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Abstract— In this paper, we present a technique for approx-
imating the net displacement of a locomoting system over a
gait without directly integrating its equations of motion. The
approximation is based on a volume integral, which, among
other benefits, is more open to optimization by algorithm or
inspection than is the full displacement integral. Specifically, we
develop the concept of a body velocity integral (BVI), which
is computable over a gait as a volume integral via Stokes’s
theorem. We then demonstrate that, given an appropriate choice
of coordinates, the BVI for a gait approximates the displacement
of the system over that gait. This consideration of coordinate
choice is a new approach to locomotion problems, and provides
significantly improved results over past attempts to apply Stokes’s
theorem to gait analysis.

I. INTRODUCTION

Locomotion is everywhere. Snakes crawl, fish swim, birds
fly, and all manner of creatures walk. The facility with
which animals use internal joint motions to move through
their environments far exceeds that which has been achieved
in artificial systems; consequently there is much interest in
raising the locomotion capabilities of such systems to match or
surpass those of their biological counterparts. A fundamental
aspect of animal locomotion is that it is primarily composed
of gaits – cyclic shape motions which efficiently transport the
animal. Examples of such gaits include a horse’s walking,
trotting, and galloping, a fish’s translation and turning strokes,
and a snake’s slithering and sidewinding. The efficacy of these
motions, along with the abstraction that they allow from shape
to position changes, suggests that gaits will form an equally
important part of artificial locomotion.

Here, we are specifically interested in producing tools for
designing gaits for mechanical systems which result in desired
net position changes. Much prior work in gait design has
taken the approach of choosing parameterized basis functions
for gaits and simulating the motion of the system while
executing the gaits, optimizing the input parameters to find
gaits which meet the design requirements. Such optimization
with forward simulation is computationally expensive and
vulnerable to local minima. Therefore, there is growing interest
in using curvature analysis tools, such as Stokes’s theorem, to
replace the simulation step with a simple volume integration,
which is more amenable to optimization. Unfortunately, these
Stokes’s theorem methods as previously developed are not
completely applicable to most interesting systems; either they
are restricted to designing small, inefficient motions, or they
provide incomplete information about the actual displacement

of the system over the course of a gait.
In this paper we address these limitations by developing the

concept of a body velocity integral (BVI), which provides an
expanded and physically meaningful interpretation of previous
locomotion work based on Stokes’s theorem. We then identify
conditions under which this body velocity integral is a good
estimate of the true displacement resulting from a gait. We
finish by introducing the notion that rather than being intrinsic
to the system, the presence of these conditions is dependent on
the choice of parameterization of the system, and demonstrat-
ing that this choice of parameterization can be manipulated to
ensure their existence.

II. PRIOR WORK

Our work builds on the body of locomotion literature which
uses geometric mechanics to separate internal shape changes
from the external motions they produce. The application of
geometric mechanics to locomotion, pioneered by Shapere and
Wilczek [1] and further developed by Murray and Sastry [2]
and Kelly and Murray [3], provides a powerful mathematical
framework for analyzing locomotion. A key product of this
work is the development of the reconstruction equation for
nonholonomic systems, which relates body velocity to changes
in internal shape for a broad class of locomoting systems.
We will not rederive the reconstruction equation here; for a
thorough treatment, see [4]–[6].

This reconstruction equation has been used in a variety of
locomotion contexts. Ostrowski et al. [5], [7] combined the
reconstruction equation with Lie bracket theory to generate
sinusoidal gaits which translate and rotate a variety of snake-
like systems. Bullo and Lynch used the reconstruction equation
to decouple the locomotion of kinodynamic systems and
design kinematic gaits [8]. More recently, there has been
interest in applying these techniques to swimming robots, such
as McIsaac and Ostrowski’s work on anguilliform (eel-like)
robots [9] and Morgansen et al.’s work on fish [10], both
of which combine the geometric approach with biomimetic
elements. In [11], we introduced the connection vector field as
a tool for visualizing the reconstruction equation differentially.

