
Human Motion Database with a Binary Tree and

Node Transition Graphs

Katsu Yamane

Disney Research, Pittsburgh

kyamane@cs.cmu.edu

Yoshifumi Yamaguchi

Dept. of Mechano-Informatics

University of Tokyo

yamaguti@ynl.t.u-tokyo.ac.jp

Yoshihiko Nakamura

Dept. of Mechano-Informatics

University of Tokyo

nakamura@ynl.t.u-tokyo.ac.jp

Abstract— Database of human motion has been widely used for
recognizing human motion and synthesizing humanoid motions.
In this paper, we propose a data structure for storing and
extracting human motion data and demonstrate that the database
can be applied to the recognition and motion synthesis problems
in robotics. We develop an efficient method for building a binary
tree data structure from a set of continuous, multi-dimensional
motion clips. Each node of the tree represents a statistical
distribution of a set of human figure states extracted from
the motion clips. We also identify the valid transitions among
the nodes and construct node transition graphs. Similar states
in different clips may be grouped into a single node, thereby
allowing transitions between different behaviors. Using databases
constructed from real human motion data, we demonstrate that
the proposed data structure can be used for human motion
recognition, state estimation and prediction, and robot motion
planning.

I. INTRODUCTION

Using a collection of human motion data has been a popular

approach for both analyzing and synthesizing human figure

motions, especially thanks to recent improvements of motion

capture systems. In the graphics field, motion capture data

have been widely used for producing realistic animations for

films and games. A body of research efforts have been directed

to techniques that allow reuse and editing of existing motion

capture to new characters and/or scenarios. In the robotics

field, there are two major applications of such databases:

building a human behavior model for robots to recognize

human motions, and synthesizing humanoid robot motions.

Databases for robotics applications are required to perform

at least the following two functions: First, they have to be

able to categorize human motion into distinct behaviors and

recognize the behavior of a newly observed motion. This is

commonly achieved by constructing a mathematical model that

bridges the continuous motion space and the discrete behavior

space. The problem is that it is often difficult to come up with

a robust learning algorithm for building the models because

raw human motion data normally contain noise and error. The

efficiency of search also becomes a problem as the database

size increases.

Another function is to synthesize a robot motion that adapts

to current situation, which is computationally demanding

because of the large configuration space of humanoid robots.

Motion database is a promising approach because they can

reduce the search space by providing the knowledge on how

Fig. 1. A binary tree with human motion data. Each x mark represents
a frame in one of the sample motion clips. The frames are iteratively split
into two descendant nodes. Each frame therefore appears once in each layer.
Database size can be reduced by making leaf nodes from multiple frames and
keep only the statistical information of the frames included in each node.

human-like robots should move. For this purpose, however,

motion capture data must be organized so that the planner can

effectively extract candidates of motions and/or configurations.

A database should also be able to generate high-quality motion

data, which is also difficult because sample motion data are

usually compressed to reduce the data size.

In this paper, we propose a highly hierarchical data structure

for human motion database. We employ the binary-tree struc-

ture as shown in Fig. 1, which is a classical database structure

widely used in various computer science applications because

of search efficiency. However, constructing a binary-tree struc-

ture from human motion data is not a trivial problem because

there is no straightforward way to split the multi-dimensional,

continuous motion data into two descendant nodes. Our first

contribution is a simple, efficient clustering algorithm for

splitting a set of sample frames into two descendant nodes

to construct a binary tree from human motion data.

We also develop algorithms for basic statistical computa-

tions based on the binary tree structure. Using these algo-

rithms, we can recognize a newly observed motion sequence,

estimate the current state and predict future motions, and plan

new sequences that satisfy given constraints.

Another minor but practically important aspect of the pro-

posed database is the ability to incorporate motion data from

different sources. For example, we may want to include motion

data captured with different marker sets, or include animation

data from a 3D CG film. It is therefore important to choose

a good motion representation to allow different marker sets

and/or kinematic models. In this paper, we propose a scheme

called virtual marker set so that motion data from different

sources can be represented in a uniform way and stored in a

single database.

The rest of this paper is organized as follows. In Section II,

we review related work in graphics and robotics. We then

present the proposed data structure and associated algorithms

in Sections III and IV respectively, and provide several appli-

cation examples in Section V. Section VI demonstrates exper-

imental results using human motion capture data, followed by

concluding remarks.

