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Abstract— Bevel-tip steerable needles are a promising new
technology for improving accuracy and accessibility in minimally
invasive medical procedures. As yet, 3D needle steering has not
been demonstrated in the presence of tissue deformation and
uncertainty, despite the application of progressively more so-
phisticated planning algorithms. This paper presents a feedback
controller that steers a needle along 3D helical paths, and varies
the helix radius to correct for perturbations. It achieves high
accuracy for targets sufficiently far from the needle insertion
point; this is counterintuitive because the system is highly under-
actuated and not locally controllable. The controller uses a model
predictive control framework that chooses a needle twist rate such
that the predicted helical trajectory minimizes the distance to the
target. Fast branch and bound techniques enable execution at
kilohertz rates on a 2GHz PC. We evaluate the controller under
a variety of simulated perturbations, including imaging noise,
needle deflections, and curvature estimation errors. We also test
the controller in a 3D finite element simulator that incorporates
deformation in the tissue as well as the needle. In deformable
tissue examples, the controller reduced targeting error by up to
88% compared to open-loop execution.

I. INTRODUCTION

Needles are used in medicine for a wide range of diagnostic
and therapy delivery procedures. Many applications, such as
biopsies and prostate brachytherapy, require the needle tip
to be positioned accurately at a target in the tissue. Such
procedures require a great deal of clinician skill and/or trial
and error, and can be difficult even under image guidance.
Errors are introduced when positioning the needle for inser-
tion, and the needle can be deflected from its intended path by
tissue inhomogeneities. Furthermore, the target may shift due
to tissue deformations caused by the needle or patient motion.

Asymmetric-tip flexible needles are a new class of needles,
developed in collaboration between Johns Hopkins and U.C.
Berkeley, that can steer through soft tissue [24]. As it is
inserted, the needle travels along a curved path due to the
asymmetric cutting forces generated by either a bevel cutting
tip or a pre-bent kink. The arc direction can be controlled by
twisting the base of the needle, which allows the needle to
travel in circular arcs [24] (by holding twist constant) and he-
lical trajectories (by simultaneously twisting and inserting the
base at constant velocity) [12]. In principle, these inputs can
be used to correct for needle placement errors and deflections
during insertion. They may also steer around obstacles such as
bones or sensitive organs to reach targets that are inaccessible
to standard rigid needles.

Fig. 1. Needle steering in a soft block of tissue. Left: the needle pierces
the surface. Dotted curve is the predicted helical path of the needle. Right:
feedback control corrects for errors due to deformation. More examples can
be found at http://automation.berkeley.edu/projects/needlesteering/.

A variety of techniques have been used for 3D path planning
of steerable needle trajectories [12, 13, 20, 26]. But these tech-
niques assume an idealized rigid tissue model; in practice, the
needle will deviate from the planned path due to deformation
effects (of both tissue and needle), tissue inhomogeneities,
and patient variability. Planners that address uncertainty and
deformations are currently limited to 2D needle steering, and
perform extensive precomputations [1, 2].

Our work breaks with the trend toward increasingly precise
modeling and more sophisticated (and computationally expen-
sive) planning techniques. We present a closed-loop, model
predictive controller that steers the needle along helical paths
to reach a desired target position. Perturbations are sensed
using imaging feedback, and the controller reacts by adjusting
the radius and heading of the helix to pass as close as possible
to the target. The optimization step searches only the trajectory
space of constant controls, and does not predict future changes
in the control input. A fast branch and bound search enables
trajectory corrections to be computed at kilohertz rates.

We evaluate the controller on a wide variety of simulation
experiments in both rigid tissue and in a finite element
deformable tissue simulator (Figure 1). In light of the fact
that steerable needles are underactuated and non-controllable,
our results are surprising. Assuming no perturbations, the
controller achieves high accuracy (less than 1% of the needle’s
radius of curvature r) for all targets sufficiently far from the
insertion point (approximately twice r). It attains reasonable
accuracy (less than 5% of r) under a variety of simulated
Markovian and non-Markovian perturbations, including imag-
ing noise, needle deflection, and curvature estimation errors. In



deformable tissue, the controller can compensate for deforma-
tion effects to achieve much higher accuracy than open-loop
execution. In the example of Figure 1, the controller reduces
targeting error by 88%.

