Robustness of the Unscented Kalman Filter for
State and Parameter Estimation in an Elastic Transmission

Edvard Naerurh?, H. Hawkeye King and Blake Hannaford Paper-ID 86
1The Interventional Centre, Rikshospitalet University HtspOslo, Norway
2Faculty of Medicine, University of Oslo, Norway
3Department of Electrical Engineering, University of Waslarg Seattle, WA, USA
E-mail: edvar d. nar um@redi si n. ui 0. no, (hawkeyel, bl ake)@. washi ngton. edu

Abstract— The Unscented Kalman Filter (UKF) was applied B. Related Work

to state and parameter estimation of a one degree of freedom : : . o
robot link with an elastic, cable-driven transmission. Only motor Most DUb“Sheq .SIUdles on elastic tran§m|33|ons have fo-
encoder and command torque data were used as input to the filter. CuSed on elastic-joint robots. For a cable-driven robotife-
The UKF was used offline for joint state and model-parameter YSis is normally more complicated due to coupling between
estimation, and online for state estimation. This paper presents cable runs for multiple joints. However, there is no couglin
agr,aa':f'é'r{s'.?‘ O,fntgr?,;‘)bg:gl‘sstsegfs,tgs L;Irde tgolﬁl?ggto"]j’;?e”smOds‘?:]egd in a 1-DoF cable-driven robot, and the modeling coincides
variation in inertia, i , usi . L .
experimental data collected with the robot. with that of a :!.-DOF elastic-joint robgt.When extrapolating
Using model parameters found offline the UKF successfully the results of this paper back to a multi-DoF robot such as the
estimated motor and link angles and velocities online. Although RAVEN the coupling, which is a kinematic relationship, must
the transmission was very stiff, and hence the motor and link be taken into account.
states almost equal, information about the individual states was Research on state and parameter estimation in elastic-join

obtaln_ed. Irrespectlye of variation from nomlnal conditions _t_he robots gained momentum in the 1980’s, together with the
UKF link angle estimate was better than using motor position

as an approximation (i.e. inelastic transmission assumption). The dévelopment of controller designs that required knowledge
angle estimates were particularly robust to variation in operating Of the robot's state and model. Nicosia and TornanjB]
conditions, velocity estimates less so. A near-linear relationship developed a method to estimate the parameters of an elastic-
between contact forces and estimation errors suggested thatjoint robot using the output injection technique used in ob-
contact forces might be estimated using this error information. servers for nonlinear systems. The state of the robot was
|. INTRODUCTION assumed known. In [3] Nicosia et al. designed approximate
A. Background state obsgrvers for elastic-joint r.obots, gnd derived !Immd;

' under which exact observers exist. Their work required some

State and parameter knowledge are of prime importangfasurement of the state at both sides of the transmission.
in robot manipulation. Accurate control of a robot require§ankovic [4] proposed a reduced order high-gain state vésser
knowing the robot state and good controller design requirgsy elastic-joint robots that only required measurementhef
an accurate model of the robot. Sensors are often noisy fgtor side state, i.e. motor angle and velocity. A variable
filtering is necessary to get a good state measurementtssilt&tr,cture observer was designed bgchevin and Sicard in
however, can introduce a phase lag and degrade performaf&e for elastic-joint manipulators. Their observer usedkli
Model based state estimation may be a good way to obtgjgle measurements. Abdollahi et al. [6] built a generdksta
state estimates from noisy sensors, or a reduced set ofrsengghserver for nonlinear systems where a neural network was

The BioRobotics Lab at the University of Washington hagsed to learn the system’s dynamics. The observer's patenti
developed the RAVEN robot, a new six degree of freedofas demonstrated with an application to elastic-joint tebo