It is not generally possible to integrate the reconstruction
equation in closed form, raising difficulties for the inverse
problem of finding shape changes which result in desired
translations. In special cases, however, Stokes’s theorem can
be used to find the net motion resulting from gaits [3].
Mukherjee [12] used this principle to analyze the motion



of rolling disks, and Walsh and Sastry [13] applied it to
the case of an isolated three-link robot. Shammas et al. [6],
[14] combined this approach with the reconstruction equation
to define functions on the shape space of their three-link
robots, which allowed the design of gaits resulting in specified
rotations. A similar technique was used by Melli et al. [15] and
later by Avron and Raz [16] to generate gaits for swimming
robots.

III. BACKGROUND

The present work makes use of several key techniques
borrowed from geometric mechanics, the salient points of
which we review here.

A. Three-link Kinematic Snake

While the principles we are investigating are relevant to a
wide range of systems, including fish, differential drive cars,
and satellites, in this paper we focus on a particular system,
the three-link kinematic snake investigated by Shammas et
al. [6], [14]. Illustrated in Fig. 1, this system has a passive
wheelset on each link, preventing lateral translation while
freely allowing rotation and longitudinal translation. The joint
angles α1 and α2 are actively controlled, and the overall
position and orientation of the system are taken as those of
the middle link.
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Fig. 1: Model for the three-link kinematic snake. The overall location of the
system is the x, y position and orientation θ of the middle link with respect
to the fixed coordinate system. The shape coordinates are α1 and α2, the
angles of the two joints. The passive wheels on each link constrain lateral but
not longitudinal or rotational motion.

B. The Reconstruction Equation and the Local Connection

When analyzing a multi-body locomoting system, it is
convenient to separate its configuration space Q into a position
space G and a shape space M , such that the position g ∈ G
locates the system in the world, and the shape r ∈ M gives
the relative arrangements of its bodies, and then consider how
manipulating the shape affects the position. The geometric
mechanics community [2]–[6] has addressed this question with
the development of the reconstruction equation and the local
connection, tools for relating the body velocity of the system,
ξ, to its shape velocity ṙ, and accumulated momentum p.

The general reconstruction equation is of the form

ξ = −A(r)ṙ + Γ(r)p, (1)

(a) World velocity. (b) Body velocity.

Fig. 2: Two representations of the velocity of a robot. The robot, represented
by the triangle, is translating up and to the right, while spinning counterclock-
wise. In (a), the world velocity, ġ, is measured with respect to the global frame.
The body velocity, ξ, in (b) is the world velocity represented in the robot’s
instantaneous local coordinate frame.

where ξ is the body velocity of the system, A(r) is the local
connection, a matrix which relates joint to body velocity,
Γ(r) is the momentum distribution function, and p is the
generalized nonholonomic momentum, which captures how
much the system is “coasting” at any given time [4]. The
body velocity, illustrated for a planar system in Fig. 2(b), is
the position velocity as expressed in the instantaneous local
coordinate frame of the system. For systems which translate
and rotate in the plane, i.e. which have an SE(2) position
space, the body and world velocities are related to each other
as

ξ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ġ, (2)

where θ is the system’s orientation.
For systems which are sufficiently constrained, the general-

ized momentum drops out, and the system behavior is dictated
by the kinematic reconstruction equation,

ξ = −A(r)ṙ, (3)

in which the local connection thus acts as a kind of Jacobian,
mapping from velocities in the shape space to the correspond-
ing body velocity. For the rest of this paper, we will limit our
attention to these kinematic systems.