II. RELATED WORK

Several mechanisms for needle steering have been proposed.
Symmetric-tip flexible needles can be steered by translation
and rotation at the needle base [10, 14]. Bevel-tip flexible
needles achieve steering with a tip that produces asymmetric
cutting forces, causing them to bend when inserted into soft
tissue [24, 25]. Recent experiments with pre-bent needle tips
have achieved up to a 6.1 cm radius of curvature [22]. New
needle designs are expected to further decrease this radius.

Bevel-tip and pre-bent needles are controlled by two degrees
of freedom: insertion and twisting at the needle base. When
restricted to a plane, the needle moves like a Dubins car
that can only turn left or right. In 3D, the needle moves in
approximately helical trajectories. The radius of curvature of
the path can be adjusted during insertion using duty cycling,
enabling the needle to be driven straight forward [18].

Planning motions of 1D flexible objects has been studied in
the context of redundant manipulators [6, 7, 8], ropes [23] and
symmetric-tip flexible needles [10, 14]. Several researchers
have developed motion planners for steerable needles in 3D
tissues [12, 13, 20, 26]. These methods have all assumed that
tissue is rigid. Duindam et al. derived a closed-form inverse
kinematics solution for reaching a desired position orientation
in 3D [13]. The solution uses up to three stop-and-turn motions
in which the needle, between turns, follows a circular arc.
Inverse kinematics solutions for helical paths have not been
found. Planning with helices in 3D has been achieved using
numerical optimization [12], an error diffusion technique [20],
and a sampling-based planner [26].

Needle and tissue deformation will deflect the needle from
an idealized trajectory. In such cases a controller may be used
to keep a needle on its intended path. Kallem and Cowan de-
veloped controllers to stabilize a needle to a given plane [17].
For 2D, Alterovitz et al. developed an optimization-based
planner that predicts tissue deformations using finite element
simulation [2], although this assumes no uncertainty in the
motion model or tissue properties. Alterovitz et al. developed
a 2D motion planner for needle steering with obstacles and
Markov motion uncertainty [1], but did not model large-scale
tissue deformations or curvature estimation errors.

III. PROBLEM STATEMENT AND MODELING ASSUMPTIONS

A. Problem Statement

We wish to place the needle tip at a certain goal location pg

in the tissue. The desired needle orientation is not specified.
We assume we have access to an imaging system that peri-
odically provides an estimate of the world-space coordinate
of pg as it moves due to tissue deformations, as well as the
position, heading, and bevel direction of the needle tip. We
also assume a given workspace W ⊆ R3 in which the needle
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Fig. 2. The coordinate frame attached to the needle tip. Figure adapted with
permission from [13].

is permitted to travel. In this work, W is taken to be either all
of R3 or a bounding box.

We assume an insertion velocity is chosen for the duration
of the procedure (on the order of 1 cm/s). The controller
outputs a twist rate to be applied at the needle base. We impose
a maximum twist rate ϕmax (specified in rad/m) because fast
spinning may damage the tissue. A robot or physician will
simultaneously insert and twist for ∆t seconds at the twist
rate computed by the controller. The controller then repeats.

B. Rigid Tissue Motion Model

Though the controller is designed to operate in de-
formable tissue, it uses a purely kinematic rigid tissue motion
model [24] for computational efficiency. This model assumes
the dynamics of the needle are fully determined at the needle
tip, such that the tip travels with constant curvature 1/r in the
bevel direction. Thus, if inserted without twisting, the needle
trajectory is a circle with radius of curvature r. Experiments
suggest that this assumption approximately holds in homoge-
neous materials [24]. The model also assumes that a twist at
the base of the needle is transmitted directly to the needle tip,
and does not deflect the tip position. This assumption neglects
torsional friction along the needle shaft, which causes a “lag”
before twists are felt at the tip. Control techniques have been
developed to counteract these effects [21].