II. RELATED WORK

In the graphic field, researchers have been investigating how

to reuse and edit motion capture data for new scenes and new

characters. One of the popular approaches is motion graphs,

where relatively large human motion data set is analyzed

to build a graph of possible transitions between postures.

Using the graph, it is possible to synthesize new motion

sequences based on simple user inputs by employing a graph

search algorithm. Kovar et al. [1] proposed the concept of

Motion Graphs where similar postures in a database are au-

tomatically detected and connected to synthesize new motion

sequences. They presented an application of synthesizing new

locomotion sequence that follows a user-specified path. Lee et

al. [2] employed a two-layered statistical model to represent

a database, where the higher-level (coarse) layer is used

for interacting with user inputs and the lower-level (detail)

layer is used for synthesizing whole-body motions. Arikan

et al. [3] also proposed a planning algorithm based on a

concept similar to motion graphs. Related work in the graphics

field mostly focuses on synthesizing new motions from simple

user inputs using, for example, interpolation and numerical

optimization [4].

In robotics, learning from human demonstration, or im-

itation, has been a long-term research issue [5]–[7] and a

number of algorithms have been developed for storing human

motion data and extracting appropriate behaviors. Because

human motion varies at every instance even if the subject

attempts to perform the same motion, it is necessary to

model human behaviors by either statistical models [7], [8],

nonlinear dynamical systems [9], [10], or a set of high-level

primitives [11]. Related work relevant to this paper includes

the Hidden Markov Model (HMM) representation of human

behaviors [8] and the hierarchical motion database based

on HMM [12]. Another hierarchical motion categorization

method is also proposed using neural network models [10].

Fig. 2. Constructing the database.

However, most work in the robotics field is still focused

on robust learning of human behaviors. Scalability of the

motion database or synthesizing transitions between different

behaviors have not been investigated well.

In the vision community, human motion database has been

used to construct human motion models for human tracking

in videos. Sidenbladh et al. [13] proposed a binary-tree data

structure for building a probabilistic human motion model.

They first performed PCA on the entire motion sequence

and then projected each frame data to the principal axes to

construct a binary tree.

III. BUILDING THE DATABASE

The process for building the proposed database is sum-

marized in Fig. 2. The user provides one or more sample

motion clips represented as a pair of root motion and joint

angle sequences, typically obtained by motion capture or hand

animation. The joint angle data are then converted to virtual

marker data through forward kinematics (FK) computation to

obtain the marker positions and velocities, coordinate trans-

formation to remove the trunk motion in the horizontal plane,

and scaling to normalize the subject size. The positions and

velocities of the virtual markers are used to represent the state

of the human figure in each sample frame.

To construct a binary tree, we first create the root node

that contains all frames in the sample motion clips. We then

iteratively split the frames into two descendant nodes using the

method described in Section III-B. After the tree is obtained,

we count the number of transitions among the nodes in each

layer to construct the node transition graphs as described in

Section III-C. The binary tree and node transition graphs are

the main elements of the proposed motion database.

A. Motion Representation

There are several choices for representing the state of a

frame in sample motion clips. A reasonable choice would be

to use joint angles [2], [8] because they uniquely define a

configuration by minimum number of parameters. However,

joint angle representation strictly depends on the skeleton

model and it is difficult to map the states between different

models. In addition, joint angle representation may not be

consistent with visual appearance of the human figure because

the contribution of each joint angle to the Cartesian positions

of the links can vary.

Another possibility is to use point clouds [1]. This method

is independent of underlying skeleton models and also more

intuitive because it directly represent the overall shape of the

figure. The problem is that it is difficult compute the distance

between two poses because registration between two point

clouds is required.

In our implementation, we use a much simpler approach

called virtual marker set, where all motions are represented

by the trajectory (position and velocity) of Nv virtual markers.

The virtual marker set is defined by the database designer so

that it well represents the motions contained in the database,

and can be different from any physical marker sets. The virtual

marker set approach would become similar to the point cloud

method as the number of virtual markers increases, although

each marker in the virtual marker set should be labeled.

If a motion is represented by joint angle trajectories of

a skeleton model, it can be easily converted to the virtual

marker set representation by giving the relationship between

each marker in the virtual marker set and the skeleton used

to represent the original motions. The relationship between

a virtual marker and a skeleton is defined by specifying the

link to which the marker is attached, and giving the relative

position in its local frame. Although this approach requires

some work on the user’s side, it allows the use of multiple

skeleton models with simple distance computation.

