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Rosario Aragüés Eduardo Montijano Carlos Sagüés
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Abstract— In this paper we address the data association
problem of features observed by a robot team with limited com-
munications. At every time instant, each robot can only exchange
data with a subset of the robots, its neighbors. Initially, each
robot solves a local data association with each of its neighbors.
After that, the robots execute the proposed algorithm to agree
on a data association between all their local observations which
is globally consistent. One inconsistency appears when chains of
local associations give rise to two features from one robot being
associated among them. The contribution of this work is the
decentralized detection and resolution of these inconsistencies.
We provide a fully decentralized solution to the problem. This
solution does not rely on any particular communication topology.
Every robot plays the same role, making the system robust to
individual failures. Information is exchanged exclusively between
neighbors. In a finite number of iterations, the algorithm finishes
with a data association which is free of inconsistent associations.
In the experiments, we show the performance of the algorithm
under two scenarios. In the first one, we apply the resolution
and detection algorithm for a set of stochastic visual maps. In
the second, we solve the feature matching between a set of images
taken by a robotic team.

I. INTRODUCTION

During the last years, there has been an increasing interest
in multi robot systems. In these scenarios, a team of robots
cooperatively perform some task in a more efficient way than
a single robot would do. In this paper, we address the data
association problem in multi robot scenarios. It consists of
establishing correspondences between different measurements
or estimates of a common element. It is of high interest
in localization, mapping, exploration, and tracking applica-
tions [1]. The Nearest Neighbor (NN), and the Maximum
Likelihood (ML), are widely used methods which associate
each observation with its closest feature in terms of the
Euclidean or the Mahalanobis distance [23], [15], [12]. Other
popular method is the Joint Compatibility Branch and Bound
(JCBB) [18], which considers the compatibility of many
associations simultaneously. The Combined Constraint Data
Association [2] builds a graph where the nodes are individually
compatible associations and the edges relate binary compatible
assignments. Over this graph, a Maximal Common Subgraph
problem is solved for finding the maximum clique in the
graph. Scan matching and Iterative Closest Point (ICP) [6]
are popular methods for comparing two laser scans. Other
methods, like the Multiple Hypothesis Tracking, and the Joint
Probabilistic Data Association, maintain many association

hypothesis instead of selecting one of them. And exist many
variations of these techniques that combine RANSAC [9] for
higher robustness.

In solutions based on submaps, one of them is usually
transformed into an observation of another. The local submaps
are merged with the global map following a sequence [22], or
in a hierarchical binary tree fashion [5]. All the mentioned
data association approaches, operate on elements from two
sets. One set usually contains the current observations, and
the other one consists of the feature estimates. These sets may
be two images, two laser scans, or two probabilistic maps.

Lately, many localization, mapping, and exploration algo-
rithms for multi robot systems have been presented. However,
they have not fully addressed the problem of multi robot data
association. Some solutions have been presented for merging
two maps [21], [23] that do not consider a higher number
of robots. Many approaches rely on broadcasting all controls
and observations measured by the robots. Then, the data
association is solved like in a single robot scenario, using scan
matching and ICP for laser scans [14], [10], [16], [20], or NN,
ML, and visual methods for feature-based maps [12], [17]. In
these methods, the problem of inconsistent data associations is
avoided by forcing a cycle-free merging order. This limitation
has also been detected in the computer vision literature.
In [8] they approach an inconsistent association problem for
identifying equal regions in different views. They consider a
centralized scenario, where each 2 views are compared among
them in a 2-by-2 way. Then, their results are arranged on
a graph where associations are propagated and conflicts are
solved. The work in [7], from the target tracking literature,
simultaneously considers the association of all local maps. It
uses an expectation-maximization method for both computing
the data association and the final global map. The main
limitation of this work is that the data from all sensors needs
to be processed together, what implies a centralized scheme,
or a broadcast method.

All the previous methods rely on centralized schemes, full
communication between the robots, or broadcasting methods.
However, in multi robot systems, distributed approaches are
more interesting. They present a natural robustness to in-
dividual failures since there are no central nodes. Besides,
they do not rely on any particular communication scheme,
and they are robust to changes in the topology. On the other
hand, distributed algorithms introduce an additional level of



complexity in the algorithm design. Although the robots make
decisions based on their local data, the system must exhibit a
global behavior.