We place a frame x,y, z at the needle tip such that z is
forward and y is the bevel direction (Figure 2). Inserting the
needle causes the tip to move along z with velocity v(t) and
rotate about x with angular velocity v(t)/r. A twist rotates
the tip about z with angular velocity ϕ(t). In screw notation,
the instantaneous velocity of the frame is given by:

V̂ (t) =


0 −ϕ(t) 0 0

ϕ(t) 0 −v(t)/r 0
0 v(t)/r 0 v(t)
0 0 0 1


If v(t) 6= 0, then we can factor out v(t) so that the needle
travels at unit velocity, and the only variable to control is the
twist rate ϕ(t). If the twist rate is held constant, then after
inserting the needle a distance d, the tip frame is transformed
by the quantity T (d) = exp(dV̂ ) [12].

We model a trajectory as a sequence of screw motions with
piecewise constant twist rates ϕ(d) parameterized by insertion
distance. Denote tϕ(d)(d) as the trajectory of the tip position
under twists ϕ(d). We drop the subscript if the twists are
unimportant.
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(a) Selecting from the set of proposal trajectories.

(b) A disturbance occurs as the needle is inserted.

P

(c) The process repeats.

Fig. 3. Overview of the control policy. Curves emanating from the needle
depict proposal trajectories. Circle depicts the target.

IV. FEEDBACK CONTROLLER WITH HELICAL PATHS

A. Controller Framework

We assume a model predictive control (MPC) framework
that iterates the following steps (Figure 3):

1) Propose. Generate a set P of proposal trajectories that
start from the current estimated needle state.

2) Select. Find the trajectory in P with control ϕ(d) that
achieves the minimal distance to the target.

3) Execute. The needle is then inserted with twists accord-
ing to ϕ(d) and constant velocity for time ∆t.

The process repeats until no trajectory can improve the dis-
tance to the target by more than ε (we set ε=0.2%r).

The controller meets basic stability criteria: first, it will
terminate, because the predicted distance to the target must
decrease by at least ε every iteration; second, the final error
will be no larger than the distance from the target to P .
Convergence is difficult to prove, and depends on the selection
of P . Empirical results in Section VI suggest that setting P to
the set of constant-twist-rate helices is sufficient to reach most
target locations with high accuracy, even under perturbations.

This is surprising and counterintuitive for two reasons. First,
the system is not locally controllable, even if the needle were
allowed to move backward [17]. Even though our controller
cannot reduce errors asymptotically to zero, it often has low
error upon termination. Second, traditional MPC techniques
use expensive numerical optimizations at every time step to
compute P (e.g. receding horizon optimal control). Our con-
troller performs well even without considering future changes
in twist rate, so each time step is computed efficiently.

In the remainder of this section, we derive a closed form
expression for the helical trajectories followed by the needle
tip when inserted with constant velocity and twist rate ϕ. We
let the set of proposal trajectories P contain all such helices
for ϕ ∈ [−ϕmax, ϕmax]. Using a visualization of P , we argue
that the controller converges for sufficiently distant targets.
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Fig. 4. Four views of the constant-twist-rate reachable set: z,−y plane, z, x
plane, perspective, and surface shaded. Twist rate in (−∞,∞), insertion
distance in [0, 2πr].

B. Constant-Twist-Rate Helical Paths

Let tϕ(d) be the needle tip trajectory followed under a
constant twist rate ϕ. We wish to find the helix that describes
this trajectory relative to the initial frame of the tip. A helix
with radius a, slope θ, and oriented in the z axis has the arc-
length parameterization

h(d) =

 a cos((d/a) cos θ)
a sin((d/a) cos θ)

d sin θ

 . (1)

Here we derive the helix parameters a, θ and a rigid trans-
formation A such that Ah(d) = tϕ(d). Denote hx,hy,hz, as
the coordinate axes of A, and denote ho as its origin. We



proceed by matching derivatives:

Ah(0) = tϕ(0) ⇒ ahx + ho = [0, 0, 0]T (2)

Ah′(0) = t′ϕ(0) ⇒ cos θhy + sin θhz = [0, 0, 1]T (3)

Ah′′(0) = t′′ϕ(0) ⇒ − cos2 θ/ahx = [0,−1/r, 0]T (4)

Let ω = [1/r, 0, ϕ]T be the angular velocity of the needle tip.
The axis of rotation must be aligned with the helix axis, so
hz = ω/||ω||. Let q = ||ω|| =

√
1/r2 + ϕ2. Taking the dot

product of both sides of (3) with hz, we get

sin θ = ϕ/q and cos θ = 1/(rq).

