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Abstract— Lane estimation for autonomous driving can be
formulated as a curve estimation problem, where local sensor
data provides partial and noisy observations of spatial curves.
The number of curves to estimate may be initially unknown and
many of the observations may be outliers or false detections
(due e.g. to to tree shadows or lens flare). The challenges lie in
detecting lanes when and where they exist, and updating lane
estimates as new observations are made.

This paper describes an efficient probabilistic lane estimation
algorithm based on a novel curve representation. The key
advance is a principled mechanism to describe many similar
curves as variations of a single basis curve. Locally observed road
paint and curb features are then fused to detect and estimate
all nearby travel lanes. The system handles roads with complex
geometries and makes no assumptions about the position and
orientation of the vehicle with respect to the roadway.

We evaluate our algorithm with a ground truth dataset
containing manually-labeled, fine-grained lane geometries for
vehicle travel in two large and diverse datasets that include more
than 300,000 images and 44 km of roadway. The results illustrate
the capabilities of our algorithm for robust lane estimation in the
face of challenging conditions and unknown roadways.

I. INTRODUCTION

A system able to automatically and reliably estimate the
roadway and its lanes from a moving vehicle using on-board
sensors such as cameras or laser range scanners (LIDAR)
would have enormous benefits for land-based travel. It could
be used for tasks ranging from wide-scale road and lane quality
assessment, to providing inputs to a driver assistance safety
or navigation system, to serving as a situational awareness
component in a fully autonomous vehicle.

Aspects of the lane estimation problem have been studied
for decades in the context of autonomous land vehicle de-
velopment [6, 13] and driver-assistance technologies [3, 4,
1, 9]. The majority of lane estimation systems have been
developed for lane keeping and lane departure warning (LDW)
in highway environments [11]. The goal of these systems is
to estimate the vehicle’s current travel lane and, in the case of
lane keeping systems, apply minor corrective steering when
the vehicle detects an unsignaled lane departure.

LDW systems have achieved success by restricting the
problem domain in numerous ways, such as assuming the
vehicle begins in a lane and is oriented accordingly, estimating
only the vehicle’s current travel lane, and optimizing for well-
marked highway environments with low road curvature and
few, if any, inflection points. High failure rates are acceptable,
as a human driver can choose to ignore the LDW output.

However, these simplifications also limit applicability of
LDW systems to fully autonomous driving, which has a

significantly lower margin for error, and requires more sit-
uational awareness than an estimate of the current travel lane.
Autonomous vehicle operation on arbitrary road networks will
require estimates of all nearby lane geometries, even under
challenging environmental conditions.

II. RECENT WORK

Recent work on lane estimation has focused on operation in
more varied and complex environments. Wang et al. used B-
Splines to model roads with significant curvature [15], while
still retaining the single lane and other LDW assumptions.
Matsushita and Miura use a particle filter to detect certain
types of intersections [10], in a step towards estimating road
network topology. Our work in the DARPA Urban Challenge
used a RANSAC-based method to estimate multiple travel
lanes from sensor data [7]. The primary challenge to all of
these approaches lies in determining which (noisy) sensor
observations correspond to lane markings.

In previous work [8], we described the lateral uncertainty
algorithm for estimating potential lane boundaries. The algo-
rithm uses probabilistic methods to estimate individual curves
from noisy observations, but does not address how to group
curves to form lane estimates or track whole lanes over time.
Neither does it distinguish true lane boundaries from long tree
shadows or other non-boundary painted lines such as stop lines
and pedestrian crossings.

This paper generalizes the lateral uncertainty method to
perform joint inference of multiple curves (i.e., the left and
right boundaries of a lane). It provides a principled framework
for ignoring sensor observations that are similar to, but do not
correspond to, lane boundaries, and for using observations of
one curve to update estimates of another (e.g., when one lane
boundary is faded or occluded by traffic). We formulate lane
estimation as a curve estimation problem, describe a novel
representation for open 2D curves, and present a Bayesian lane
estimation algorithm that is robust to the noise and outliers
typical of image and LIDAR data.