(DoF) surgical robot prototype [1]. The RAVEN is cableyyith measurement of motor angle and velocity.
driven, allowing the motors to be removed from the arms

and attached to the base. This decreases the arms’ inertia, & Present Work

the cables introduce elasticity into the system. That, imn,tu  The task at hand in this paper is simultaneous state and
creates additional states since the link is elasticallyptamito parameter estimation of an elastic transmission with only
the motor. The RAVEN has encoders mounted on the motaretor angle measurements available. The aforementioned
but not on the link side, since encoders on the links theresehstudies either require the knowledge of more states, or they
would require additional, complex wiring. Furthermoreg thonly allow the estimation of certain parameters, such as the
encoder signal is highly quantized making noise-free vgloc transmission elasticity. We would like to estimate several
estimation difficult to compute. In addition, several of th@arameters, including friction. Therefore, we approaché th
model parameters are not directly observable, namely thle caproblem through straight-forward application of the Untteel
stiffness and damping, and friction. This paper focuses onkalman Filter (UKF) [7, 8, 9]. The primary difference betwee
single-DoF RAVEN:-like testbed to study the problems ofestathe UKF and the Extended Kalman Filter (EKF) is that the
estimation and parameter estimation in an elastic trarssonis UKF is capable of performing nonlinear estimation without



linearization, whereas the EKF linearizes the nonlineatesy

and applies a regular Kalman filter algorithm. The UKF was
chosen as it has been argued that it should replace the EKF
in estimation applications for nonlinear systems becafiss o

simpler implementation and better performance [7, 9]. Aetdk (2]
al. [10] estimated the parameters of a robot with rigid j@int
using a UKF, and experiments were done with a two-DoF Q

robot. Other works not related to robotics that employ the
UKF for state and/or parameter estimation include Zhao.et al
[11], Gove and Hollinger [12] and Zhan and Wan [13].

We present a study of simultaneous state and parameter = =
estimation for offline system identification, and an onlitetes
estimator for smooth, noise-free state measurement with no
phase distortion. The UKF is used in both casBlse main
contribution of this work is an experimental examination of
robustness of the UKF to unknown variations in inertia, eabl
tension and force disturbancedle are primarily interested in
applications to teleoperation, and the motivating facbeisind
the robustness experiments are £

1) to investigate the possibility of estimating contactks —

with an elastic-joint robot with partial state measurement
in a bilateral teleoperation setting, and
2) to get an indication of the performance of a simple joint-
level UKF for state estimation and feedback control in Fig. 1. The pulleyboard with a force gauge in the lower rightner.
a multi-DoF robot.

A more general, but important question that also needs to be )
answered is whether, and with what accuracy we can estim@fdhe link. These sensors directly measure motor apgland

the link state using motor angle measurements. In othersyortink @ngleq (see Fig. 2). So that the results will be applicable
can we infer better information about the actual link state BO the RAVEN robot, the noncolocated sensor was used only
the application of an advanced filter like the UKF, or will ugi for vahdfcmonz and not for control or parameter estimation

the motor state as an approximation to the link state be just™SO; identical to the RAVEN the pulleyboard includes an

as useful, i.e. a rigid robot assumption? RTAI Linux PC. The PC is a 32-bit AMD Athlon XP with
1GB RAM. I/O with the the pulleyboard uses the BRL USB
Il. SYSTEM & M ODELING board developed in the BioRobotics Lab at the University of

A. Hardware Washington [14]. The robot control software is an RTAI-Linu

kernel module, and the control loop runs at 1kHz.
To test the UKF robustness in a real world setting, a simple

1-DoF test platform was employed (see Fig. 1). Termed tife Modeling
“pulleyboard” it uses all the same hardware as the RAVEN The main modeling assumption is that, although the pulley-
surgical robot, and is intended as a testbed for that deviceboard has several idler pulleys, it can be modeled as onermoto