After converting the motion data to the virtual marker

set representation, we perform a coordinate transformation to

remove the horizontal movement in the motion and scaling to

normalize the subject size. Each marker position is represented

in a new reference coordinate whose origin is located on the

floor below the root joint, z axis is vertical, and x axis is the

projection of the front direction of the subject model onto the

floor. The marker velocities are also converted to the reference

coordinate.

Formally, a sample motion data matrix X with NS frames

is defined by

X = (x1 x2 . . . xNS
) (1)

where xi is the state vector of the i-th sample frame defined

by

xi =
(

pT
i1 vT

i1 pT
i2 vT

i2 . . . pT
iNv

vT
iNv

)T
(2)

and pil and vil are the position and velocity of marker l in

sample frame i. If multiple motion clips are to be stored in a

database, we simply concatenate all state vectors horizontally

and form a single sample motion data matrix.

B. Constructing a Binary Tree

A problem of constructing a binary tree for motion data

is how to cluster the sample frames into groups with similar

states. Most clustering algorithms require a large amount of

computation because they check the distances between all

pairs of frames. This process can take extremely long time

as the database size increases.

Here we propose an efficient clustering algorithm based

on principal component analysis (PCA) and minimum-error

thresholding technique. The motivation for using PCA is that

it determines the axes that best characterize the sample data.

In particular, projecting all samples onto the first principal

axis gives a one-dimensional data set with the maximum

variance, which can then be used for separating distinct

samples using adaptive thresholding techniques developed for

binarizing images.

The process to split node k into two descendant nodes is as

follows. Assume that node k contains nk frames whose mean

state vector is x̄k. Also denote the sample motion data matrix

of node k by Xk. We compute the zero-mean singular value

decomposition of Xk as

X
′T
k = UΣV T (3)

where each column of X ′

k is obtained by subtracting x̄k from

the original state vectors, Σ is a diagonal matrix whose ele-

ments are the singular values of Xk sorted in the descending

order, and U and V are orthogonal matrices. The columns

of V represents the principal axes of Xk. We obtain the

one-dimensional data set sk by projecting X ′

k onto the first

principal axis by

sk = X
′T
k v1 (4)

where v1 denotes the first column of V .

Once the one-dimensional data is obtained, the cluster-

ing problem is equivalent to determining the threshold that

minimizes classification error. We shall use a minimum-error

thresholding technique [14] to determine the optimal threshold.

After sorting the elements of sk and obtaining the sorted vector

s′

k, this method determines the index m such that the data

should be divided between samples m and m + 1 using the

following equation:

m = argmax
i

{

i log
σ1

i
+ (nk − i) log

σ2

nk − i

}

(5)

where σ1 and σ2 denote the variance of the first i and last

nk − i elements of s′

k, respectively.

We obtain a binary tree by repeating this process until

the division creates a node containing fewer frames than a

predefined threshold. To ensure the statistical meaning of each

node, we also avoid nodes with small number of sample frames

by setting a threshold for minimum frame number. If Eq.(5)

results in a node with fewer number of frames than the latter

threshold, we do not perform the division. Therefore, a node

may not be divided if it contains many similar frames.

Some branches may be shorter than others because we

extend each branch as much as possible and some of them

may hit the thresholds earlier. In such cases, we simply extend

shorter branches by attaching a copy of the leaf node so

that the length of all branches become the same. Each node

therefore can have 0 (leaf nodes), 1 or 2 descendant nodes.

C. Node Transition Graphs

After constructing the binary tree, we then build the node

transition graphs based on the transitions observed between

nodes in each layer. Because we know the set of frames

included in each node, we can easily determine the transition

probabilities by dividing the number of transitions to a specific

node by the total number of frames in the node.

We build two kinds of node transition graphs at each layer.

The global transition graph describes the average node transi-

tion probabilities observed in all sample clips. The transition

probability from node m to node n in the same layer is

computed by

pm,n =
tm,n

Σitm,i

(6)

where tk,l denotes the total number of transitions from nodes

k to l observed in all sample clips. A clip transition graph de-

scribes the node transition probabilities observed in a specific

sample clip. We can use the same equation (6) to compute

the transition probabilities, except that tk,l only considers the

transitions within the same sample clip.