III. METHOD OVERVIEW

The geometry of a travel lane can be described by a single
centerline curve f(s) : [s1, sn]→ R3 whose width varies along
the length of the curve:

f(s) = (fx(s), fy(s), fh(s))> (1)

where fx(s) and fy(s) describe the lane centerline, and fh(s)
describes the lane half-width, all of which are defined on the



domain s ∈ [s1, sn]. The interpretation of s depends on the
curve model chosen, and may not have any physical meaning.
We describe the curve in a coordinate system fixed with respect
to the local environment, such that lane geometry is nearly
invariant to time and the vehicle’s own state.

Initially, the number of lanes and their geometries are
unknown. The goal of our system is to detect all nearby lanes,
estimate their geometries, and update these estimates as the
vehicle travels. The system takes as input curve fragments
corresponding to potential lane boundary observations, such
as those detected by a vision-based road-paint detection al-
gorithm, or a LIDAR-based curb-detection algorithm. While
many of these curve fragments are true observations of the
road and lanes, some may arise from tree shadows or lens
flare, and others may simply be due to painted markings that
do not correspond to lane boundaries (e.g., crosswalk stripes,
parking spot delimiters, or stop lines).

We approximate f(s) as piecewise-linear, such that it can
be described by a series of control points connected by line
segments, and note that approximation error decreases with
control point density. To reason about lanes, their boundaries,
and observations, we introduce the notion of basis curves.

The insight behind this representation is that nearby curves
often share common structure. Factoring out this structure
leaves a set of residuals which are computationally convenient
to manipulate. Within the space of these residuals, which we
call the basis curve space, lane boundary observations can be
expressed as linear transformations of the true lane geometry,
and the Gaussian distribution can be used to model uncertainty
over curve geometry. Standard estimation algorithms such as
the Kalman filter can then be used to estimate complex lane
geometries [2].

IV. BASIS CURVES

Consider a piecewise-linear curve b, represented by the
matrix of control points B = (b1,b2, . . . ,bn)>. Denote the
unit normal vectors to the curve at each of the control points1

by the matrix B̄ = (b̄1, b̄2, . . . , b̄n)>. We consider a curve g,
represented as G = (g1,g2, . . . ,gn)>, to be a variation of b
if each gi, i ∈ {1 . . . n}, can be expressed as:

gi = bi + gBi b̄i (2)

where each gBi is a signed scalar that indicates how much g
varies from b along the normal vector at a particular control
point. In this context, b is a basis curve, and the vector
gB = (gB1 , g

B
2 , . . . , g

B
n )> is the offset vector of g from b.

Here we have defined g as a variation of the basis curve
b. Suppose g is instead expressed using a different curve
representation, possibly a spline or even a polyline with a
different number of control points. If g is geometrically similar
to b, then we can choose a polyline approximation of g as
a variation of b. When the matrix of control points G is
defined in this manner, we call the resulting offset vector gB

the projection of g onto b (Fig. 1).

1We use b̄i =

[
0 −1
1 0

]
bi+1−bi

||bi+1−bi||
, i ∈ {1 . . . n−1} and b̄n = b̄n−1.
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(a) A basis curve (blue) represented by polyline B, and a uniform
quadratic B-Spline g.
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(b) The projection of g onto b, producing the gBi .
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G

(c) Approximation of curve g as a variation G of the basis curve b.

Fig. 1. A uniform quadratic B-Spline (magenta) defined by the green
control points can be projected onto a basis curve (blue). Curves using other
representations can be projected using analogous intersection procedures.

The error of this approximation (e.g., as measured by the
area between the polyline approximation and the original
curve) is small if g and b have similar geometry, and if the
control point spacing of b is small relative to the curvatures
of the two curves. If the curves are very different (e.g., nearly
orthogonal or without overlap), it may not be meaningful to
project one onto the other.

