218 4.9
0.49 1.6 3.1 288 267 5.9
0.61 1.9 3.3 346 321 7.0
0.74 2.1 3.3 402 374 7.9
0.86 2.3 3.2 458 432 8.8
0.98 2.4 3.0 516 495 9.7

Constrained
Motion†

0.01 0.01 6.6 6.0 0.05

Fig. 5. State estimation performance expressed in terms of relative RMS
error and maximum error for increasing link inertia.

increases almost linearly with higher tension. It is hard tofind
a consistent pattern in the maximum errors. However, the link
angle error does seem to go up as tension increases.

3) Contact Force:Fig. 7 shows the effect of constant ap-
plied force on estimation error. Motor angle and velocity, and
link velocity all have errors with near-linear characteristics,
whereas the link angle estimate has a somewhat more random
shape and shows less variation. It should be noted that velocity
estimation performance is very poor.



Fig. 6. State estimation performance expressed in terms of relative RMS
error and maximum error for changing cable tension.

Fig. 7. State estimation performance expressed in terms of relative RMS
error and maximum error for increasing contact force.

4) Constrained Motion:Fig. 8 shows the system response
to an input of 0.5 radians at 0.5 Hz under constrained motion.
The motor angle estimate is still close to the actual angle, and
the link angle estimate is smaller than the motor angle, closer
to the real link angle. The link angle appears to be out of phase
with the motor trajectory tracking. Both velocity estimates are
far away from the actual values, at or near zero.

V. D ISCUSSION

Offline parameter estimation yielded reasonable values for
all six of the desired parameters. Dividing the parameters into
two groups and estimating them separately was necessary to
have all parameters converge to good estimates. Also, the
choice of initial value for the cable stiffness was important for
the convergence outcome. Setting the initial value ofke to zero
did not lead to convergence. In our case the initial stiffness
guess was set at5 · 104 N/m. It is interesting to note that the

Fig. 8. State estimation when link is physically constrained.

results showed Coulomb friction to be greater than viscous
friction by about two orders of magnitude. This agrees with
findings in [15], where it was found that pulley friction was
primarily Coulombic. The assumption made in section III-A
that friction is less dominant at higher velocities also hinged
on this observation.

In the nominal online tests motor and link states were
accurately estimated using the system parameters found in the
offline estimation step. Velocity estimation was not as good
as angle estimation. However, the velocity estimate was still
significantly improved from the regular low-pass filtered first
difference and, in particular, there was no phase lag in the UKF
velocity estimate. Phase lag is a common factor in controller
instability and poor controller performance. With the improved
estimates we will be able to increase the controller gains and
improve tracking performance.

The right-most column in Table I contains the relative RMS
values of qm − ql. This is the error in using motor angle
as a substitute for link angle. The RMS error of the motor
and link angle estimatioñqm and q̃l were consistently smaller
showing that performance of the UKF was satisfactory and
derived more useful information. This result is also visible
in Fig. 4. We therefore conclude that the UKF is worthwhile
for estimating link state from colocated sensors. Note thatthe
RMS error shot up when the inertia of the link was increased
from a factor of 2.5 to 3.6. This suggests a “safe range” of
inertial changes, or weights that the robot can hold without
affecting state estimation too much. Also, care should be taken
in using the velocity estimate during environmental contact.

Fig. 7 reveals a near-linear relationship between contact
force and estimation error for all states except link angle.
The reverse relationship would suggest using error to estimate
contact force, especially from the motor angle estimate, since
it is measurable in real time. A similar technique was also
proposed in [16]. However, we would only feel confident
doing this under quasi-static conditions, because that is how
the experiments were carried out.



Overall, angle estimates were more robust to changes in
dynamics than velocity estimates. This is especially true for
motor angle estimates. That is to be expected, as motor angle
is closest to the sensor used to compute the estimates (only
separated by quantization). Thus, if only angle information is
used in controllers or for further estimation, the UKF may be
used to achieve desired robustness in changes to the operating
conditions. Although velocity estimates were less robust,phase
information was kept intact, at least during the inertia and
tension experiments. In feedback control the phase of the
velocity is more important than its amplitude, because phase
lag is a common source of instability. Hence, our velocity
estimates may still be used in feedback loops over some range
of operating conditions, at least in free-space motion.

In all Figs. 5-7 motor angle estimation errors were smaller
than link errors, while the opposite was true for the velocities.
We believe that the reason why the motor angle estimates were
better than their link counterparts is simply that the encoder
was located on the motor side (remember that the link side
encoder was only used for validation). Furthermore, we believe
that the link velocity estimation errors were smaller because
the motor velocity signal contained more high frequency
oscillations making it harder to predict.

Observing the RMS error versus changes in inertia, tension
or contact force, we expect the minimum error at the nominal
conditions. For the inertia and contact force tests this wasthe
case, but not for the tension tests. Fig. 6 shows that insteadit
seems that RMS values decreased slightly for smaller tensions,
while increasing almost linearly with tensions above nominal.
This suggests that when cable tension is reduced due to cable
stretch or other factors, state estimate will not be adversely
affected. Overall, change in error due to unmodeled changes
in tension were relatively small, meaning UKF performance
is quite robust in that respect. This is important, since cable
tension is bound to change with time in a cable-driven robot.

VI. CONCLUSION & FUTURE WORK

The Unscented Kalman Filter has been tested for state and
parameter estimation in an elastic transmission using only
motor angle measurements. The performance and robustness
of the UKF to changes in system dynamics has been studied.

During normal operation the UKF was able to distinguish
between motor and link angles although the transmission was
very stiff, and it provided additional information about the
actual link state that could not be measured directly with the
motor encoder. This is useful in the context of state feedback
in control loops.

Robustness experiments showed that angle estimates (motor
and link) were robust to changes in operating conditions,
such as contact with the surroundings or variation in dynamic
parameters. Velocity estimates were less robust.

An almost linear relationship between increasing contact
force and estimation errors suggested using the errors for
estimating the contact force.

Future work will mainly focus on implementing the UKF
for state and parameter estimation on the RAVEN robot. While

our results show that under a range of conditions a joint
level UKF can provide better state estimation than is possible
without such a filter, implementation on a multi-DoF system
will undoubtedly bring new challenges and discoveries. We
also intend to study the importance of nonlinear versus linear
models for the transmission elasticity.
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