Kinematic Snake Example 1: For the kinematic snake, we
take the position as g = (x, y, θ) ∈ SE(2) of the middle
link and the shape as the joint angles r = [α1 α2]T ∈ R2,
as in Fig 1. Outside of singularities, the passive wheelsets
constitute three independent constraints, equal in number to
the position coordinates, so the system has no direction in
which to coast and behaves kinematically. As detailed in [6],
the constraints define the local connection for the system, such
that the reconstruction equation, normalized for link length, is

ξ =

ξxξy
ξθ

 = − 1
D

1 + cos (α2) 1 + cos (α1)
0 0

− sin (α2) − sin (α1)

[α̇1

α̇2

]
, (4)

where D = sin (α1)− sin (α2) + sin (α1 − α2).



(a) ~Aξx (b) ~Aξy (c) ~Aξθ

Fig. 3: The connection vector fields for the kinematic snake. Due to singularities in the vector fields at the lines α1 = ±π, α2 = ±π, and α1 = α2, the
magnitudes of the vector fields have been scaled to their arctangents for readability. The ṙ vectors at a and b will produce pure forward translation and pure
negative rotation, respectively.

C. Connection vector fields

Each row of the local connection A(r) can be considered as
defining a vector field on the shape space whose dot product
with the shape velocity produces the corresponding component
of the body velocity,

ξi = ~Aξi(r) · ṙ (5)

where, for convenience, we wrap the negative sign into the
vector field definition.

Considering the local connection as a set of vector fields
with the dot product operator provides strong geometric in-
tuition for understanding the relationship between shape and
position motions. The geometric interpretation of the dot
product in (5) is

ξi = ~Aξi(r) · ṙ = ‖~Aξi(r)‖‖ṙ‖ cos Θ, (6)

where Θ is the angle between the vectors. Taking the cos Θ
term as a measure of the alignment of ~Aξi(r) and ṙ, ξi
is positive, negative, or zero when the two vectors have
correspondingly positive, negative, or zero alignment, and is
scaled by the magnitudes of ~Aξi and ṙ.

Kinematic Snake Example 2: The connection vector fields
for the kinematic snake with reconstruction equation as in (4)
are shown in Fig. 3 along with two example ṙ vectors. At
position a, ṙ is aligned with ~Aξx and orthogonal to ~Aξθ , and
will thus produce forward (positive longitudinal) motion with
no rotation. At b, ṙ is orthogonal to ~Aξx and anti-aligned
with ~Aξθ , and will thus produce negative rotation with no
translation.

D. Shape Changes

To describe operations in the shape space of a robot, we
define shape changes, gaits, and image-families of gaits.

Definition 3.1 (Shape change): A shape change ψ ∈ Ψ is
a trajectory in the shape space M of the robot over an interval
[0, T ], i.e., the set of all shape changes is

Ψ = {ψ ∈ C1 | ψ : [0, T ]→M} (7)

where ψ(0), ψ(T ) ∈ M are respectively the start and end
shapes.

Definition 3.2 (Gait): A gait φ ∈ Φ is a cyclic shape
change, i.e.

Φ = {φ ∈ Ψ | φ(0) = φ(T )}. (8)

Note that a gait has a defined start shape φ(0); two gaits whose
images in M are the same closed curve, but with different start
points, are distinct.

Definition 3.3 (Image-family): The image-family of a gait
is the set of all gaits which share its image (i.e., trace out the
same closed curve) in M .

E. Stokes’s Theorem

In general, to calculate the displacement resulting from a
gait, we must use the local connection to find the body velocity
and then integrate this velocity over time. In some cases,
however, we can use Stokes’s theorem to replace this time
integral with an area integral. By this theorem, the line integral
along a closed curve on a vector field is equal to the integral
of the curl of that vector field over a surface bounded by the
curve. For example, for systems with two shape variables, the
integral of a component of the body velocity over a gait is
thus ∫ T

0

ξi(τ) dτ =
∫ T

0

~Aξi(φ(τ)) · φ̇(τ) dτ (9)

=
∫
φ

~Aξi(r) dr (10)