From (4) we see

a = r cos2 θ = 1/(rq2) and hx = [0, 1, 0]T .

Setting hy orthogonal to hx and hz, we get

hy = [−ϕ, 0, 1/r]T /q.

Finally, from (2) we have ho = [0,−a, 0]T .
In summary, letting tan θ = rϕ, we have

tϕ(d) =

 −a sin θ sin((d/r) csc θ) + d sin θ cos θ
a cos((d/r) csc θ)− a

a cos θ sin((d/r) csc θ) + d sin2 θ

 (5)

Where a = r cos2 θ = r/(1/r2 + ϕ2) is the helix radius, and
[cos θ, 0, sin θ]T is the helix axis. The tip moves at the speed
sin θ = ϕ/

√
1/r2 + ϕ2 with respect to the helix axis.

C. Constant-Twist-Rate Reachable Set

Let R(ϕmax) = {tϕ(d)|ϕ ∈ [−ϕmax, ϕmax], d ≥ 0} be the
set of all needle tip positions reachable under constant twist
rate, given twist rate bounds [−ϕmax, ϕmax]. Figure 4 plots a
portion of R(∞).
R(ϕmax) is scale-invariant w.r.t. radius of curvature, in the

following sense. Let t̃αϕ(d) denote the tip trajectory with
curvature α/r and constant twist rate αϕ. It is easily verified
that t̃αϕ(αd) = αtϕ(d). Thus, R(αϕmax) = αR(ϕmax).

This visualization helps understand why the controller
should converge. The projection of R(∞) on the x, z plane
covers the entire z > 0 halfplane, and all twists produce axes
of rotation that are parallel to the x, z plane. Thus, if R(∞)
is rotated by a full turn about any axis, it will sweep out a
large portion of R3. Most trajectories make a full turn quickly
— in fact, constructing a trajectory that does not ever make
a full turn is extremely difficult. For any target point in this
swept volume, errors will converge to zero.

D. Boosting Accuracy with Alternating-Twist Maneuvers

For a finite maximum twist rate ϕmax, R(ϕmax) has a gap
of coverage along the z axis, shaped approximately like a
wedge of angle | arctan rϕmax|. Consider filling this gap with
a maneuver that makes a full turn of the helix with twist rate
ϕmax, and another with twist rate −ϕmax (Figure 5).

Intuitively, the maneuver allows the needle to travel ap-
proximately straight forward. After each full turn, the needle
tip is displaced by (2πr sin θ cos2 θ, 0, 2πr sin2 θ cos θ) where

ϕ=10π
ϕ=5π

ϕ= 5π/2

ϕ=5π/4

ϕ=5π/8

Fig. 5. Alternating-twist maneuvers for various twist rates. Units in rad/r.

θ = arctan rϕmax. Orientation is unchanged. Executing both
turns places the needle tip at (0, 0, 4πr sin2 θ cos θ). The path
length of the maneuver is d = 4πr cos θ.

Because it is composed of helices, the maneuver can be
included in the optimization of Section V with only minor
changes. Experiments in Section VI-A demonstrate that accu-
racy is improved when P is augmented with this maneuver.

V. FAST TRAJECTORY SELECTION

The speed of computing the proposal and selection steps
limit the speed at which the needle can be inserted. If more
than ∆t time is spent, the needle must be halted while the
computation finishes. Thus, it is critical for the closest point
optimization in the selection step to be fast. In this section we
present an efficient branch-and-bound technique for computing
the closest point. We also present a bounding volume method
for incorporating workspace constraints.

A. Branch-and-Bound Closest Point Computation

As can be seen in Figure 4, the reachable set R(ϕmax)
has many valleys and ridges, so local optimization techniques
easily get stuck in local minima. Instead, we use branch-and-
bound optimization to ensure that a global optimum is found.

