
A Non-invasive, Real-Time Method
for Measuring Variable Stiffness

Giorgio Grioli
Centro Interdipartimentale

“E. Piaggio”
Universit̀a di Pisa
Pisa, Italy 56125

Email: g.grioli@centropiaggio.unipi.it

Antonio Bicchi
Centro Interdipartimentale

“E. Piaggio”
Universit̀a di Pisa
Pisa, Italy 56125

Email: bicchi@centropiaggio.unipi.it

Abstract— The need for adaptability to the environment, en-
ergy conservation, and safety during physical interaction with
humans of many advanced robotic applications has prompted the
development of a number of Variable Stiffness Actuators (VSA).
These have been implemented in a variety of ways, using dif-
ferent transduction technologies (electromechanical, pneumatic,
hydraulic, but also piezoelectric, active polymeric, etc. ) and
arrangements with elastic elements. All designs share a funda-
mentally unavoidable nonlinear behavior. The control schemes
proposed for these actuators typically aim at independently
controlling the position (or force) of the link, and its stiffness with
respect to external disturbances. Although effective feedback con-
trol schemes using position and force sensors are commonplace in
robotics, control of stiffness is at present completely open–loop.
In practice, instead of measuring stiffness, it is inferred from
the mathematical model of the actuator. Being this in most cases
only roughly known, model mismatches affect severely stiffness
control, undermining its utility. It should be noticed that, while
for constant stiffness elements an accurate calibration of the
model is possible, the same approach is hardly viable for variable
stiffness systems.

We propose a method for estimating stiffness while it is varied,
either intentionally or not, hence without knowledge of the
command inputs. The method uses instantaneous measurements
of force and position at one of the ends of the compliant
elements in the system, and derives a measure that asymptotically
converges to the current value of stiffness, up to an error
which can be bounded by an arbitrarily small value. Simulation
and experimental results are provided, which illustrate the
performance of the proposed measurement method.

I. I NTRODUCTION

To fully characterize the motion of human limbs, not only
knowledge of their position and velocity, but also of their
physical behavior in interaction with the environment, i.e.
their mechanical impedance is needed [1, 2, 3]. Analogously,
many modern robots are capable of changing their mechanical
impedance to better perform a task and adapt to an environ-
ment. Variable impedance is obtained in these system by either
intrinsic physical properties of the actuators (e.g. muscles in
humans, or Variable Stiffness Actuators [4] in robots) or by
low-level control (neural reflexes or impedance control).

Because of its ubiquitous importance, accurate measure-
ments of the mechanical impedance of limbs are very im-
portant. Unfortunately, impedance is a rather elusive object
to measure, as it is not, strictly speaking, a physical quantity

(a) robotic application (b) biometric application

Fig. 1. Two possible applications for Non-invasive real-time stiffness measur-
ments: control of a Variable Impedance Actuated robot (a) and identification
of human limb impedance (b) [6].

per se (where by physical quantity it is meant “a property
of a phenomenon, body, or substance, where the property
has a magnitude that can be expressed as a number and
a reference” [5]. Indeed, impedance is rather a differential
operator relating the time course of physical quantities (forces
and displacements). In full generality, therefore, the process
of characterizing impedance of a system is more a problem of
dynamical system identification than a direct measurement in
a traditional sense.

Current protocols for identifying impedance in human mo-
tion typically measure the basic parameters of mass, damping,
and stiffness, which concur in forming impedance, by experi-
ments in which perturbations are purposefully injected in the
system, and their effects are measured. These experiments are
designed specifically so as to isolate the effects of different
parameters of impedance, while at the same time minimizing
perturbation of the task during which the measurement is
needed [3]. In artificial robotic systems, impedance parameters
are either calculated on the basis of a precise description of
the model (wherever this is available), or obtained through
accurate calibration procedures.

In both natural and artificial systems (e.g. see fig.1), it would
be of great utility to have a method which could measure



all impedance parameters in real time, without perturbing
the normal execution of the task, and robust to inaccurate
modeling and time-varying parameters which could alter cali-
bration results. Of particular interest in robotics would be the
application of such methods to the class of Variable Impedance
Actuators (VIA), which have been recently introduced to
address the need for adaptability to the environment, energy
conservation, and safety during physical interaction withhu-
mans. These have been implemented in a variety of ways,
using different transduction technologies (electromechanical,
pneumatic, hydraulic, but also piezoelectric, active polymeric,
etc. ) and arrangements. All designs share a fundamentally
unavoidable nonlinear behavior.