To review, thus far we have defined:
b A basis curve.

B The n× 2 matrix of control points representing b.

bi The i-th control point of B.

B̄ The n × 2 matrix of unit normal vectors of b at
each control point.

b̄i The i-th unit normal vector of B̄.

g A curve geometrically similar to b.

G The n × 2 matrix of control points approximating
or representing g.

gi The i-th control point of G.

gB The projection of g onto b, also referred to as the
offset of g from b.

We can now use b to represent common structure shared by
many curves, and offset vectors to reason about the differences
among curves. One interpretation of this model is that b
induces an n-dimensional vector space, into which we can
project any curve. We call this the basis curve space of b.
When projected into a basis curve space, a curve can be
represented by a single n-dimensional point – its offset vector.

In general, any curve that spans the length of b can be
projected onto b. It is also useful to reason about curves that
do not run the length of b, but do have some “longitudinal
overlap” in that they intersect with one or more support lines
of normal vectors of b. In this case, each of the n(n−1)

2
consecutive subsets of the control points of b can be treated
as an individual basis curve with its own basis curve space.
These smaller basis curve spaces are subspaces of the basis



curve space of b (Fig. 2).
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(a) Variation of the first four control points of a basis curve.

B

(b) Variation of a mid-section of a basis curve.

Fig. 2. Variations (magenta) of a subset of the basis curve (blue) can be
described using subspaces of the vector space of the full basis curve.

A. Basis curve normal distributions

Next, we consider probability distributions on curves.
Specifically, consider a random variation of a basis curve b,
where the offset vector gB is normally distributed according
to gB ∼ N

(
µ,Σ

)
. Fig. 3 shows a basis curve and several

hundred variations, where the offset vectors of each variation
are drawn from a multivariate Gaussian.

Fig. 3. Three hundred normally distributed variations of a basis curve (red).

Together, b, µ, and Σ define a distribution over curves. We
refer to a distribution of this form as a basis curve normal
distribution, and represent it with the term Ñ (b,µ,Σ). The
probability density of a curve g is then defined as:

Pg(g;b,µ,Σ) = N
(
gB;µ,Σ

)
(3)

where N
(
x;µ,Σ

)
refers to the probability density function

of the normal distribution with mean µ and covariance Σ.
The intuition behind this formulation is that control point

uncertainty is expressed only along the curve normals of
the basis curve. Thus, each control point has one degree
of freedom instead of two; even though G has 2n distinct
components, it has only n degrees of freedom. The covariance
matrix Σ represents the degree and structure of variation
between curves drawn from the distribution.

If a distribution is instead defined on the entire control
point space such that each control point has 2 degrees of
freedom [5], it is possible to sample two curves that have
the same shape, but different probability densities. Thus,
distributions over the entire space of control points are not
necessarily good distributions over curve shape.

Restricting each control point to one degree of freedom has
useful properties. In our case, two random curves drawn from
a basis curve normal distribution with different probability
densities will also exhibit different shapes. Evaluating the
likelihood that an arbitrary curve is drawn from a distribution
becomes a simple process of computing curve and ray inter-
sections. There are some exceptions to this that arise when the
covariance at a control point is large relative to the curvature,

but this has not had a noticeable impact in our usage for lane
estimation.

B. Changing basis curves

It is sometimes desirable to switch the basis curve upon
which a curve distribution is defined, but without changing
the underlying distribution. In general, it is not possible to
match the original distribution exactly, and the approximation
error introduced by the reparameterization is directly related to
the amount by which the basis curve normal vectors change:
approximation error is smallest when the new basis curve is
locally parallel to the original basis curve. However, if the
new basis curve b′ is similar to the original, then reasonable
choices of a new mean and covariance, µ′ and Σ′, are possible.