We seek to minimize the function f(ϕ, d) = ||tϕ(d) − p||
over the space S = {(ϕ, d) | |ϕ| ≤ ϕmax, d > 0}. Here p
denotes the coordinates of pg relative to the needle tip frame.
We use an auxiliary function fL(R), described in Section V-C,
that computes a lower bound on the function value attained in
a region R ⊆ S. A search tree is then built by recursively
splitting the space into subregions which may contain the
optimum. When a subregion is split, we also test the value
of f at its midpoint. We maintain the helix ϕ? and insertion
distance d? that give the minimum value of f seen thus far. If
fL(R) is found to be larger than f , then subregion R does not
contain the optimum and can be safely pruned. The process
continues until f achieves an ε tolerance.

In subsequent iterations of the control loop, the closest point
does not change very much, so we can exploit this temporal
coherence to help prune many intervals quickly. We keep the
optimal twist ϕ? and insertion distance d? from the previous
iteration, and initialize f = f(ϕ?, d?). In our experiments this
reduces overall running time by about a factor of four.

The efficiency of branch and bound depends greatly on the
tightness of the lower bound. Interval analysis could be used
to automatically compute the bounds [16], but the bounds can
be extremely poor, depending on how (5) is formulated. In our
experiments, the running time of a standard interval analysis
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Fig. 6. Two initial intervals for finding the closest point from p to a helix.
(a) The interval containing half a turn of the helix, centered about the z = zp

plane. (b) The interval containing the z-range of the intersection between a
sphere of radius dR centered around p, and a cylinder surrounding the helix.

implementation ranged from milliseconds to several seconds,
and was sensitive to the location query point.

Our implementation is as follows. We partially discretize
S by selecting n = 100 possible values for ϕ. For a more
uniform coverage of the reachable set given a fixed n, we
discretize evenly in the θ = arctan rϕ coordinate. To include
other proposal trajectories in the search, we divide them into
helix segments, and add the segments to S. Then, for each
helix, we narrow S further by computing a narrow initial
interval of insertion distances that is guaranteed to contain
the closest point. We then employ a good lower bound on the
distance from a helix segment to a target point.

B. Initial intervals for helix closest point

We derive two intervals that must contain the closest point
using geometrical reasoning; their intersection provides a tight
initial interval for the search. Reparameterize (1) such that
u = (d/a) cos θ, and let b = a tan θ. Write the helix and
point p in cylindrical coordinates with respect to the helix
origin. Denoting cylindrical coordinates with the superscript
·c, we have hc(u) = [a, u, ub]T . Let pc = [rp, θp, zp]T .

First, the helix attains z-coordinate zp at u = zp/b. The
closest point to p must be within a half turn of this parameter;
that is, |u? − zp/b| ≤ π (Figure 6a). The proof is by
contradiction: if u? were actually outside this interval, then a
full turn around the helix could move the z coordinate closer
to zp while keeping x and y fixed. Therefore u? is not optimal.

Second, we examine the cylinder bounding the helix. If
dR is the distance from p to any point on the reachable
set (say, h(zp/b)), then the closest point must lie within
a ball of radius dR around p. Projecting the intersection
of the bounding cylinder with the sphere onto the z axis,
we see that the z-coordinate z? of the closest point must
satisfy |zp− z?| ≤

√
d2

R − (rp − a)2 (Figure 6b). This bound
performs well when dR is close to the actual helix-point
distance.

C. Lower bounding the helix-point distance

Now we describe a lower bound fL for u ∈ [u, ū] and ϕ
given. We compute the distance from the point to a patch (in

cylindrical coordinates) that contains the portion of the helix
[a, a]× [u, ū]× [ub, ūb]. Let C(x, [a, b]) denote the clamping
function max(a,min(b, x)), and implicitly assume operations
in the θ coordinate are modulo 2π. Then the closest point to
this patch is given by

qc =

 a
C(θp, [u, ū])

C(zp, [ub, ūb])

 (6)

The Cartesian distance ||q− p|| is a lower bound.