The pulleyboard uses a single Maxon EC40 brushless Btle and one link side connected by one cable run. Idleryulle
motor and a DES 70/10 motor controller (Maxon Motors)nertias and transmission friction can be lumped into eitme
The end effector is a rotational link with nominal momenof the two sides without any significant loss of accuracy.
of inertia 3.63 - 10~* kgm? about the axis of rotation. The Fig. 2 shows a schematic drawing of the pulleyboard the
moment of inertia can be varied by additional weight rigidlyvay it is modeled. The pulleyboard model comprises a motor
affixed to the link. The link is cable driven with a cable rurinertia, J,,,, and a link inertia,.J;, connected by two cables
from the motor to the link and back for a total cable length afach with a longitudinal stiffnesls. and damping.. For the
1.58 m. The stainless steel cable goes through a total of fqaurpose of modeling, the two cables are considered as one
idler pulleys with a diameter of 15 mm and eight idler pulleytorsional spring/damper connecting the two inertias, wlike
with a diameter of 7.5 mm, in addition to the motor and linkotal torsional effect is the combination of the longitualief-
shafts with a diameter of 14 mm. This cable route is simildect of the two cables. The spring is modeled as an exponentia
to the second axis of the surgical robot. Also, a force gaugpring, i.e. for a generic displacemehive have
with an additional 15 mm pulley is included in one part of the 7 — ke (e0d

H spring — e(e - 1)

cable run to measure cable tension.

On this simplified testbed it is easy to have two shafhitial estimation tests were carried out where béthand
encoders, one colocated at the motor and another noncetbcat were considered unknown. However, we were unable to



included in these terms. Finallyy contains the gravitational
torque acting on the link, withn; being the mass of the link,
L.,, is the distance from the axis of rotation to the center of
mass, andy is the acceleration of gravity.

Some of the parameters in the dynamic equation are known,
while some are unknown. In particular, the inertigs and J;
are known, and so arey; and L.,,,, so that the gravitational
term N can be computed. The capstan radjj and r; are
also known. On the other hand, the stiffness constardand
m; the damping constamt are unknown. So are the four friction
constants, ; and F;, ;, for a total of six unknown parameters.
These parameters have to be estimated.

Fig. 2. The pulleyboard model. 1. M ETHODS

The Unscented Kalman Filter (UKF) was used in two

make the UKF estimate fon converge. Possibly, this isWays: offline for simultaneous state and parameter estimati
because the relative displacements of the stiff transmissiad online for state estimation. System parameters ideahtifi
are very small, and within these displacements a wide rangf#ine were used online for state-only estimation. Althbug
of values fora yield approximately the same force. InsteadN® pulleyboard has motor and link angle available, onlyanot

a = 1 throughout this paper. The use of an exponential sprij9lé was used so as to emulate a system with colocated
model is nevertheless worthwhile, as the increased degR&&SOrs and actuators. .

of nonlinearity will put the UKF further to the test. The A PD controlier was implemented for all data collection,
damper is modeled as a linear damper. The mass of the catie¥) during the offline estimation and the following robiesis

is neglected. It is assumed that the cables are pretensiof&Reriments. The pulleyboard performed sinusoidal ttajgc
equally, and to a sufficiently high tension that neither eabfollowing tasks, and except for the force disturbance tésts
goes slack under normal operation. Friction in the transiois Pulleyboard was operated in free-space motion. As the topic

is lumped into a motor side terd,, and a link side ternt. of our study was state estimation performance, and notaontr
Let r,, = r; be the motor and link capstan radii respedgerformance, the state estimate wast used for feedback

tively. Since they are equal the pulleyboard’s gear ratib:is cpntrol. Instead, the motor shaft enqoder informaﬁon V\mju_
Let 7,,, be the torque applied to the motay, the angle of the directly for PD control. A low-pass filter was applied to avoi
motor andg; the angle of the link. The motor and link angledh® resonant high-frequency modes inherent in the elaatitec
are zero when the link is in a vertical position, the tensions transmission, and velocity was calculated by a first-céffiee

the two cables are equal and the system is not moving. Ththe low-pass filtered position samples.

dynamic equation is then written as A. Offline State and Parameter Estimation
Jj+T+F+N=r (1) The key to parameter estimation with the UKF is to regard
the unknown parameters as part of the state. That way the
whereq = (g, @]", T = [, 0]", and basic UKF algorithm does not have to be modified. The
J., 0 oY pulleyboard’s dynamic equation (1) is written in stateespa
J= [ 0 JJ ) T [TW] ) form, discretized, and the state vector is augmented wih th

7 0 unknown parameters.
F = [ ””] and N = { . ] ) To write the dynamic equation in state-space form we first
miLemg sin(qr) define the state vector of the continuous-time sysi€in) as

The motor inertia/,,, can be found by consulting the motor’s . .
data sheet, and the link inerti& can be calculated using the = gm @ G
parallel axis theorem. The variables used to denote the totalWwe also define the generic input signal:= 7. The pulley-
longitudinal force of the spring/damper effect of both @bl board’s dynamics in state-space form are then given as
It is calculated as .