The control schemes proposed for these actuators typically
aim at independently controlling the position (or force) of
the link, and its impedance (most often just stiffness) with
respect to external disturbances. Because of the lack of a real-
time technique to measure impedance, or even just stiffness,
controllers proposed so far (see e.g. [7]), are in reality open–
loop, thus completely prone to model uncertainties.

Several works in the field of Admittance/Impedance robot
control and haptic telemanipulation discuss the estimation of
impedance. Online estimation of the impedance parameters of
the contact dynamics is used to improve stability and overall
performance of interaction and telemanipulation tasks. Most
of these works assume a linear model for the environment
dynamics (a simple spring, a spring-damper, or a mass-spring-
damper system), and use methods such as adaptive control,
recursive least squares, Extended Kalman filters and Active
Observers to obtain an estimate of the parameters which fits
best the assumed model best with the observed measurements.
An extensive list of references about those methods can
be found in [11]. Other works assume nonlinear impedance
contact model, as Hunt-Crossley’s, see in example [12].

Our work while drawing some inspiration from those afore-
mentioned approaches, moves a step forward with the sub-
stantial improvement of considering the possibility of dealing
with a time-varying non-linear spring, without assuming any
a-priori description of the spring model. Notice that nonlinear
and time-varying impedance parameter are ubiquitous and
unavoidable in VIA.

Moreover, in this paper, we consider the problem of real-
time impedance identification along motions that are not
intentionally perturbed. After setting up and discussing the
problem in general terms, we focus on stiffness identification,
and propose a method that uses position and force sensors
to provide a measurement without recurring to any a priori
knowledge of the mechanical model of the system. Simulation
and experimental results are provided that confirm the viability
and practical applicability of our theoretical results.

II. PROBLEM STATEMENT

The simplest example of mechanical impedance is aspring,
i.e. a sample of material which exhibits a relation between the
applied forcef and the steady–state displacementy given by

f = f(y).

Fig. 2. A simple mass-spring-damper system.

In linear springs,f(y) = ky, where the constantk is the
spring stiffness. In general, the force functionf is nonlinear
and time-varying, as it may depend on other parametersu
(which represent internal states or inputs), which in turn may
vary in time. Stiffnessσ is in this case defined as

σ(y, u) = −
∂f(y, u)

∂y
.

To introduce impedance, consider first the paradigmatic ex-
ample of a mass-spring-damper system (see fig. 2), described
as a relation between the applied forcef(t) and positiony(t)
through

f = mÿ + bẏ + ky. (1)

the three parametersm, b, k are constant, the O.D.E. (1) is
linear and time-invariant. Introducing the Laplace transforms
F (s), Y (s) of force and position, one has immediately

F (s) = (ms2 + bs+ k)Y (s). (2)

The operatorZ(s) := (ms2 + bs + k) is called the me-
chanicalimpedance of the spring-damper-mass system1. The
reciprocal operator of impedance, calledadmittance A(s),
generalizes compliance as it maps forces in displacements:
Y (s) = A(s)F (s). The admittance operator is causal (while
impedance is not).

The above approach can be generalized to a nonlinear
dynamic setting by considering the relation between forces,
displacements, first and second derivatives of displacements,
and internal statesu, and its graphG ⊂ F×Y ×DY ×D2Y ×
U , comprised of 5-tuplesd(t) := (f(t), y(t), ẏ(t), ÿ(t), u)
corresponding to an idealized, infinite set of experiments.If
G(f, y, ẏ, ÿ, u) = 0 is an analytical description of the graph,
andd0 is a regular point, then aforce function f(y, ẏ, ÿ, u) is
defined in a neighborhood ofd0. Defininggeneralized stiffness
as

k(d) = −

(

∂G(d)

∂f

)−1
∂G(d)

∂y
,

1It should be noted that in the literature, the termimpedance is sometimes
used to denote the relationship between velocity and force.



generalized damping as

b(d) = −

(

∂G(d)

∂f

)−1
∂G(d)

∂ẏ
,

generalized mass as

m(d) = −

(

∂G(d)

∂f

)−1
∂G(d)

∂ÿ
,

andgeneralized I/O characteristic as

ν(d) = −

(

∂G(d)

∂f

)−1
∂G(d)

∂u
,

one can compute the Frèchet differential of the force function
as

δf = m(d) δÿ + b(d) δẏ + k(d) δy + ν(d) δu .