=
∫∫

φa

curl ~Aξi(r) dr, (11)

where φa is the area on M enclosed by the gait. If a component
of the world velocity is always equal to a component of the
body velocity, i.e., ġj = ξj for a given j, then we can apply
Stokes’s theorem to find the net displacement in that direction
over the course of a gait, by identifying

∆gj =
∫ T

0

ġj(τ) dτ =
∫ T

0

ξj(τ) dτ (12)



and substituting into (9) through (11).
In addition to evaluating the displacement over gaits, (11)

offers a powerful means of addressing the inverse problem of
designing gaits. By plotting the curl of the connection vector
field as a height function Hζj (r) on the shape space, we can
easily identify gaits which produce various displacements by
inspection. Rules of thumb for designing curves which produce
desired values of the integral in (11) are given in [6]:

1) Non-zero integral (I) A loop in a region where the sign of
Hζj (r) is constant will produce a non-zero integral. The
sign of the integral will depend on the sign of Hζj (r)
and the orientation of the loop (the direction in which
it is followed).

2) Non-zero integral (II) A figure-eight across a line
Hζj (r) = 0, where each half is in a region where
the sign of Hζj (r) is constant, will produce a non-zero
integral.

3) Zero integral A loop that encloses equally positive and
negative regions of Hζj (r), such that the integrals over
the positive and negative regions cancel each other out,
will produce a zero integral.

Kinematic Snake Example 3: From (2), we see that ξθ = ġθ
for systems with an SE(2) position space, as is the case for the
kinematic snake. For these systems we can thus use Stokes’s
theorem to design gaits which produce desired net rotations of
these systems. The rotational height function for the kinematic
snake,

Hζθ =
∂ ~Aξθ

2

∂α1
− ∂ ~Aξθ

1

∂α2
(13)

is plotted in Fig. 4 along with two gait image-families. In
Fig. 4(a), the loop encircles an area over which the integral∫∫
φa

Hζθ dα1dα2 is zero, so the net rotation resulting from
any gait in that image-family will be zero. In Fig. 4(b), each
half of the figure-eight pattern is on a different side of the
Hζθ = 0 line, and the two halves have opposite orientations.
The integrals over the two areas will thus sum together, and
the snake will gain a net rotation from any gait in the family.
The sign of this net rotation will depend on the orientation of
the curve (the direction in which the curve is followed) [6],
[15].

IV. THE BODY VELOCITY INTEGRAL

The convenience and simplicity of using the Hζθ height
function to design gaits resulting in desired rotations makes
it tempting to apply the same techniques to designing gaits
which produce specified rotations. Unfortunately, this is not
generally possible, as the integral of body velocity provided
by the translational height functions does not correspond to the
resulting displacement. To see why this is the case, consider
that there are two senses in which “integrating the body
velocity over time” can be interpreted. In the first, most natural
sense, we integrate to find the resulting displacement. This

(a) (b)

Fig. 4: The connection height function for rotation, Hζθ for the kinematic
snake, along with two gait image-families. In (a), the loop encircles equal
positive and negative areas of the height function, so any gait from this family
will result in zero net rotation. The two loops of the image-family in (b)
have opposite orientations and encircle oppositely-signed regions of Hζθ , so
gaits from this family will result in a non-zero net rotation. To accommodate
the singularity along the α1 = α2 line, the height function is scaled to its
arctangent for display.

quantity is found by the nonlinear iterative integral

g(t) =

x(t)
y(t)
θ(t)

 =
∫ t

0

cos θ(τ) − sin θ(τ) 0
sin θ(τ) cos θ(τ) 0

0 0 1

ξx(τ)
ξy(τ)
ξθ(τ)

 dτ,

(14)
in which the x and y components of the body velocity are
rotated into the world frame at each time.