T = f(.’B, u)’ (2)

v = ke(ethn*qzh _ eql"‘17Q7nT7n) + 2be((jm7'm _ (jlrl)- y= Cx (3)

}T

The lumped transmission frictioR' is modeled by the simple \where
Coulomb and viscous combination:

_ q
Fy = F.;sign(¢i) + FoiGi, i =m,l N JHr-N-F-T)|"

where F,.; and F,; are the Coulomb and viscous friction ¢ = [1 00 0]'

constants, respectively. Motor and link shaft friction isca The measurement is equal to motor angle,, = x;.



Since f is nonlinear we cannot compute the exact discreterost information to the UKF. Also, with respect to the total
time equivalent of the continuous-time system. Instead vierque acting on the joints, friction parameters are ugualis
numerically integrate the state-space equations usingi@hfo dominant at high velocities, so they were assumed negéigibl
order Runga-Kutta method. Denoting the Runga-Kutta 4 ofhe desired motor angl¢, given to the PD controller was
erator by F' px4 We get

z(k +1) = Frra(f(z(k),u(k))) = F(z(k),u(k), (4)
y(k) = Cz(k) (5)

qffl(t) = sin(27t) — 0.7 sin(37t) + 0.5 sin(47t)
+ 0.4sin(57t) — 0.2sin(67t) + 0.1 sin(77t).
) o ) For the friction parameters a data set with low frequency
wherek is the time index. The measurement equations (3) athtion was used, since friction is a dominant term at low

(5) for the continuous and discrete-time systems are th@ safy|qcities. The low frequency angular trajectory was iiteat
The final step before applying the UKF algorithm is Qg the high frequency trajectory with frequencies divided b
construct the augmented dynamic equation of the pulleghoagyree The cable parameters found with the first data set were

We define the augmented state vector as used during this second round of estimation.
27— [xT ke be Fom Foy Fym FM]T. Ip the _end _ all six parameters were estimated. For the
online estimation and robustness tests these parametees we
The augmented system is then described by considered known and fixed.
z(k+1) = F(x*(k), u(k)), (6) B. Online State Estimation Under Nominal Conditions
y(k) = C*z(k). (7)  Online state estimation was initially tested under nominal
where conditions to check the baseline state estimation perfocaa

- - and to validate the parameters found offline. For state-only

F(z(k), u(k)) estimation there is no need to define the augmented system

ke (k) (6), (7), the original system (4), (5) can be used as is.

o a be (k) Therefore state-only estimation is easier to implement tha
F(z(k), u(k)) = Fem (k) ’ combined state and parameter estimation, and the smaller

é’c,z((kk?) system dimension makes execution faster. Thus, a square-ro
v,m implementation of the online state estimator was not deemed

L Foalk) necessary. As before, tHex4 process noise covariance matrix

c* = [C 01><6] R, and the measurement noise covariai;ewere only set

to control the convergence properties of the UKF, and did not

) . .. reflect the real noise in the system. The trajectory used for
With the system (6), (7) we are ready for direct apphcatloga” dation was y J y

of the UKF algorithm. Essentially, the UKF uses a deter-

ministic sampling approach to calculate the state estiréte q? (t) = 0.75sin(1.67t) — 0.63 sin(2.67t)

and covariance. A set of samples are chosen that completely + 0.225sin(3.667t) + 0.15 sin(4.47t)

capture the true mean and covariance of the stédteThese — 0.12in(6.67L) + 0.075 sin(6.97¢). ®)

samples are calledigma pointsand they are propagated

through the nonlinearitf™® instead of the state itself. The stateData were collected for 60 seconds.