From consideration of the positive definiteness of the kinetic
energy, Rayleigh dissipation function, and elastic energyas-
sociated with the generalized inertia, damping and stiffness, it
follows thatm, b, andk are always greater than zero.

Alternatively, one can describe admittance along a given
trajectory as the linear operator mapping small changes of
the external force to changes in the resulting motion. To
do this, consider the nonlinear ODE obtained by solving
G(f, y, ẏ, ÿ, u, t) = 0 at a regular point with respect töy as

ÿ = g(y, ẏ, f, u)

and its state space form, withx ∈ IR2, x1 = y, x2 = ẏ, i.e.

d

dt

[

x1

x2

]

=

[

x2

g(x1, x2, f, u)

]

For given initial conditionsx(0) = x̄0 and a given course in
time for forcef̄(t), let x̄(t) be the trajectory obtained, i.e. the
solution of the dynamics ODE. The first-order approximation
of the dynamics of the perturbed motioñx(t) = x(t) − x̄(t)
corresponding to a change in forcẽf(t) = f(t)− f̄(t) is the
time-varying linear system

˙̃x = Γ(t)x̃+Θ(t)

[

f̃
ũ

]

,

where

Γ(t) =

[

0 1

− k(d)
m(d) − b(d)

m(d)

]

, Θ(t) =

[

0 0
1

m(d)
ν(d)
m(d)

]

.

Example: Consider the link in fig. 3, actuated by two
antagonistic actuators (with a role vaguely similar to thatof
the biceps and triceps muscles at the elbow), with a quadratic
damping and subject to gravity and to an external torque load
τe. The system dynamics are

Iθ̈ + βθ̇|θ̇| − τb + τt −mgl sin θ − τe = 0

Assume first that the two actuators generate torques according
to the model (cf. [8])

τb = (τmax − αθb)ub

τt = (τmax − αθt)ut
(3)

Fig. 3. A link subject to an external load and actuated by two antagonistic
actuators. Nomenclature refers to actuator models used in (3)and (4),
respectively.
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Fig. 4. Generalized stiffness (left - dashed is without gravity term) and
generalized damping for the example with actuators as in (3), subject to a
unit step in external torque atT = 1s, and with time-varying activation
ub(t) = ut(t) linearly increasing from 0 atT = 1s to 1 atT = 15s.
Numerical values used in simulation:I = 0.05Nms2, mgl = 0.1Nm, β =
1Ns2m, alpha = 1Nm/rad,taumax = 2Nm.

whereθb = (π/2+ θ), θt = (π/2− θ), τmax is the maximum
isometric torque,ub, ut are the normalized contraction param-
eters (0 ≤ u ≤ 1, u = ub, ut), andα is a constant assumed to
be equal for the two actuators. We easily obtainm = I for the
generalized mass,b(θ̇) = 2β|θ̇| for the generalized damping,
and

k(θ, u) = α(ub + ut)−mgl cos(θ)

for the generalized stiffness. In the latter expression, the role
of a gravity-induced term and a co-activation stiffness term
are apparent.

If a different actuator model is adopted, namely (cf. [9])

τb = −α(θb − λb)
2,

τt = −α(θt − λt)
2 (4)

whereλb, λt are interpreted as the rest lengths of the actuators,
one has

k(θ) = 2α(π − λb − λt)−mgl cos(θ)

The values of stiffness and damping for the two examples
above, corresponding to time-varying values of the control
parameters, are reported in figs. 4 and 5, respectively.

•

III. I MPEDANCE OBSERVERS

For the motivations above introduced, we seek a method
for characterizing impedance using force and position mea-
surements taken during the natural evolution of a system, as
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Fig. 5. Generalized stiffness (left - dashed is without gravity term) and
generalized damping for the example with actuators as in (4), subject to a
unit step in external torque atT = 1s, and with time-varying reference angle
λb(t) = λt(t) linearly decreasing fromπ/3 at T = 1s to 0 at T = 15s.
Numerical values used in simulation as in fig. 4, except forα = 0.3.

e.g. represented by the reference motionx̄(t) under a given
reference excitationf̄(t), assuming that the design of the
excitationf̄(t) is not at our disposal.