Variation: If b′ is a variation of the original basis curve b,
then B′ can be described by:

B′ = B + diag(b′B)B̄ (4)

where b′B is the projection of b′ onto b. In this case, a new
mean can be defined by subtracting the projection of the new
basis curve, and the covariance can remain unchanged:

µ′ = µ− b′B

Σ′ = Σ
(5)

Re-sampling: If b′ is defined by a re-sampling of the control
points of b, then each of the m control points of b′ is a convex
linear combination of two neighboring control points on the
original curve b. Thus, B′ can be related to B by:

B′ = HB (6)

where H is a m × n matrix whose rows have at most two
positive entries that are adjacent and sum to unity (representing
the convex linear combination of neighboring control points).
Additionally, Hi,j may be non-zero only if Hi−1,k is zero for
all k > j (control points may not be re-sampled out of order).

Since every point on a polyline is either a control point
or an interpolation of neighboring control points, we can
define a new mean and covariance by applying the re-sampling
transformation:

µ′ = Hµ
Σ′ = HΣH>

(7)

V. LANE BOUNDARY ESTIMATION

To detect and estimate lanes, our method first estimates
potential lane boundaries, then groups boundary curves to-
gether to form lane estimates. Here, we develop a recursive
algorithm that estimates a single unknown curve f , which we
use to model a potential lane boundary. The algorithm takes
as input an initial curve estimate and a noisy observation of
the curve, and produces an updated estimate that reflects the
novel information provided by the observation.

We refer to our initial belief about f using the basis curve
normal distribution Ñ (b,µ,Σ). The matrix of control points
F̂ = (f̂1, f̂2, . . . , f̂n)> describes our mean estimate f̂ , and is
obtained from b and µ as:

f̂ i = bi + µib̄i (8)



We use fB = (fB1 , f
B
2 , . . . , f

B
n )> to denote the projection

of f onto b. Given a fixed basis curve b, the vector µ is
effectively an estimate of fB. In this sense, there are two
estimates: the estimate µ of fB, and the estimate f̂ of f , where
f̂ is defined in terms of µ and b as in Eq. (8).

A. Observations

We model an observation z of f as a subset of f , corrupted
by zero-mean i.i.d. noise. Note that z is typically a partial ob-
servation of f , since only a portion of a painted road boundary
may be observed at any given moment. For simplicity, we first
consider the case where z is a full observation of f , and later
consider partial observations.

If we project z onto b and refer to the piecewise linear
approximation of z as Z = (z1, z2, . . . , zn)>, then each zi
can be expressed as:

zi = bi + (fBi + vi)b̄i

= bi + zBi b̄i
(9)

where we model the noise terms v = (v1, v2, . . . , vn)> as
jointly Gaussian with zero mean and covariance R, such that
v ∼ N

(
0,R

)
. The projection zB = (zB1 , z

B
2 , . . . , z

B
n )> of z

onto b can then be described as:

zBi = fBi + vi (10)

and:
zB = AfB + v (11)

where the observation matrix A = In×n is a trivial linear
transformation. If z is a partial observation of f , then it can
still be related to f by choosing an observation matrix A of
size m × n, where m ≤ n, and A has an m × m identity
sub-matrix and is zero elsewhere. For example, if the basis
curve has three control points and the observation curve spans
only the first 2 of these control points, then the corresponding
observation matrix A2×3 is:

A2×3 =

[
1 0 0
0 1 0

]
(12)

B. Data association

Not all observations correspond to the desired curve f . To
avoid corrupting the curve estimate, only true observations
should be incorporated, and non-observations ignored or used
to update a different curve estimate. Determining if an obser-
vation corresponds to a tracked curve is the well-known data
association problem [14].

We use a standard χ2 outlier rejection approach. Define
the scalar random variable y as the following Mahalanobis
distance [2]:

y = (zB −Aµ)>(R + AΣA>)−1(zB −Aµ) (13)

If z is an observation of the curve f , then y obeys a χ2

distribution with m degrees of freedom. Observations that fall
in the extremities of this distribution are rejected as outliers.