estimate and covariance are then found by weighted averag&he main reason not to adaptively estimate the unknown

computation. For the offline state and parameter estimatiorparameters online is that contact force estimates would be

square-root implementation of the UKF algorithm is used t@dversely affected. If the end effector were in contact \lith

shorten the execution time [9]. Although process nai$g) environment an adaptive UKF would alter the system parame-

and measurement noisgk) are not included in (6) and (7) ters to reflect the coupled system’s (pulleyboard-+enviremin

the knowledge of the0 x 10 process noise covariance matrixoehavior. Hence, wrong parameter estimates would be used fo

R, and the measurement noise covariari¢g is required. contact force estimation.

In this paper these are used solely to control the conveege .

propert?espof the algorithm. For furtﬁer details on the\dsﬁ'ri)ﬁg TE Robustness Experiments

and use of the UKF, see e.g. [7, 8, 9]. The main purpose of the present work is to study the
Before data collection, the six unknown parameters wef@bustness of the Unscented Kalman Filter to changes in

divided into two groups; one group consisted of the cabfystem parameters. Robustness was measured in terms of the

parameters:, andb., while the other group consisted of theability of the UKF to maintain satisfactory real-time state

friction parameters. ,,,, F.;, F,., andF, ;. A separate data estimation using system parameters identified offémen as

set was collected for each group, both with a duration ##e system undergoes dynamic changée robustness of the

140 seconds. For the cable parameters a data set with HigF was studied when

frequency motion was used, because it maximizes the relativ « the link inertia was increased from its nominal value,

motion between motor and link side, and thereby provides thee the cable tension varied around its nominal value,



. . . . 4
. a contact force on the link increased from its nominal g 110 Cable Stifless 0 Cable Darping

value of zero, and £ £
« the motion of the link was physically constrained. %4 %m
For each test the motor and link angles were recorded togethe é k_v g
with the estimated state and input motor torque. Actualaielo "y = T e il = TR
ties were computed during post processing using a zercephas Time [3] Time [3]
low-pass filter on the first differences of the encoder signal Motor Coularnb Friction Link Coulornb Friction

o
fom]
B

=
[m]
B

The relative root-mean-square (RMS) error and maximum

= =
= =
error between actual and estimated state was computed fors 5 o W
each test. c =
1) Link Inertia: When a robot picks up an object the 2 . 3 .
effective inertia changes, which impacts the system dyoami o SDTime [S]mﬂ 150 o SDTime [s]mD 150

Also, the inertia matrix of a multi-DoF robot is not constant
as is the case for the 1-DOF pulleyboard, but varies with the
robot’'s configuration. To simplify the system dimension and
reduce computing time, it may be desirable to use a 1-DoF
UKEF for each joint of a multi-DoF robot. For these reasons
the UKF must be robust to changes in inertia.

ok 10°* Motar Viscous Friction x 10 Link Viscaus Friction

s

[=]

o
o

Friction coeff. [Mms/rad]
m

Friction coeff. [Nms/rad)
m

] 50 100 150 ] 50 100 150
For this experiment the link inertia was changed by attach- Time [s] Tirme [s]
ing weights to the link at several distances from the axis of _ _ o
rotation. Inertia was increased from the nominal link ifedf Fig. 3. Offine convergence of the six estimated parameters.

3.63-10~* kgm? up to1.33-10~2 kgm?, an increase by a factor

of 3.65. For practical reasons it was impossible to decreag,gded every 20 seconds. Weights were added 7 times for

the_ inertia. At each inertia the same s_umjof-smgsmds lamgua total of 8 data points. The maximum contact force was
trajectory was used as for the validation in section IlI-B. 8 x 12.5 x 9.81m/$ — 0.98IN. Since there was a small