According to the description of impedance as a differential
operator, its characterization can be cast as an identification
problem of a dynamical system. This is done first for the case
of linear impedance as follows.

A. Observers for linear impedance

Consider an extended state vectorz =
[

y ẏ − k
m

− b
m

1
m

]

, and rewrite the dynamics
of (1) as

ż =













z2
z1z3 + z2z4

0
0
0













+













0
z5
0
0
0













f,

y = h(z) = z1.

(5)

The identification of the impedance parameters can thus be
cast as a nonlinear state estimation problem, i.e., from the
measurement of the external forcef and positiony, estimate
the initial statez(0), and in particular its three last components
which completely determine the linear impedance.

We preliminarily establish that the problem is well posed.
Indeed, considering the observability codistribution forthis
system,

Ω(z) =

















1 0 0 0 0
0 1 0 0 0
z3 z4 z1 z2 0
0 0 0 0 1

z3z4 z3 + z24 z2 + z1z4 z1z3 + 2z2z4 0
0 0 0 z5 z4

















it turns out that form, b, k > 0, dimΩ(z)⊥ = 0, ∀z except
z1 = z2 = 0. Hence, if the system moves from the equilibrium,
the three linear impedance parameters can be reconstructed
from position and force measurements.

To actually estimate the impedance in this case, different
methods can be adopted. These include standard off-line
identification techniques (which exploit the linear natureof the
regressor for the unknown parameters), such as e.g. in [10],

or on-line nonlinear state observers (e.g. Extended Kalman
Filters) applied to system (5).

B. Variable stiffness observers

Unfortunately, generalization of the above straightforward
approach to the case when impedance is nonlinear and/or time
varying is not trivial. To convince oneself, it is sufficientto
consider the case of an unknown force functions(y, u(t))
replacing the linear spring term in (1), i.e.

f = mÿ + bẏ + s(y, u), (6)

when no information on the structure off or on the variable
u(t) is available2.

In the rest of this paper we describe a different approach
to measure stiffness in a system such as (6). For simplicity’s
sake, let us assume for the time being that accurate measures
of the applied forcef(t) and of the positiony(t) are available,
and that numerical derivatives of these signals can be done.
Assume also that both the mass and damping coefficients,m
andb, are known (these strong assumptions will be discussed
later on). No assumptions are made on the functions(y, u)
except that it is smooth in both arguments, with bounded
derivatives of all orders.

We assume that the stiffness-regulating inputu(t) is
bounded with its first derivativėu(t). It should be noticed
that, in building an observer that relies only on measurements
of the positiony(t) corresponding to the external loadf(t),
it is physically impossible to observe a stiffness which is
changing in time (̇u(t) 6= 0) while the system is at equilibrium
(ẏ(t) = 0). More precisely then, we will make the assumption
that the ratio between the stiffness regulation rate of change
and the velocity of the measured trajectory is bounded, namely
that, for all timest during the application of the observer, it
holds

|u̇(t)|

|ẏ(t)|
< v ∈ IR, ∀t.

Let
∂f

∂y
=

∂s(y, u)

∂y
:= σ(y, u(t))

denote the stiffness to be measured. Also letσ̂(t) denote
its estimate at timet, and σ̃(t) = σ(y, u(t)) − σ̂(t) be the
estimation error.

Differentiate (6) once with respect to time to get

ḟ = m
...
y + bÿ + σẏ + suu̇,

wheresu := ∂s(y,u)
∂u

. Using the current estimate of stiffness
and the assumptions stated above, a best-effort predictionfor
ḟ can be written (in the absence of information ons(y, u) and
on u(t)) as

˙̂
f = m

...
y + bÿ + σ̂ẏ

2In the case a parametric description of the force function is available,
e.g. in terms of a finite polynomial expansionf(y, u) = k0(u) + k1(u)y +
k2(u)y2 + . . ., andu is constant, an observable finite dimensional nonlinear
system can be built. However, the possibility to achieve good performance of
the corresponding observer is dubious.



We will show that the update law

˙̂σ = α
˙̃
fsgn(ẏ), (7)

with α > 0 and

sgn(x) :=







x
‖x‖ if ‖x‖ 6= 0

0 if ‖x‖ = 0

,

is such that̂σ(t) can be made to converge to the true stiffness
valueσ(t) within an uniformly ultimately bounded error.