D. Workspace Bounds

We consider workspace constraints using a simple exten-
sion to the selection step. Before computing the helix-point
distance, we truncate the trajectory t(d) if it collides with the
workspace boundary. In other words, we find the maximum
D for which t(d) remains in W . Then, the initial branch-and-
bound search interval for the closest point (Section V-B) is
restricted to lie in [0, D].

We use an recursive bisection to find D up to tolerance
ε. We start the recursion with interval I = [0, d̄], where d̄
is the upper bound on the insertion distance from Section V-
B. We then recurse as follows. If the size of I is less than
ε we set D to its lower bound, as we cannot rule out the
possibility of collision in I . Otherwise, we compute the axis-
aligned bounding box containing the portion of t(d) for all
d ∈ I using interval computations. If the box lies within W ,
the trajectory segment lies entirely in the workspace. If not,
we bisect I , and recurse on the lower half. If no collision is
reported in the lower half, then we recurse on the upper half.

E. Running Time

Since no interval will have size less than ε, the number of
intervals examined by the branch and bound algorithm is no
more than d2L/εe, where L is the total length of all initial
intervals. Each of the n initial intervals has length at most
2πr, so the number of intervals is bounded by d4πrn/εe.
In practice, this bound is extremely loose; the number of
examined intervals rarely exceeds a few hundred.

We performed timing experiments on a 2 GHz laptop PC.
With an unbounded workspace, the average controller iteration
was computed in 0.11 ms, with standard deviation of 1.3 ms.
On rare occasions, particularly as the target nears the needle
tip, it is much slower, at one point taking 63 ms. More com-
putation is required for bounded workspaces with obstacles.
In a box domain with 10 spherical obstacles, each iteration
averaged 0.41 ms, with standard deviation 2.52 ms.

VI. SIMULATIONS IN RIGID TISSUE

This section performs a set of simulation experiments to
evaluate the accuracy of the controller, as a function of the
target position. We simulate the needle using the rigid tissue
motion model, first under varying simulation parameters, and
then under a variety of perturbations. We define accuracy as
the final distance from the needle tip to the target when the
controller terminates.
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Fig. 7. Controller accuracy in rigid tissue as a function of target’s initial relative location. For a given target, the reported accuracy is the final error e
achieved by the controller when the needle is inserted at (0, 0, 0). Targets are varied over a 50 x 50 grid in the region [0r, 6r]x[−3r, 3r] in the z,−y plane,
and in three slices along the x-axis at x=0r, 1r, and 2r. Darker shading indicates higher error. Axes are labeled in multiples of r.

A. Accuracy Without Perturbations
For comparison, we instantiate a reference controller that

uses the following parameters: a refresh occurs every 2%r of
insertion distance, maximum twist rate ϕmax = 10π rad/r, and
the workspace W is all of R3.

Our first experiment evaluates how accuracy of the reference
controller varies over the space of targets, under the rigid-
tissue motion model. Figure 7 plots accuracy as the target
position varies in 2D slices of space. Grids are defined parallel
to the z,−y plane (see Figure 7). We then exhaustively
enumerate each grid cell, set the target pg to the cell center,
and then run the controller from the initial configuration to
completion. The final error from the needle tip to the target
is recorded as the accuracy for that cell. The plots show
convergence to sub-millimeter distances almost everywhere,
except for a narrow strip along the +y axis, and a circular
spot directly above the needle tip in the −y direction. As the
x value deviates further from 0, the radius of this spot shrinks.
Comparing to Figure 4, we see this region corresponds to the
large “lobe” of the reachable set.

The next experiments evaluate accuracy when the controller
still has an exact motion model, but with the following control
parameters varied:

1) Maximum twist rate reduced to 2.5πrad/r.
2) Without alternating-twist maneuvers (see Section IV-D).
3) In a bounded workspace [−3r, 3r]× [−3r, 3r]× [0r, 6r].
For each setting of parameters, we evaluate the accuracy

distribution for targets in a region R in space. We chose R
to be the rectangle [0, 0]× [−3r, 3r]× [1.5r, 6r], which is the
rightmost 3/4 of the x = 0r plot of Figure 7. This region
was chosen to exclude the circular spot where the reference
controller does not converge. For each point in a 50×50 grid

TABLE I
ACCURACY UNDER VARYING CONTROLLER PARAMETERS.