The second sense of integrating ξ is to take its simple vector
integral ζ,

ζ(t) =

ζx(t)
ζy(t)
ζθ(t)

 =
∫ t

0

ξx(τ)
ξy(τ)
ξθ(τ)

 dτ, (15)

where we term ζ the body velocity integral, or BVI. Physically,
the BVI corresponds to the raw odometry for the robot, i.e., the
net forwards minus backwards motion in each body direction,
and it does not account for changes in the alignment between
body and world directions, i.e. the relative orientation of the
body and world frames.

The area integrals under the height functions correspond to
this second sense of integration, and as such cannot generally
be used to determine the displacement resulting from a given
gait. For instance, consider how the kinematic snake moves
while executing gaits from the gait image family depicted in
Fig. 5. On the height functions, the gait family encircles a
positive area on Hζx , a zero area on Hζy , and a net-zero
area on Hζθ . As in the example from Section III-E, we can
conclude from the net zero integral on Hζθ that the three-
link robot will undergo no net rotation over the course of any
gait from this family. However, it will undergo intermediate
rotation, and, by comparing the translational BVI (ζx, ζy)
against the actual (x, y) displacement resulting from gaits in
this family, as in Fig. 6, we see that the BVI does not equal
the displacement. Further, as the BVI has a single value for all
gaits in an image family, but the displacement is dependent on
the choice of start/end shape, it is apparent that we can have
no expectation of finding a map from BVI to displacement.

There is a bright side, however. While our example shows
that we cannot always take the BVI as an indication of the



Fig. 5: Example gait image-family overlaid on the connection vector fields and height functions of the kinematic snake.

Fig. 6: The BVI and locus of displacements corresponding to the image family
of gaits for the kinematic snake robot depicted in Fig. 5 are represented
respectively by the circle on the x-axis and the arc-section. The BVI only
depends on an area integral over the area enclosed by the gait and is thus the
same for all gaits in the family. The displacement, however, also depends on
the start/end shape of the gait, and there is thus a range of displacements, each
corresponding to one starting point in the image family. The displacements
are on the order of one link length of the robot.

net displacement, it does not show that we can never do so.
To investigate the existence of gaits for which the BVI is a
reliable measure of displacement, we consider the error εζ
between the BVI and displacement over an arbitrary gait. By
subtracting (14) from (15) and combining the integrals, we
can express this error as

εζ = ζ−g =
∫ t

0

1− cos θ sin θ 0
− sin θ 1− cos θ 0

0 0 0

ξxξy
ξθ

 dτ, (16)

with an implicit dependence on τ for all variables inside the
integral. From (16), we can easily identify a condition which
will guarantee that the error term is small: If θ(t) remains

small for all t, then the matrix in the integrand will remain
close to a zero matrix for all t, and the error εζ will thus
be close to a zero vector. We will thus turn our attention to
finding conditions for which this small angle condition holds
true.

Trivially, small gaits offer θ no opportunity to grow large;
these gaits have been studied extensively in the controls liter-
ature with the aid of Lie algebra analysis [2], [5], [10], [15].
These gaits, however, spend more energy in high-frequency
oscillations than they do in producing net motion, and are
thus inefficient; we are interested in designing larger, more
efficient gaits. To this end, we observe that as the orientation
of the system over a gait is

θ(t) =
∫ t

0

ξθ(τ) dτ =
∫ φ(t)

φ(0)

~Aξθ (r) dr, (17)

its value at any time is bounded to

|θ(t)| ≤
∫ φ(t)

φ(0)

|~Aξθ (r) dr|. (18)

For gaits in regions for which ‖~Aξθ (r)‖ vanishes, θ(t) and
εζ(t) are thus guaranteed to be small, and the BVIs of those
gaits are thus good approximations of their displacements.

The ~Aξθ (r) vector field for the kinematic snake in Fig. 5
clearly does not become small at any point, so there are
no regions over which we can use the BVI to design gaits.
However, we will see below that the connection vector fields
depend on the representation of the system, and that there
are sets of connection vector fields for the kinematic snake in
which ~Aξθ (r) does vanish over a region of M .