Indeed, consider the positive definite error function

Vσ :=
1

2
σ̃2

and its derivative along the trajectory defined in (7), i.e.

V̇σ = σ̃ ˙̃σ = σ̃σ̇ − σ̃ ˙̂σ = σ̃σ̇ − ασ̃su u̇ sgn(ẏ)− ασ̃2|ẏ| . (8)

While the first two terms in the rightmost sum in (8) are
indefinite in sign, the third term is negative definite. Therefore,
wherever the inequality holds

|σ̃| > |su|
|u̇|

|ẏ|
+

1

α

|σ̇|

|ẏ|

the derivative of the error functioṅVσ is negative, hence the
estimation error decreases. By writingσ̇ = σy ẏ + σuu̇, and
using the upper bound above assumed on the rate of stiffness
change, we have that stiffness estimates converge to the true
value within an ultimately uniformly bounded error given by

|σ̃| >
|σy|

α
+

(

|su|+
|σu|

α

)

v (9)

Remark: The assumption that the mass and damping are
exactly known is not realistic. However, it is easy to verifythat
the analysis above carries over exactly even with no knowledge
of m andb, provided that a force sensor directly placed on the
elastic element provides a measure of the forces(x, u). In case
this is not available, then errors on them and b parameters
have the effect of making the ultimate error larger (this effect
can be countered by increasing the observer gainα).

IV. SIMULATION RESULTS

As a first illustration, the proposed stiffness observer is
tested using numeric simulations in two systems.

A. Single spring

In this first test, the observer algorithm is used to track the
stiffness value of a single spring with non-linear, time-invariant
stiffness characteristic. The simulated elastic element is an
exponential spring, whose force/displacement characteristic is

s(y) = aeby . (10)

Such springs are designed so that the stiffness at any operating
point is proportional to the force the spring is exchanging with
the external environment.

Figure 5(a) compares the observer estimate of the spring
stiffness with its exact valueσ(y) = baeby, for three different

values of the spring parameters. The springs were subject
to a external forcef(t) given by a chirp in the frequency
range from 0.1 to 10 Hz, with deformationsy(t) in the range
[0.25, 2.25]cm. The observation error (shown in fig. 5(b))
decays to less than one percent in less than 0.3 s.
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Fig. 6. Simulation results for the exponential spring test, with three different
springs (a = 2.7e−2, b = 1; a = 8.1e−6, b = 3; a = 13.5e−10, b = 5,
respectively). Stiffness tracking is shown in panel (a), and relative estimation
error in panel (b). Only the first 5s of the relative error are shown, to focus
on the transient phase. Relative error remains under 1% for the rest of the
time.

B. Antagonistic VSA systems

One of the simplest and most common examples of variable
stiffness, both in natural systems and in robotics, is the agonist-
antagonist arrangement on nonlinear actuators. To illustrate
how our proposed stiffness observer applies to antagonist
VSA systems, consider the examples reported above in fig. 3.
Application of the stiffness observer in this case can be carried
out in two ways: 1) the tendon tensionsτb, τt are measured
directly, or 2) the external torqueτe(t) is measured, and
estimates of the link inertia and damping are used. In all
cases, a measurement of the link angleθ(t) is necessary. It
should be noticed that, while the first method does not require
any estimate of link parameters, it is more invasive in the
system, and is inapplicable to e.g. stiffness measurement in
a human elbow joint. On the opposite, the second method
is easily applicable to this case, although its accuracy will be
reduced if poor estimates of inertia and damping are available.

Simulation results for the antagonist arrangements of two
muscle-like actuators as described in (3) and (4) are reported in
fig. 7 a) and b), respectively. In both simulations, the external
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Fig. 7. Stiffness tracking for an antagonist VSA system realized adopting
nonlinear muscle-like actuators as in equations 3 and 4 (panels (a) and (b)
respectively).
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Fig. 8. Stiffness tracking of the antagonist VSA systems withmuscle-like
actuators as in (3) (a), and (4) (b), with a10% error in the knowledge of
parametersm andb.

force τe is a sinusoid withω = 5 rad/s and amplitude 0.02
Nm. Stiffness is varied during the simulation in a saturated
ramp fashion. The ensuing joint motionθ(t) is in the range
±0.01rad, while θ̇ varies from zero to0.05 rad/s.