. 2.) Cable Tens_|0n:The amou,nt of _pretensmn m_the Cabl%ransient when new weights were added only the data in the
indirectly determines the caple_s spring and dam.plng PBFAM,ijdle 10 seconds of every 20-second interval were used.
ters, and also the lumped friction parameters. Since thh.*ecaB1 4) Constrained Motion:When the link of the pulleyboard

tension will change over time, so will the parameters that . : o
iS physically constrained, a worst case scenario is created

depend on it. By varying the_ tension around the nominal Valldv%?rein the UKF assumes the robot is moving when it is not.
used for parameter estimation we measured the robustneSBl(J)

. . e to the constraint, the link will not move at all, but the
the UKF to changes in estimated parameters. . . o :
Tension was varied in steps of approximately 260g from t rre10tor will because of the elastic transmission. Since tlideca
r%ransmission is very stiffl, = 3 -10* = 1 - 10* N/m), the

maximum tension of 3.3kg, via the nominal tension of 2.2k ifference between motor angle and link angle will always be
down to 1.17kg. The tensions tested ranged from about 0.5t0 9 9 Y

. . . : . . “small (typically < 0.15 rad). Hence, the UKF state estimator
1.5 times the nominal tension. Again, the same sinusoid was . : "

P . must be very accurate in order to provide any additional
used as for the validation in section IlI-B.

3) Contact Force:Contact force estimation is of interest inggiromsstlsounmaeb?hu;tt?hee arggiilr Ig:; Slitr?lieét-arlthei, i:grgaﬂ\;?kg\?e can
teleoperation as a potential replacement for force sensbes qua.

contact force can be computed with complete knowledge %?t a clear picture of whether the implementation of the UKF

. . . 1s_worthwhile if the UKF link state estimate is better than
the input torque, system state and dynamics. However, it 1s

often the case that the complete state is not known, and itiend the colocated sensor to approximate the link state.

therefore desirable to see how the state estimates ardeaffec :T O.ChITCk th'st’ the g)uflleyggard Wag, le_er:at?de|th th? .Iélr;k

as a result of the applied contact force. ]P yglca 3;1 cobns rainead for | secon Z € fin .dW?S ngidly
Accurate contact forces were simulated by attaching xed to the base using a C-clamp, and a sinusoidal trajectory

cable perpendicular to the link and pulling with weights i 0.5 Hz was commanded to the PD controller.

a hanging basket. Meanwhile the pulleyboard followed the

¢ . IV. RESULTS
desired trajectory:

J A. Offline State and Parameter Estimation
Grn(t) = 0.5sin(t). The results of the offline parameter estimation are shown

A single 0.5Hz sine wave was used instead of (8) to keép Fig. 3. The top two graphs show the convergence of the
the basket from jumping around. The quasi-static conditiospring and damper constants, which were found with the high
ensured that the additional inertia was not affecting the difequency data set. The bottom four graphs show the friction
namics, and that the weight was simply a constant foraerms, which were found with the low frequency data set. All
At first the contact force corresponded to the weight dfix of the estimated parameters showed convergence. For thi
the basket only (12.5 g), and then weights of 12.5g wedata set, the Coulomb friction tended to converge quickly in



Actual and Estimated Joint Angles TABLE |

2 ' RELATIVE RMS ERRORS(%) FOR ROBUSTNESS EXPERIMENT.SFOR
_1F m H COMPARISON THE RELATIVE RMS ERROR OF MOTOR ANGLE TO LINK
E 0 i ANGLE IS INCLUDED. TTHE LAST ROW CONTAINS ABSOLUTERMS ERROR
% — =G 1 VALUES IN RAD OR RAD/S.
<t .