Simulation Parameters Accuracy (std), % r
Reference — 0.2 (0.2)
Reduced twist rate ϕmax = 2.5π 2.9 (1.6)
No maneuver — 1.3 (0.8)
Bounded workspace — 1.0 (2.1)

over R, we set the target to the point, and ran the controller
from start to finish. Table I reports the average accuracy over
all grid points and its standard deviation.

B. Under Perturbations and Modeling Errors

The second set of experiments introduce a variety of per-
turbations and modeling errors into the simulation. The per-
turbations are discussed in detail below. Table II summarizes
the results. Accuracy is measured exactly as in Table I.

All perturbations degrade accuracy to some extent, but
rarely drive the error above 10%r. This suggests that the
controller is stable. Noise in the target position and needle pose
estimation can cause significant reductions in accuracy, but in
practice a smoothing filter will help mitigate these effects.
Twist lag causes high variance in accuracy, in some cases
exceeding 20%r error.

1) Noise introduced into the target position estimation:
Tracking the target position may require the use of deformable
image registration techniques (e.g. [3]), so target position esti-
mates will contain errors due to imaging noise and deformation
modeling errors. To simulate, we randomly perturb the target
position estimate at each time step with isotropic Gaussian
noise with standard deviation σ. We performed trials with
σ = 2%r and with σ = 4%r. The random number generator



TABLE II
ACCURACY UNDER SIMULATED PERTURBATIONS.

Simulation Parameters Accuracy (std), %r
Reference — 0.2 (0.2)
Target noise σ = 2%r 2.8 (1.5)
Target noise σ = 4%r 6.0 (4.6)
Needle pose noise σp = 4%r, σo = 2◦ 5.4 (4.3)
Needle deflections σp = 44%, σo = 11◦/r 3.2 (3.1)
Curvature errors r̃ = 80%r 0.9 (1.2)
Curvature errors r̃ = 120%r 0.7 (3.8)
Twist lag η = 6◦/r 2.2 (12)

is seeded with the result of the C time procedure at the
beginning of each trial.

2) Noise introduced into the needle pose estimation:
Limited resolution of medical imaging (approximately 0.8 mm
for modern ultrasound [11]) will cause errors in estimating
the tip position and orientation. The position and direction of
the tip may be estimated directly from the image, but more
sophisticated state estimation models are needed to estimate
the twist about the needle shaft because the bevel tip is too
small to be seen [17]. To simulate these errors, we randomly
perturb the needle position by isotropic Gaussian noise with
standard deviation σp = 2%r and orientation by a rotation
about a random axis and a random rotation angle with standard
deviation σo = 2◦.

3) Random deflections of the needle tip: We simulate
random deflections of the needle tip that accumulate over time,
and can be mathematically described as a Wiener process. The
standard deviation of the position and orientation deflections
are respectively σp = 0.44r and σo = 11.1◦ per each r
distance the needle is inserted.

4) Curvature Estimation Errors: We set the actual radius
of curvature to r̃ = 0.8r and r̃ = 1.2r, while the estimated
radius remains at r.

5) Twist Lag: As a needle is twisted inside tissue, needle-
tissue friction causes internal torsion to build up along the
length of the needle. This causes twist lag, a phenomenon
where twists applied at the base are not directly commanded
to the tip [21]. We model twist lag by nullifying all base
twists if |θb − θt| < ηL, where θb and θt are the base and tip
angle, L is the length of needle inside the tissue, and η is a
constant (with units of angle over distance). In other words,
we evolve θb and θt with the equations θ̇b = ϕ, and θ̇t = 0
if |θb − θt| < ηL, or ϕ otherwise. We set η = 6◦/r, which is
consistent with the experimental data in [21] assuming r=5 cm.