To assess how strongly the performance of the stiffness
observer is affected by inertia and damping parameter mis-
matches (in the case that only external torques are measured),
we performed simulations in the hypothesis thatm andb were
in error by10% of their actual value. Results reported in fig. 8
indicate that, for both muscle models, the relative error on
stiffness is of comparable magnitude.

Finally, a simulation is reported for the same link actuated
by two exponential springs (9). In this case, the stiffness is
exponentially increasing in time (by linearly varying the co-
contraction of the antagonist springs). A sinusoidal external
force is applied during the initial and final phases of the
experiment, while it is set to zero in the time interval between
10s and20s. Correspondingly, motion of the links stops (θ̇ =
0), and the stiffness estimate is not updated in the interval.
When motion resumes, the estimation recovers quickly to the
exact value.

V. EXPERIMENTAL RESULTS

The algorithm has been tested on the experimental device
shown in figure 10, implementing the antagonistic VSA device
with exponential springs described previously. Two strain-
gauge load cells were used to measure the tendon tensions
directly, while positions of the link and of the tendon origin
were measured using three HEDS-5540 encoders with a res-
olution of 2000 CPRs. Data were acquired using a National
Instruments PCI6251 ADC board for the strain gauges, and
an USB-PCI4e for the encoders. Data were sampled with
sampling timeTs = 0.015s, and afterward filtered with
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Fig. 9. Simulation results for the VSA system with exponential springs.
a) Comparison of the link stiffness with its estimate; b) Relative estimation
error; c) link motion during the simulated experiment.

a second–order filter with time constant of0.02s. Signal
derivatives used in the algorithm were approximated by the
numerical filter described by the transfer function

D(s) =
s

1 + 10−4s
. (11)

Despite the simplicity of such “Dirty Derivatives” technique,
results were suitable for the purposes of the present work,
proving the practical feasibility of the proposed method.

It should be pointed out that in this paper the impedance
estimates are not used for control in a feedback loop, hence the
effect of derivation noise can not destabilize the system. Future
work will address this problem when closed loop control of
impedance will be considered.

Input signals derivation could be avoided through use of
sensors of the rate of change of desired quantities, e.g.



Fig. 10. The experimental setup consists of an antagonistic VSA system
with exponential springs, realized using a linear spring forced to move on a
suitable cam profile. Force sensors (strain gauges) are mounted on the tendons
connecting the springs to the link. Position sensors (encoders) are mounted
on the link and on two tendon pulleys coupled with the input levers.

inductive sensors for positions, and piezo-electric sensors for
forces.

Both the external load and the torque actuating the tendon
tensions were generated manually, and not measured.

To obtain ground-truth data, the force functions of the
two springs were experimentally evaluated through careful
preliminary calibration experiments. The calibration procedure
consisted in collecting a large number of force-displacement
pairs (x, f), translating them in semi-logarithmic coordinates
space(x, y = ln(f)), finding the regression line in the semi-
logarithmic space, such thaty = mx + q, to finally go back
to the original space and obtainf = ey = emx+q = eq · emx,
from which a = m and b = eq. From the mean square error
of the regressionSME, the relative error margin of the model
can be easily evaluate asr = 1− eSME .

The numeric values of the exponential curves fitting our
data are

a1 = 0.999 , b1 = 3.267 ,

a2 = 0.950 , b2 = 2.780 ,

where subscripts are relative to the two spring. Figure 11
shows the regressed curve alongside with experimental data
for both the left (a) and right (b) springs. It is noticeable that,
due to un-modeled friction in the mechanism implementing the
exponential springs, a certain hysteresis is present, making the
model correct only up to a relative error margin of about25%.
Anyway, this error only marginally affected the performance
of the proposed observer.

Raw experimental data are reported in fig. 12. The estimate
of stiffness reconstructed in real-time by the stiffness observer
(α = 3) is compared with the calibrated stiffness data in fig. 13

VI. CONCLUSION

In this paper we presented an algorithm which can be used
to measure stiffness in real-time, using force and position

(a) left spring
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(b) right spring
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Fig. 11. Experimental characterization of the two exponential springs.
Force and displacement pairs recorded during a calibration experiment, and
regression curve are shown for each of the two springs of the experimental
VSA system.

sensors. The method’s main advantages are that it does not
require injecting any intentional perturbation in the system,
and that uses no a piori knowledge on the model of the
physical actuators. Simulations and experimental test shown
that the method is practically applicable and robust to noisy
data and uncertain parameters.
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