When simultaneously estimating and tracking multiple
curves, we apply a gated greedy matching procedure, in

which each observation is associated with the curve that best
“explains” that observation. Other techniques, such as joint-
compatibility branch and bound [12], may also be used. If
no tracked curve is likely to have generated the observation
according to the current estimates, then the observation is used
to initialize a new curve for tracking.

C. Curvature prediction

As the vehicle travels, it may receive observations that
extend beyond the end of its current curve estimate. To incor-
porate these observations, the observation and curve estimate
are first extended (Fig. 4b). We use a method described in
previous work [8], briefly summarized here.

Once we have observed and estimated one portion of a
curve, we can reliably predict the shape of the nearby unob-
served parts of the curve. To do so, we fit a first-order Markov
model of road curvature to a dataset containing the manually
annotated coarse geometry of existing public roadways. Given
the signed curvature at one point in a road, the model predicts
a distribution over the curvature at a further point along the
road. This model can then be used to extend both the curve
estimates and observations as the vehicle travels.

(a) Curve estimate (left) and a non-
overlapping observation (right)

(b) Predicted extensions of both
curves

(c) Final curve estimate

Fig. 4. A curvature prediction model allows us to associate observations
with existing curve estimates when there is little or no overlap. The short line
segments perpendicular to each curve indicate 1-σ uncertainty.

D. Update

Once an observation z has been associated with an existing
curve estimate, the algorithm revises that estimate using the
update step of a standard Kalman filter [2].

As mentioned earlier, approximation errors resulting from
projection onto a basis curve are minimized when the basis
curve geometry matches the true curve geometry. Therefore,
we reparameterize the curve estimate, so that the basis curve
coincides with the newly updated maximum likelihood curve
estimate. Since this estimate is a variation of the current basis
curve, reparameterization consists of offsetting the basis curve
by the mean vector, then setting the mean vector to zero
(Sec. IV-B). We also re-sample the basis curve control points
to maintain nearly uniform control point spacing.

Finally, we note that propagating the curve estimate for-
ward through time consists of a simple identity transform,
a consequence of expressing the curve geometry in a co-
ordinate system fixed to the local environment. Algorithm
update curve estimate shows a full update cycle. It



takes as input the initial belief Ñ (b,µ,Σ) over a single
curve, and an observation. If the observation passes the data
association test, then it is used to generate the updated curve
estimate Ñ (b+,µ+,Σ+). Fig. 4 illustrates an update step for
a single curve estimate.

Algorithm update curve estimate

Input: an initial belief Ñ (b,µ,Σ)
Input: an observation Ñ (b, zB,R)
Input: an observation matrix A
Output: the new belief Ñ (b+,µ+,Σ+)

1: Augment the initial estimate and observation as necessary
via curve prediction

2: Let m be the dimensionality of zB

3: Let k be the 0.95 percentile of the χ2
m distribution

4: if (zB −Aµ)>(R + AΣA>)−1(zB −Aµ) > k then
5: Reject observation as an outlier
6: return Ñ (b,µ,Σ)

7: K← ΣA>(AΣA> + R)−1

8: µ̃← µ + K(zB −Aµ)
9: Σ̃← (I−KA)Σ

10: b+ ← B + diag(µ̃)B̄
11: µ+ ← 0
12: Σ+ ← Σ̃

13: return Ñ (b+,µ+,Σ+)

VI. LANE ESTIMATION

The boundary curves of a single lane are highly correlated,
and information about one boundary gives valuable informa-
tion about the other. We represent a lane as a piecewise linear
centerline curve whose width varies along the curve, and de-
scribe its control points with the matrix F = (f1, f2, . . . , fn)>,
where each f i is defined as f i = (fxi, fyi, fhi)

>.
Using the convention that the normal vectors of a curve

point “left”, two points f li and fri on the left and right
boundaries, respectively, can be described as:

f li =

[
fxi + fhif̄xi
fyi + fhif̄yi

]
fri =

[
fxi − fhif̄xi
fyi − fhif̄yi

]
(14)

where f̄ i = (f̄xi, f̄yi)
> is the normal vector to the centerline

curve at point i.