Fig. 7: Orientation of the kinematic snake with the new choice of coordinates.
The orientation θ is the mean of the individual link orientations θ1, θ2, and
θ3. Note that the body frame directions xb and yb are respectively aligned
with and perpendicular to the orientation line, and not to the central axis of
the middle link.

V. THE BVI IN A NEW BODY FRAME

We now make a major departure from previous approaches,
and consider the effect of changing the parameterization of the
problem. For instance, up to this point in our analysis of the
kinematic snake we have been considering g as the position
and orientation of its middle link, as shown in Fig. 1. This
choice of coordinates is customary in the treatment of three-
link systems [3], [6], [11], [15], [16], and has the advantage
of providing for the simple representation of the system
constraints in the body frame. An equally valid choice of
coordinates, however, would be to take θ not as the orientation
of the middle link, but as the mean orientation of all three
links, i.e.,

θ =
θ1 + θ2 + θ3

3
, (19)

where θi is the orientation of the ith link, as in Fig. 7.
This choice of coordinates has two key benefits over the

previous choice. First, the orientation θ matches an intuitive
understanding of the “orientation” of the system much more
strongly with the new choice than for the old choice, as
illustrated in Fig. 8. Second, and more importantly, the ~Aξθ

connection vector field vanishes in key regions, allowing the
use of the height functions to design gaits with specific
displacements.

To gain insight into this second benefit, consider that the
orientations θ1 and θ3 of the outer links of the kinematic snake
in Fig. 7 can be expressed in terms of the orientation θ2 of
the middle link and the joint angles α1 and α2 from Fig. 1 as

θ1 = θ2 − α1 (20)
θ3 = θ2 + α2. (21)

Consequently, θnew, the mean orientation of the three links in
(19), is thus

θnew =
(θ2 − α1) + θ2 + (θ2 + α1)

3
(22)

= θ2 +
(−α1) + α2

3
, (23)

(a) Old coordinate choice (b) New coordinate choice

Fig. 8: A three-link system in various configurations. In both (a) and (b), the
system is shown at five points on the shape space with reference orientation
θ = 0. In (a), θ is the orientation of the middle link, while in (b), θ is the
mean orientation of the links. The system is much more consistently “pointing
to the right” (an intuitive interpretation of θ = 0) in (b) than in (a).

and the rotational velocity θ̇new of this mean orientation line
is then

θ̇new = θ̇2 +
(−α̇1) + α̇2

3
. (24)

Given that θ2 and θ̇2 are respectively the orientation and
angular velocity of the old body frame, θold and θ̇old, the new
angular velocity is

θ̇new = θ̇old +
(−α̇1) + α̇2

3
(25)

= ~Aξθ
old · ṙ +

[
− 1

3
1
3

]
· ṙ (26)

=
(
~Aξθ

old +
[
− 1

3
1
3

])
· ṙ. (27)

As the new rotational connection vector field, ~Aξθ
new, relates

the new angular velocity to the shape velocity by

θ̇new = ~Aξθ
new · ṙ, (28)

we see from (27) that it is of the form

~Aξθ
new = ~Aξθ

old + ~Bξθ , (29)

with ~Bξθ =
[
− 1

3
1
3

]
. Representing this sum graphically, as

in Fig. 9, we see the effect of the change of coordinates
on the local connection: The connection modifier ~Bξθ is
approximately equal to the negative of the old rotational
connection vector field ~Aξθ

old in the circled regions, and thus
nullifies it when they are summed together.