The global transition graph at each layer is similar to

motion graphs [1] in the sense that all possible transitions

between nodes are included. However, the way we construct

the graph is different from existing motion graph techniques,

resulting in a more efficient database construction. Our method

generally requires O(N log N) for a database with N sample

frames because the depth of the tree is typically O(log N) and

splitting the frames at each layer requires O(N) computations,

while most motion graph and other clustering techniques

require O(N2) computations because they usually compute

the distance between each pair of frames in the database.

The clip transition graphs are similar to human behavior

models using HMMs [8]. In most HMM-based approaches,

a simple left-to-right model or single-chain cyclic model with

fixed number of nodes is assumed because it is difficult to train

an HMM with arbitrary length or arbitrarily interconnected

nodes. In our method, we do not assume the structure of

the node transition or the number of nodes used to represent

a sample clip. If a sample clip includes a cyclic pattern,

for example, our method automatically models the cycle by

producing a single transition loop, while a left-to-right model

tries to encode the whole sequence within a given number of

nodes.

IV. ALGORITHMS

For a given tree and node transition graph, we should be

able to perform the following two basic operations:

• find the optimal node transition to generate a newly

observed motion clip, and

• compute the probability that a newly observed motion

clip is generated by a node transition graph.

In the rest of the section, we shall denote the newly observed

motion comprising M frames by X̂ = (x̂1 x̂2 . . . x̂M) where

x̂i is the state vector at frame i. Here we assume that both

positions and velocities of virtual markers are given.

A. Optimal Node Transition

The probability that the observed motion X̂ was produced

by a node transition N = {n1, n2, . . . , nM} is given by

P (N|X̂) =
M
∏

i=1

Pt(ni−1, ni)Ps(ni|x̂i) (7)

where Pt(k, l) is the transition probability from node k to l

(P (n0, n1) = 1) and Ps(k|x) is the probability that the state

was at node k when the observed state was x. Ps(k|x) is

obtained by the Bayesian inference:

Ps(k|x) =
Po(x|k)P (k)

P (x)
=

Po(x|k)P (k)
∑

i Po(x|i)
(8)

where Po(x|k) is the likelihood that state vector x is output

from node k and P (k) is the a priori probability that the state

is at node k.

The actual form of Po(x|k) depends on the probability

distribution used for each node. In this paper, we assume a

simple Gaussian distribution with mean x̄k and covariance

Σk, in which case Po(x|k) can be computed by

Po(x|k) =
1

(
√

2π)N |Σk|
exp

(

−1

2
(x − x̄k)T

Σ
−1

k (x − x̄k)

)

.

P (k) can be either a uniform distribution among the nodes,

or weighted according to the number of sample frames in-

cluded in the nodes. In our implementation, we use a uniform

distribution for the global transition graph. We also use a

uniform distribution for each clip transition graph, excluding

the nodes that did not appear in the sample clip.

Obtaining the optimal node transition N ∗ is the problem of

finding the node sequence that maximizes Eq.(7). A common

method for this purpose is to perform forward-backward algo-

rithm or dynamic programming. However, such algorithms can

be computationally expensive for long sequences or densely

connected graphs. We could omit nodes far enough from

each observed frame using a threshold, but it is difficult to

determine the threshold so that enough number of candidates

are left for the search.

Instead of searching the entire node sequence at a single

layer, we utilize the binary tree data structure by starting from

the top layer. Because the top layer only contains the single

root node r, the trivial optimal sequence at the top layer, N ∗

1
,

is to visit the root node M times, i.e., N ∗

1
= {r, r, . . . , r}.

Starting from this initial sequence, we perform a dynamic

programming to find the best way to trace the descendants

of the nodes in the sequence all the way down to the bottom

layer. We could also terminate at an intermediate layer if we

do not need precise results, in which case the result would be

obtained faster.

B. Motion Generation Probability

Motion generation probability is defined as the probability

that a node transition graph generates the observed motion.

This probability can be used for identifying the type of

behavior. We can compute the motion generation probability

by summing up the probability of generating the motion by all

possible node transitions. However, there may be huge number

of possible node transitions for long motions or large transition

graphs.

An alternative used in this paper is to use the dynamic

programming described in the previous subsection to find

multiple node sequences. Because the algorithm returns node

sequences in the descending order of probability, we can

approximate the total motion generation probability by using

the top few node sequences.