T4 ‘ qdm q] Gm q dm — q

-ED 1'0 15 Nominal 029 098 17 13 15

Tirme [3] 1.08 | 033 12 19 15 1.6

Actual and Estimated Joint Yelocities 02) © 114 | 0.37 1.0 21 17 17

0 x : ——dm g€ 1.2 | 040 11 23 19 1.8

: i e 2 171|044 11 26 23 2.3

= o0p — 252|058 12 34 32 35
E i 365| 15 44 93 82 4.8
= 0 -=g 054 | 029 0.77 16 13 1.7
g e 065| 030 079 17 13 1.6
E -0} ___._é H we 0771029 090 16 13 1.6
! =S 083|028 10 16 13 15

-0 10 1 &2 11030 13 18 16 15

(O]

14 | 033 15 21 18 1.6

Fig. 4. Online state estimation under nominal conditionss&&end excerpt 01152 83? ;g 12236 ffs %J,Zl
and zoom detail. 025| 11 31 179 164 3.9
= 037 | 14 32 234 218 4.9

) _ ) = 049 | 16 31 288 267 5.9

10-20 seconds, while the stiffness and damping parameters 8 061| 1.9 33 346 321 7.0
showed slower convergence. The viscous friction took even 2 8-;2 gé gg jgg %‘2‘ ;-g
longer to converge; the link viscous friction in particutapk 098 | 24 30 516 495 9.7
nearly 100 seconds to reach steady state. c(’\)/lrl)st:;a:?ed 00l 00l 66 60 0.05

B. Online State Estimation Under Nominal Conditions

Fig. 4 shows a 15-second excerpt from the 60-second data
set, plus a detail at high zoom level. The state estimates are

Angle Relative RMS Errorg;nd Maxirnurm Errors

— B
denoted byd,,, G, Gn and ¢. At high magnification the = o Mot _—
. . . = —H&— Linl o
difference between motor and link angles becomes evident, &4 =
whereas the difference in velocity is less pronounced. The 2 5 01
zoom window in the lower plot shows oscillations in the 2 : Zo0s
actual motor velocity, and the state estimator trackingé¢ho 2 . :
oscillationsin phase The link velocity is less oscillatory, and 1 . |2 _ _3[] 4 1 . |2 _ _3[] 4
. . . elative inertia [- elative inertia [-
the link VE|OCIty estimate reflects that. “elocity Relative RMS Errors and Maxirurm Errors
— 100 30
C. Robustness Experiments £ =
Table | contains relative RMS estimation errors in percent 2 D
for nominal and off-nominal experiments, calculated as % % 5 "
RMS% = 100 « RMS(estimation erropRMS(actual value) g =
0 0
Absolute errors are used for constrained motion. The errors f " 2 3 4 ! 2 3 4
. elative inertia [-] Relative inettia [-]

are Grm = Gm—G0m» @ =@ —qts Gm :=Gm—Gqm aNdq:=qG—q.
1) Link Inertia: Fig. 5 shows the relative RMS error andrig. 5. State estimation performance expressed in terms diveelRMS

the maximum error of the state estimation as link inertia R§"or and maximum error for increasing link inertia.

increased. All four graphs show the same phenomenon; the

error stays almost constant until the inertia reaches tbgi

its nominal inertia. It is then much higher for an inertia o 3 increases almost linearly with higher tension. It is hardirid

times nominal, and especially pronounced for the link angl@ consistent pattern in the maximum errors. However, the lin
2) Cable Tension:Fig. 6 shows the relative RMS andangle error does seem to go up as tension increases.

maximum values of the state estimation error as the cable3) Contact Force:Fig. 7 shows the effect of constant ap-

tension varies around its nominal value. The motor anghtied force on estimation error. Motor angle and velocityd a

estimation error stays relatively constant. Link angleoerr link velocity all have errors with near-linear characticis,

however, is lower than nominal for lower tension, and getshereas the link angle estimate has a somewhat more random

worse with higher tensions. The RMS error of the velocitghape and shows less variation. It should be noted thatiteloc

estimates stays flat up to the nominal tension, and thestimation performance is very poor.
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Fig. 6. State estimation performance expressed in terms diveelRMS Fig. 8. State estimation when link is physically constrained
error and maximum error for changing cable tension.