A. Lane distributions

As with zero-width curves, a basis curve can be used to
represent and approximate lanes. We describe the projection
fB of f onto b as:

fB = (fBc1, fh1, f
B
c2, fh2, . . . , f

B
cn, fhn)> (15)

where fBc1, . . . , f
B
cn is the projection of the centerline of f

onto b. Thus, the projection of a lane onto b is simply the
projection of its centerline augmented by its half-width terms.

A normal distribution over the projections of f onto b
defines a distribution over lanes. We use such a distribution,
parameterized by µ and Σ, to represent a belief over the true
geometry of f . The mean estimate can be represented by a
matrix of control points F̂ = (f̂1, f̂2, . . . , f̂n)>, where each
control point f̂ i = (f̂xi, f̂yi, f̂hi)

> can be expressed as:

f̂ i =

f̂xif̂yi
f̂hi

 =

bxi + µcib̄xi
byi + µcib̄yi

µhi

 (16)

where each µci describes the mean offset of a centerline
control point, and each µhi describes the mean half-width of
the lane estimate at the control point.

It is sometimes useful to change the basis curve upon
which a lane distribution has been defined, while incurring
minimal changes to the actual distribution. Choosing a new
mean and covariance in the cases of re-sampled and offset
basis curves follows the same procedure as in Sec. IV-B, with
minor modifications. When the new basis curve is a variation
of the original basis curve, the width components of the mean
lane do not change. When the new basis curve is a re-sampling
of the original basis curve, the re-sampling matrix H must
account for re-sampling the width components in addition to
the centerline offset values.

B. Observation model, data association, and update
A full boundary observation of f is a curve, which we de-

scribe with the matrix of control points Z = (z1, z2, . . . , zn)>,
where each zi can be written:

zi = bi + (fBci + afhi + vi)b̄i

= bi + zBi b̄i
(17)

where a has value +1 or −1 for an observation of the left
or right boundary, respectively, and we model the noise terms
v = (v1, v2, . . . , vn)> jointly as v ∼ N

(
0,R

)
.

Collectively, the offset vector zB = (zB1 , z
B
2 , . . . , z

B
n )> can

then be expressed as:

zB = AfB + v (18)

where the elements of the observation matrix A are chosen to
satisfy Eq. (17). If z is a partial observation of the boundary,
such that it projects onto only m control points of b, then A
has size 2m× 2n, similar to the case for zero-width curves.

Data association and update steps can be approached in the
same way as for zero-width curves. Given a lane distribution
and observation as expressed above, we can apply a χ2 test
to determine if z is an observation of f . When estimating
multiple lanes, we use a gated greedy assignment procedure
to assign observations to lanes. Once an observation has been
associated with a lane estimate, the standard Kalman update
steps are used to update the mean and covariance.

After the updated estimates have been computed, we once
again reparameterize the distribution such that the basis curve
coincides with the updated maximum likelihood estimate, to
minimize approximation error in future update steps. Fig. 5
shows a full update cycle, where an observation of a lane
boundary is used to both update and extend the lane.



(a) A lane estimate (b) A boundary observation

(c) The updated estimate

Fig. 5. A boundary observation is used to update the lane estimate. The
middle (black) curve marks the lane centerline, and the outer (blue) curves
mark the left and right boundary marginal distributions. Short line segments
along the curves mark control points, and the length of these segments indicate
1-σ uncertainty. Note that both boundaries are updated even though only one
boundary is observed.