VII. SIMULATIONS IN DEFORMABLE TISSUE

We evaluate the convergence of our controller in a finite
element (FEM) simulation of a flexible needle in deformable
tissue. The simulator is presented in detail in [5]. Past work has
addressed simulation of rigid needles in 2D and 3D deformable
FEM models [9, 15, 19], and symmetric tip flexible needles
using a linear beam model [14]. Our simulator couples a
discrete elastic rod flexible needle model with a FEM tissue
simulation. The needle is modeled as a piecewise linear curve
connecting a sequence of nodes. These nodes are coupled

to nodes of the tissue, which is modeled as a tetrahedral
mesh. Viscous and sticking friction along the needle shaft is
simulated, but torsional friction is not.

We performed experiments with an r=5 cm needle in a
10 cm cube of tissue constrained on the bottom face. The
tissue mesh is discretized at 1.25 cm intervals, and contains
729 nodes and 3072 tetrahedra. Tissue constitutive properties
were set to approximately those of prostate tissue (e.g., elastic
modulus 60 kPa) [27]. The friction coefficient between the
tissue and needle was set to 0.1 and the minimum cutting
force was set to 1 N. We tuned needle stiffness to achieve a
turning radius of approximately 5 cm (±0.3 cm) on a small
number of experiments, where we varied the insertion point
and angle. The tissue cube is used as the workspace W .

A single trial is shown in Figure 8. The needle tip, initially at
(0 cm,5 cm,5 cm) and pointing horizontally, reaches the target
(8 cm,2 cm,8 cm) with 0.88 mm accuracy. Open-loop execution
of a trajectory planned in rigid tissue achieved 5.9 mm error, so
the controller’s improvement is 85%. Figure 9.a plots accuracy
for targets in the x, z slice at y=5 cm, showing good agreement
with accuracy in rigid tissue (Figure 9.b).

We also tested our controller under exaggerated deforma-
tion. In Figure 1 we increased the cutting force, friction
coefficient, and viscous damping by factor of 10. The tip
entered the tissue at a downward angle of 30◦. The final
error achieved by open loop execution is 13.5 mm, while the
controller achieved 1.59 mm, an 88% improvement.

Clinical imaging may impart excessive radiation when used
continuously, so we tested controller performance when the
imaging rate is reduced. Experiments show less than 2 mm
error in both of the above examples even when up to 30 mm
of needle travel occurs between imaging refreshes.

VIII. CONCLUSION

We presented a closed-loop control policy for steering bevel-
tip flexible needles in deformable tissue. It rapidly iterates
a single rule: execute the helical trajectory that minimizes
the distance to the target. Fast branch and bound techniques
that enable the controller to run in real-time on standard
PC hardware. We evaluated the accuracy of the controller
in rigid-tissue simulations under simulated disturbances as
well as simulations of 3D finite element deformable tissue.
The controller reaches relatively distant targets with high
accuracy, which is surprising because steerable needles have
nonholonomic and non-controllable dynamics.

A primary goal for future work is integration and evaluation
on robotic hardware and tissue phantoms. We also plan to
address obstacles in the workspace. Preliminary work suggests
that the presented controller can already avoid simple obstacles
by excluding them from the workspace. Complex workspaces
might be addressed by decomposition into convex regions,
or more sophisticated planners to generate obstacle-avoiding
proposal trajectories. We will also seek to understand the
effects of different proposal trajectories, which may enable
better workspace coverage, or enable reaching targets with
orientation specified. Finally, traditional asymptotic stability
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Fig. 8. A simulated trial of the controller in deformable tissue: initial setup, cutting through the surface, tracking the target, final needle configuration. Bottom
plane is fixed. Grid used for visualization is at half the resolution of the simulation mesh. Dotted line depicts the trajectory predicted by the controller.

(a) Deformable tissue. (b) Rigid tissue.

Fig. 9. Accuracy images for a deformable 10 cm cube compared to a rigid
cube. Needle was inserted at (0 cm,5 cm). Slice taken down the middle of the
cube. Because deformable tissue simulation is computationally expensive, a
lower resolution grid was used. Units in meters.

criteria (e.g., [4]) do not apply to our system, so we are
pursuing alternate methods to further understand why and
when the controller converges.
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