By a similar derivation, the (row vector) translational com-
ponents of of the new local connection are related to those of
the old local connection by the rotation[

~Aξx
new

~Aξy
new

]
=
[

cosβ sinβ
− sinβ cosβ

][
~Aξx

old
~Aξy

old

]
, (30)

where
β = θnew − θold =

(−α̇1) + α̇2

3
. (31)

The connection vector fields and height functions corre-
sponding to the new coordinate choice are shown in Fig. 10,
along with the same gait image-family as in Fig. 5. As the
gait image-family shown is in the null region of ~Aξθ

new, the



Fig. 9: The effect of adding ~Bξθ to ~A
ξθ
old. In the circled regions, ~Bξθ (r) ≈ −~Aξθ

old(r), so ‖~Aξθ
new‖ ≈ 0 in these regions, and the BVI will be a good estimate

of the displacement resulting from gaits located there. Note that for visual clarity within each plot, the vectors in the different fields are not to scale.

Fig. 10: Example gait image-family with connection vector fields and height functions for kinematic snake with the new mean orientation coordinate choice.

orientation θ of the system remains close to zero for all
time during any of the gaits in the image-family as per (18).
From (16), the error term εζ over the course of these gaits
is thus small, and the BVI ζ is a good approximation of the
displacement g resulting from any of the gaits in the image-
family, as illustrated in Fig. 11.

VI. DEMONSTRATION

We applied the gaits from the image family in Figs. 5
and 10 to a physical instantiation of the kinematic snake
shown in Fig. 12, and plotted the resulting displacements in
Fig. 13. During the experiments, we observed some backlash
in the joints and slip in the constraints, to which we attribute
the differences between the experimental and calculated loci
in Figs. 13 and 11. Even with this error, the BVI was a
considerably more effective estimate of the displacement with
the new coordinate choice than with the old choice. Under the
old coordinate choice, the error in the the net direction of travel

between the BVI estimate and the actual displacement ranged
from 0.72 to 0.25 radians. With the new choice, the error
in the estimate ranged from 0.10 to −0.04 radians, reducing
the maximum error magnitude by 86% and eliminating the
minimum error.

VII. CONCLUSION

In this paper, we have shown that the choice of coordinates
used to represent a mobile system directly affects the compu-
tational cost of evaluating its motion properties. By choosing
a set of coordinates which minimizes the rotation of the
body frame in response to changes in system shape, we have
advanced a technique for approximating the net displacement
resulting from a gait by means of Stokes’s theorem, rather
than by the considerably more expensive integration of the
equations of motion. In turn, this approximation provides a
means of designing gaits by encircling sign-definite regions
of well-defined height functions. The technique constitutes a



Fig. 11: The BVI and displacements corresponding to the image-family of
gaits in Fig. 10 for the kinematic snake robot with the new measure of
orientation depicted in Fig. 7 are represented respectively by the cross above
the x-axis and the short arc-section, with the BVI and displacements as
measured in the old coordinate choice presented for reference. With the new
measure, the orientation of the system remains almost constant over the course
of any of the gaits in the family, and the BVI ζ is thus a good approximation
of the displacements.

Fig. 12: Physical instantiation of the kinematic snake. Two optical mice on
the middle link provide odometry data, including an estimation of constraint
slip.

Fig. 13: BVI and displacements for the physical kinematic snake while
executing the example image-family of gaits. The boxes show the expected
displacements for the robot, calculated from the actual trajectories followed
by the joints, while the ×es show the actual measured displacement, which
differs from the expected displacement because of backlash and constraint
slip. As in Fig. 11, the BVI is a much better estimate of the displacement
with the new coordinate choice than with the old choice.

significant improvement over previous efforts in this area, as it
is applicable to efficient macroscopic translational gaits, while
previous work was limited to macroscopic rotational gaits or
inefficient small-amplitude translational gaits.

While the coordinate choice presented here, which takes the
mean orientation of the links as the orientation of the three-
link system, effectively minimizes the body frame rotation, we
do not believe it to be the optimal choice. In our future work,
we will explore metrics for this minimization, and methods for
selecting a coordinate choice which optimizes it for arbitrary
systems. Additionally, we will seek to extend the benefits of
coordinate choice from the kinematic systems described here
to the mixed kinodynamic systems described in [17].
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