V. APPLICATIONS

A. State Estimation and Prediction

Estimating the current state is accomplished by taking the

last node in the most likely node transition in the global node

transition graph. Once the node transition is estimated with

high probability, we can then predict the next action by tracing

the node transition graph. By combining the probability of

the node transition and the probability of the future transition

candidate, we can also obtain the confidence of the prediction.

B. Motion Recognition

Motion recognition is the process to find a motion clip in the

database that best matches a newly observed motion sequence.

This is accomplished by comparing the motion generation

probability from the clip transition graphs.

C. Motion Planning

The global transition graph can also be used for planning a

new motion sequence subject to kinematic constraints. In addi-

tion, because the tree has multiple layers that model the sample

clips at different granularities, motion planning can also be

performed at different precision levels. The only issue is how

to compute the motion of the root in the horizontal plane

because those information are removed from the database.

Our solution is to use the marker velocity data to obtain

the root velocity, and then integrate the velocity to obtain

root trajectory. The velocity can be obtained by employing

a numerical inverse kinematics algorithm, which essentially

solves the following linear equation:

θ̇ = Jv (9)

where θ̇ is the joint velocities including the root linear and

angular velocities, v is the vector of all marker velocities

extracted from the mean vector of a node, and J is the

Jacobian matrix of the marker positions with respect to joint

angles. This is usually an overconstrained IK problem because

the virtual marker set contains more markers than necessary to

determine the joint motion. We therefore apply the singularity-

robust (SR) inverse [15] of J to obtain θ̇.

VI. RESULTS

A. Sample Data Set

We use two different sets of data to demonstrate the

generality of our approach. The minimum number of sample

TABLE I

PROPERTIES OF THE TWO DATABASES.

Database 1 Database 2

of frames 5539 11456
of layers 17 16
of nodes 1372 1527

of nodes in bottom layer 167 205

frames in a node is set to 16 in both databases. The properties

of the databases are summarized in Table I.

The first set (Database 1) consists of 19 motion clips

including a variety of jog, kick, jump, and walk motions, all

captured separately in the motion capture studio at University

of Tokyo. The motions were captured using our original

marker set consisting of 34 markers. This marker set is also

used as the virtual marker set to construct all the databases

in the experiments. Database 1 is used to demonstrate the

analysis experiments.

The second set (Database 2) is generated from selected clips

in a publicly available motion library [16] and will be used

for the planning experiment. The database includes two long

locomotion sequences with forward, backward and sideward

walk of the same subject. Although Database 2 contains twice

as many sample frames as Database 1, it resulted in relatively

small number of layers and nodes probably because they

consist of similar motions and hit the minimum frame number

threshold earlier.

Because the virtual marker set consists of 34 markers, the

dimension of the state vector is 204.

B. Properties of the Database

We first visualize Database 1 to investigate its properties.

In Fig. 3, the spheres (light-blue for readers with color figures)

represent all nodes in the bottom layer and the red lines

represent the transitions among the nodes. The white mesh

represents the plane of first and second principal axes. The

projection onto the first-second principal axes plane is also

shown in Fig. 4. Figure 5 shows the nodes and global transition

graphs at layers 4 and 7, with the top layer numbered layer 1.

The location of each node is computed by projecting its

mean vector onto the first three principal components of the

root node of the tree. The size of the node is proportional to

the maximum singular value of the sample motion data matrix

of the node.

Figure 6 shows the mean marker positions and velocities

of the nodes marked in Fig. 4. These images clearly show the

geometrical meaning of the first and second principal axis: the

first axis represents the vertical velocity and the second axis

represents which leg is raised. Apparently there is no verbally

explainable meaning in the third axis.

Figure 7 shows the node transition graphs of two represen-

tative clips. As expected from the above observation, motions

such as jump that involves mostly the vertical motion stay in

the first and third axes plane, while jog, kick and walk motions

stay in the second and third axes plane.

Fig. 3. Visualization of the database in the three principal axes space.

Fig. 4. Visualization of the database in the first (horizontal) and second
(vertical) principal axes space.

C. State Estimation and Prediction

We experimented the state estimation ability by providing

the first 0.2 s of a novel kick motion by the same subject and

a jump motion by a different subject. The results are shown

in Figures 8 and 9 respectively. Note that the global node

transition is used to compute the best node sequence, although

only the node transition in relevant sample clip is drawn in

each figure for clarity.