C. Initial estimate

We initialize a lane estimate by independently estimating
many zero-width curves as described in Sec. V, while period-
ically searching for curve pairs that are sufficiently long, par-
allel, and separated by an appropriate distance. Once a suitable
pair of boundary curves is identified, they are used to initialize
a lane estimate. The initial lane basis curve b is chosen by
projecting one boundary curve onto the other and scaling the
offset vector by 0.5 (an approximation of the medial axis),
and both curve estimates are then reparameterized with b.
Referring to the left and right curve estimates as Ñ (b,µl,Σl)
and Ñ (b,µr,Σr), we treat them as independent observations
of the same lane, and express them jointly as:

z =

[
µl

µr

]
=

[
Al

Ar

]
fB + v = Azf

B + v (19)

where Al and Ar are the transformation matrices relating a
lane to its left and right boundary observations (Sec. VI-B),
fB is the projection of the unobserved true lane onto b, and
v ∼ N

(
0,Σz

)
is a noise term described by:

Σz =

[
Σl 0
0 Σr

]
(20)

Using the information filter [14], we can see that the
initial distribution parameters best representing the information
provided by the boundary curves can be expressed as:

Σ0 = (A>z Σ−1z Az)−1

µ0 = ΣA>z Σ−1z z
(21)

VII. EXPERIMENTS

To quantitatively assess the performance of our system, we
evaluated it against ground truth across two datasets containing
data from a forward-facing wide-angle camera (Point Grey
Firefly MV, 752x480 @22.8 Hz), and a Velodyne HDL-64E
laser range scanner. As input to our system, we used vision-
and LIDAR-based road paint and curb detection algorithms
described in previous work [7].

The first dataset consists of 30.2 km of travel in 182 minutes,
and can be characterized by wide suburban lanes, no pedestri-
ans, generally well-marked roads, few vehicles, and a bright
early morning sun. The vehicle also traverses a short 0.4 km
dirt road and a 1.7 km stretch of highway. The second dataset
consists of 13.6 km of travel in 58 minutes through a densely
populated city during afternoon rush hour. This dataset can
be characterized by roads of varying quality, large numbers of
parked and moving vehicles, and many pedestrians.

To produce ground truth, we annotated high-resolution geo-
registered ortho-rectified aerial imagery with lane geometry.
The vehicle’s GPS estimates during a data collection provide
an initial guess as to the vehicle’s pose; these were corrected
by manually aligning sensor data (i.e., camera and LIDAR
data) with the aerial imagery at various points in the data
collection. The result is a dataset containing ground truth lane
geometry relative to the vehicle at every moment of travel.
We emphasize that our algorithm uses only local sensor data
– GPS and the ground truth map were used only for evaluation
purposes.

We compare the results of our algorithm, which we refer
to as the basis curve (BasCurv) algorithm, with our previous
work in the DARPA Urban Challenge [7], which we refer
to as the evidence image (EvImg) algorithm. The evidence
image algorithm can be used as a standalone lane estimation
system by using the output of the first of its two stages, which
performs lane detection from sensor data only. Both algorithms
use the same features as input.

For computational speed, our implementation of the ba-
sis curve algorithm used diagonal covariance matrices when
estimating lane boundaries, and block-diagonal covariance
matrices (2 × 2 blocks) for lane estimation. This introduces
additional approximation errors, but yielded good performance
in our experiments. After each observation update, basis curves
are re-sampled to maintain a uniform (1 m) control point
spacing. Parameters such as covariances and data association
thresholds were determined experimentally. The basis curve
algorithm was implemented in Java and runs at real-time
speeds.

A. Centerline error

The centerline error of a lane estimate at a given point
on the estimate is defined as the shortest distance from the
estimated lane centerline point to the true centerline of the
nearest lane. Fig. 6 shows the 50th and 90th percentile values
for the centerline error of the two algorithms as a function
of distance from the vehicle. The basis curve algorithm has
significantly lower error at all distances.

Fig. 7 shows the centerline error as a function of true lane
width. The evidence image algorithm assumes a fixed lane
width of 3.66 m, and its performance degrades as the true lane
width departs from this assumed value. Since the basis curve
algorithm jointly estimates lane width and centerline geometry,
it remains relatively invariant to changes in lane width.
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Fig. 6. The 50 and 90 percentile values for centerline lateral error, as a
function of increasing distance from the vehicle.
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Fig. 7. Median centerline lateral error as a function of true lane width.