Angle Relative RMS Errors and Maximum Errors

iy results showed Coulomb friction to be greater than viscous
friction by about two orders of magnitude. This agrees with
B/E—EI~E)~’E"_E“E\E 0.023/8‘8‘2/3—9—9\5 findings in [15], where it was found that pulley friction was
0015 primarily Coulombic. The assumption made in section IlI-A
o / that friction is less dominant at higher velocities alsogeid
on this observation.
807 07 o8 o8 1 Uo7 0E o8 In the nominal online tests motor and link states were
Force [N] - Force [N] accurately estimated using the system parameters fourin t
Yelocity Relative RMS Errors and Maximurm Errors . . . . . .
B offline estimation step. Velocity estimation was not as good

.

a1}

Relative RMS error [%]
[su}
hlax. errar [rad]

o
=
o

f oy as angle estimation. However, the velocity estimate wdls sti
E 400 ‘gﬁ significantly improved from the regular low-pass filteredfir
z g difference and, in particular, there was no phase lag in e U
B o Motor 54 velocity estimate. Phase lag is a common factor in controlle
=z . — & Link = , instability and poor controller performance. With the iroyed

02 u.ﬁmcg.ﬁ“] 0s 1 02 D'ﬁomgﬁw] 08 1 estimates we will be able to increase the controller gairts an

improve tracking performance.
Fig. 7. State estimation performance expressed in terms aiveeleMs | N€ right-most column in Table | contains the relative RMS
error and maximum error for increasing contact force. values ofgq,, — ¢;. This is the error in using motor angle
as a substitute for link angle. The RMS error of the motor
and link angle estimation,, andg; were consistently smaller
4) Constrained Motion:Fig. 8 shows the system respons@howing that performance of the UKF was satisfactory and
to an input of 0.5 radians at 0.5 Hz under constrained motiaflerived more useful information. This result is also visibl
The motor angle estimate is still close to the actual angid, ain Fig. 4. We therefore conclude that the UKF is worthwhile
the link angle estimate is smaller than the motor angle eclogor estimating link state from colocated sensors. Note thet
to the real link angle. The link angle appears to be out of @hagMS error shot up when the inertia of the link was increased
with the motor trajectory tracking. Both velocity estimat@e from a factor of 2.5 to 3.6. This suggests a “safe range” of
far away from the actual values, at or near zero. inertial changes, or weights that the robot can hold without
affecting state estimation too much. Also, care should kerta
in using the velocity estimate during environmental contac
Offline parameter estimation yielded reasonable values forFig. 7 reveals a near-linear relationship between contact
all six of the desired parameters. Dividing the paramet&is i force and estimation error for all states except link angle.
two groups and estimating them separately was necessaryl b reverse relationship would suggest using error to eséim
have all parameters converge to good estimates. Also, ttentact force, especially from the motor angle estimateesi
choice of initial value for the cable stiffness was impottion it is measurable in real time. A similar technique was also
the convergence outcome. Setting the initial valué.afo zero proposed in [16]. However, we would only feel confident
did not lead to convergence. In our case the initial stiffnesloing this under quasi-static conditions, because thabig h
guess was set at- 10* N/m. It is interesting to note that thethe experiments were carried out.

V. DISCUSSION



Overall, angle estimates were more robust to changesauar results show that under a range of conditions a joint
dynamics than velocity estimates. This is especially trre flevel UKF can provide better state estimation than is pdssib
motor angle estimates. That is to be expected, as motor angléhout such a filter, implementation on a multi-DoF system
is closest to the sensor used to compute the estimates (amily undoubtedly bring new challenges and discoveries. We
separated by quantization). Thus, if only angle informai® also intend to study the importance of nonlinear versusaline
used in controllers or for further estimation, the UKF may beodels for the transmission elasticity.
used to achieve desired robustness in changes to the oerati
conditions. Although velocity estimates were less rolpisase
information was kept intact, at least during the inertia and This work was partially funded by The Research Council
tension experiments. In feedback control the phase of tRENorway project 167529/V30.
velocity is more important than its amplitude, because @has
lag is a common source of instability. Hence, our velocity _ ,
estimates may still be used in feedback loops over some ran ':é' gb';él'olfnll\;_?éi!iﬁgénmf'sﬁ{nosf:ﬁﬂ n%ag'_‘ﬂ;‘m;?g%ﬁﬁ’h@g&
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