In both cases, the database could predict the subjects’

actions before they actually occurred. In Fig. 8, all nodes

on the identified node sequence (drawn as yellow spheres)

Fig. 5. Nodes and global transition graphs at layers 4 and 7.

Fig. 6. Mean marker positions and velocities of selected nodes. The lines
rooted at markers denote the velocities. From left to right: nodes 1369, 1362,
1361, and 1366 as marked in Fig. 4.

Fig. 7. Node transition graphs of selected clips. Left: jump, right: kick.

are included in the transition graph of the kick samples. The

last node in the sequence is likely to transit to the dark blue

node in the left figure with the probability of 0.36, which

corresponds to the marker positions and velocities in the right

figure. Similarly, the result of Fig. 9 indicates that the database

can correctly identify that the subject is in preparation for a

jump.

D. Motion Recognition

Figures 10–11 show the results of motion recognition exper-

iments. The three graphs in Fig. 10 show differences between

layers for the same observation. We computed the motion

generation probability of new motions with respect to the

node transition graph of each sample motion clip. Because the

new motion is 2.5 s long and computation of the probabilities

takes long time, we computed the probability of generating the

Fig. 8. Result of state estimation and prediction for a kick motion of the
same subject. Left: the nodes on the identified node transition are drawn in
yellow. Right: the marker positions and velocities corresponding to the blue
node in the left figure.

Fig. 9. Result of state estimation and prediction for a jump motion of a
different subject. Left: the nodes on the identified node transition are drawn
in yellow. Right: the marker positions and velocities corresponding to the blue
node in the left figure.

Fig. 11. Time profile of generation probability of a walk motion of a different
subject (bottom layer).

sequences within a sliding window of width 0.4 s. The graphs

depict the time evolution of probabilities when we moved the

window from [0.0s, 0.4s] to [2.0s, 2.4s]. The lines are colored

according to the type of motions. We use same line color and

type for very similar sample clips for clarity of presentation.

The first three graphs show the probability of a new walk

motion by the same subject as the database, while a walk

motion from a different subject was used for Fig. 11. These

results show that the model can successfully recognize the

type of observed motion even for different subjects. It is also

suggested that the statistical models at different layers have

different granularity levels because the variation of probabili-

ties is smaller for upper layers. In particular, similar motions

such as walk and jog begin to merge at layer 7.

Figure 12 show the result at the bottom layer for a com-

pletely unknown motion (lifting an object from the floor). It is

clear that the database cannot tell whether the motion is jump

or kick, which is intuitively reasonable because these three

motions start from small bending.

Fig. 12. Time profile of generation probability of a lifting motion (bottom
layer).

Fig. 13. Result of motion planning. Left: path of the root in horizontal plane.
Right: postures at selected frames.

E. Motion Planning

We performed a simple motion planning test with only start

and goal position constraints. Figure 13 shows the planned

motion when the goal position is given as 2.0 m front and

1.0 m left of the current position. The planner outputs a

reasonable motion under the available samples, which is to

walk forward for 2 m and do a side walk to the left for 1 m. We

can observe that the feet occasionally penetrate the floor. We

would need the contact status information to fix this problem.

VII. CONCLUSION

In this paper, we proposed a new data structure for stor-

ing multi-dimensional, continuous human motion data, and

demonstrated its basic functions through experiments. The

main contributions of the paper are summarized as follows:

1) We proposed a method for constructing a binary tree data

structure from human motion data. We applied PCA and

a minimum-error thresholding technique to efficiently

find the optimal clustering of sample frames.

2) We proposed to build a global node transition graph

representing the node transitions in all sample clips,

as well as a clip transition graph representing the node

transitions in each sample motion clip.

3) We developed two algorithms for computing the most

probable node transition and generation probability for

Fig. 10. Time profile of generation probability of a new walk motion of the same subject. From left to right: bottom layer, layer 10, layer 7.

a given new motion sequence, based on the binary tree

data structure.

4) We demonstrated three applications of the proposed

database through experiments using real human motion

data.

There are several functions yet to be addressed by our

database. We currently do not support incremental learning

of new motions because all sample frames must be available

to perform the PCA. If the new sample clips do not dras-

tically change the distribution of whole samples, we could

apply one of the extensions of PCA for online learning tech-

niques [17]. Some techniques for balancing binary trees for

multi-dimensional data could also be employed to reorganize

the tree [18].