B. Lookahead distance and time

The lookahead distance and lookahead time metrics mea-
sure how much farther the vehicle can travel before reaching
the end of its current lane estimate, assuming constant speed.
Lookahead distance is computed by measuring the distance
from the vehicle to the farthest point ahead on the current
lane estimate, and lookahead time is computed by dividing
the lookahead distance by the vehicle’s instantaneous speed.

Fig. 8 aggregates lookahead statistics over both datasets, and
shows the lookahead distance and lookahead time cumulative
distributions for the two algorithms. In all cases, the basis
curve algorithm outperforms the evidence image algorithm.
For example, the basis curve algorithm provided some lane
estimate forward of the vehicle for 71% of distance traveled,
compared to 36% for the evidence image algorithm.

C. Qualitative results

Fig. 9 shows the output of the basis curve lane estimation
algorithm in a variety of challenging scenarios. In (a) and (b),
tree shadows and an erroneous curb detection are detected
and rejected as outliers, leaving the lane estimates intact. In
(b), the median strip separating opposite lanes of traffic is
correctly excluded from the lane estimates. In (c) and (d),
correctly detected road paint is successfully excluded from
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Fig. 8. Lane estimate lookahead distance (left) and time (right) CDFs.

the lane estimates. In (e-g), our method performs well despite
adverse lighting scenarios and a snow-covered environment.

VIII. DISCUSSION

Overall, the basis curve algorithm provides lane estimates
of equal or better accuracy to those produced by the evidence
image approach, and does so more often and with a greater
lookahead. We attribute this to the data association and outlier
rejection properties of the basis curve algorithm, and to
the joint estimation of lane width and centerline geometry.
The evidence image algorithm performs no outlier rejection,
attempting to fit lanes to both true lane boundary detections
and false detections such as tree shadows and non-boundary
road paint; nor does it estimate lane width.

We have formulated the lane estimation problem in such a
way that standard estimation and tracking algorithms based on
the Kalman filter can be used for complex lane geometries. In
doing so, we gain the advantages of the Kalman filter, and also
invite all of its shortcomings. Cases where outliers appear very
similar to inliers, such as long shadows nearly parallel to the
road, can cause the lane estimates to diverge. Another failure
mode arises when one road marking appears initially to be
the correct boundary, but the true lane boundary then comes
into view. In this case, our method will converge upon the
first marking as the lane boundary, since the unimodal nature
of the Kalman filter will prevent it from assigning substantial
weight to the true boundary.

These difficulties are similar to those studied in other
estimation domains, and it should also be possible to apply
lessons learned in those domains to lane estimation with
basis curves. One approach is particle filtering, which has
been successfully applied in many estimation and tracking
problems to model complex distributions and enable multi-
hypothesis tracking. However, the high dimensionality of the
lane estimates would require careful treatment.

Finally, in using a Gaussian noise model, we are simplifying
and approximating the true system errors. This has proved
successful in practice, although more careful study is required
to understand the extent to which our simplifications and
approximations are valid, and when other models may be more
appropriate.

IX. CONCLUSION

This paper introduced the notion of basis curves for curve
estimation, and described an application to the lane estimation
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Fig. 9. Lane estimation in a variety of environments. Column 1: Camera images. Column 2: Detections of road paint (magenta) and curbs (green). Column 3:
Lane centerline estimates (black) and boundary curve estimates (blue) projected into the image. Column 4: Synthesized overhead view of lane estimates.

problem. A detailed evaluation of our method’s performance
on a real-world dataset, and a quantitative comparison against
ground truth and a previous approach, shows distinct advan-
tages of the basis curve algorithm, particularly for estimating
lanes using partial observations, for handling noisy data with
high false-positive rates, and for jointly estimating centerline
geometry and lane width.
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