It should be relatively easy to add segmentation and cluster-

ing functions because the sample motion clips are abstracted

by node transition graphs. We can easily detect same or similar

node transitions in different motion clips, which could be used

for segmentation. Clustering of sample clips can be achieved

by evaluating the distance between motion clips based on

their node transition graphs and applying standard clustering

algorithms [19].

Our current database only contains the marker position and

velocity data. It would be interesting to add other modalities

such as contact status, contact forces, and muscle tensions. In

particular, we would be able to solve the contact problem in

our planning experiment if we have access to the contact status

information. Contact force and muscle tension information

would also help generating physically feasible motions for

humanoid robots.

ACKNOWLEDGEMENTS

Part of this work was conducted while the first author was

at University of Tokyo. The authors gratefully acknowledge

the support by the Ministry of Education, Culture, Sports,

Science and Technology, Japan through the Special Coordi-

nation Funds for Promoting Science and Technology, “IRT

Foundation to Support Man and Aging Society.”

REFERENCES

[1] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Transac-

tions on Graphics, vol. 21, no. 3, pp. 473–482, 2002.

[2] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard,
“Interactive Control of Avatars Animated With Human Motion Data,”
ACM Transactions on Graphics, vol. 21, no. 3, pp. 491–500, July 2002.

[3] O. Arikan and D. A. Forsyth, “Synthesizing Constrained Motions from
Examples,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 483–490,
July 2002.

[4] A. Safonova and J. Hodgins, “Interpolated motion graphs with optimal
search,” ACM Transactions on Graphics, vol. 26, no. 3, p. 106, 2007.

[5] C. Breazeal and B. Scassellati, “Robots that imitate humans,” Trends in

Cognitive Science, vol. 6, no. 11, pp. 481–487, 2002.
[6] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to

motor learning by imitation,” Phylosophical Transactions of the Royal

Society of London B: Biological Sciences, vol. 358, pp. 537–547, 2003.
[7] A. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive

imitation in uni-manual and bi-manual tasks,” Robotics and Autonomous

Systems, vol. 54, pp. 370–384, 2006.
[8] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, “Embodied symbol

emergence based on mimesis theory,” International Journal of Robotics

Research, vol. 24, no. 4/5, pp. 363–378, 2004.
[9] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with

nonlinear dynamical systems in humanoid robots,” in Proceedings of

International Conference on Robotics and Automtation, 2002, pp. 1398–
1403.

[10] H. Kadone and Y. Nakamura, “Symbolic memory for humanoid robots
using hierarchical bifurcations of attractors in nonmonotonic neural
networks,” in Proceedings of International Conference on Intelligent

Robots and Systems, 2005, pp. 2900–2905.
[11] D. Bentivegna, C. Atkeson, and G. Cheng, “Learning tasks from

observation and practice,” Robotics and Autonomous Systems, vol. 47,
no. 2–3, pp. 163–169, 2004.

[12] D. Kulić, W. Takano, and Y. Nakamura, “Incremental learning, clustering
and hierarchy formation of whole body motion patterns using adaptive
hidden markov chains,” International Journal of Robotics Research,
vol. 27, no. 7, pp. 761–784, 2008.

[13] H. Sidenbladh, M. Black, and L. Sigal, “Implicit probabilistic models
of human motion for synthesis and tracking,” in European Conference

on Computer Vision, 2002, pp. 784–800.
[14] J. Kittler and J. Illingworth, “Minimum error thresholding,” Pattern

Recognition, vol. 19, no. 1, pp. 41–47, 1986.
[15] Y. Nakamura and H. Hanafusa, “Inverse Kinematics Solutions with

Singularity Robustness for Robot Manipulator Control,” Journal of

Dynamic Systems, Measurement, and Control, vol. 108, pp. 163–171,
1986.

[16] “CMU graphics lab motion capture database,” http://mocap.cs.cmu.edu/.
[17] M. Artac̆, M. Jogan, and A. Leonardis, “Incremental pca or on-line visual

learning and recognition,” in Proceedings of the 16 th International

Conference on Pattern Recognition, 2002, pp. 30 781–30 784.
[18] V. K. Vaishnavi, “Multidimensional balanced binary trees,” IEEE Trans-

actions on Computers, vol. 38, no. 7, pp. 968–985, 1989.
[19] J. Ward, “Hierarchical grouping to optimize an objective function,”

Journal of the American Statistical Association, vol. 58, pp. 236–244,
1963.