In this paper, we address the data association problem for
distributed robot systems. Each of our robots posses a local
observation of the environment. Instead of forcing a specific
order for associating their observations, we allow the robots
compute its data association with each of its neighbors in
the graph. Although this scenario is more flexible, it may
lead to inconsistent global data associations in the presence
of cycles in the communication graph. These inconsistencies
are detected when chains of local associations give rise to
two features from one robot being associated among them.
These situations must be correctly identified and solved before
merging the data. Otherwise, the merging process would be
wrong and could not be undone. In this paper, we approach
a distributed data association, under limited communications.
Instead of comparing any 2 local observations among them,
only the local observations of neighboring robots can be com-
pared. Besides, there is no central agent that has knowledge
of all the local associations and each robot exclusively knows
the associations computed by itself. Then, each robot updates
its local information by communicating with its neighbors. We
present an algorithm where, finally, each robot is capable of
detecting and solving any inconsistent association that involves
any of its features.

II. PROBLEM DESCRIPTION

We consider a robotic team composed of n ∈ N robots.
The n robots have communication capabilities to exchange
information with the other robots. However, these communica-
tions are limited. Let Gcom = (Rcom, Ecom) be the undirected
communication graph. The nodes are the robots, Rcom =
{1, . . . , n}. If two robots i, j can exchange information then
there is an edge between them, (i, j) ∈ Ecom. Let Ni be the
set of neighbors of robot i,

Ni = {j | (i, j) ∈ Ecom}.

Each robot i has observed a set Si of mi features,

Si = {f i
1, . . . , f

i
mi
}. (1)

It can compute the data association between its own set Si, and
the sets of its neighbors Sj , with j ∈ Ni. However, these data
associations are not perfect. There may appear inconsistent
data associations relating different features from the same
set Si (Fig. 1). If the robots merge their data as soon as
they solve the local data association, inconsistent associations
cannot be managed since the merging cannot be undone. The
goal of our algorithm is to detect and resolve these inconsistent
associations before executing the merging.

In order to make the reading easy, along the paper we
will use the indices i, j and k to refer to robots and indices
r, r′, s, s′, to refer to features. The rth feature observed by the
ith robot will be denoted as f i

r. Given a matrix A, the notation
[A]r,s will correspond to the component (r, s) of the matrix
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Fig. 1. Robots A, B, C and D associate their features comparing their maps
in a two-by-two way. Robot A associates its feature fA

1 with fD
2 and with

fB
1 ; robot B associates fB

1 with fC
1 ; robot C associates fC

1 with fD
1 (solid

lines). As a result, there is a path (dashed line) between fD
1 and fD

2 . This
is an inconsistent situation. Finding this path would require the knowledge of
the whole association graph.

whereas Aij will denote the block (i, j) when the matrix is
defined by blocks.

Let F be a function that computes the data association
between any two sets of features, Si and Sj , and returns an
association matrix Aij ∈ Nmi×mj where

[Aij ]r,s =

{
1 if f i

r and f j
s are associated,

0 otherwise,

for r = 1, . . . ,mi and s = 1, . . . ,mj . We assume that F
satisfies the following conditions.

Assumption 2.1: When F is applied to the same set Si, it
returns the identity, F (Si,Si) = Aii = I .

Assumption 2.2: The returned association Aij has the
property that the features are associated in a one-to-one way,

mi∑
r=1

[Aij ]r,s ≤ 1 and
mj∑
s=1

[Aij ]r,s ≤ 1,

for all r = 1, . . . ,mi and s = 1, . . . ,mj .
Assumption 2.3: Robots i and j associate their features

in the same way. Given two sets Si and Sj it holds that
F (Si,Sj) = Aij = AT

ji = (F (Sj ,Si))T .
Most of the existing data association methods satisfy these
assumptions.

If F is applied to all pairs of sets of features Si, Sj ,
for i, j ∈ {1, . . . , n}, its results can be represented by an
undirected graph Gmap = (Vmap, Emap). Each node in Vmap

is a feature f i
r, for i = 1, . . . , n, r = 1, . . . ,mi. There is

an edge between two features f i
r, f j

s iff [Aij ]r,s = 1. If F
were providing the ground truth data association, then Ggt

map

would exclusively contain disjoint cliques, identifying features
observed by multiple robots [8]. Since F is not perfect,
Gmap is a perturbed version of Ggt

map that includes additional
spurious edges, while it misses others.

In addition, due to communication restrictions, the data
associations available to our robots are just a subset of Gmap.
We name G = (V,E) this available association graph. It has



the same set of nodes than Gmap, V = Vmap. It has an edge
between two features f i

r, f j
s only if the edge exists in Gmap

and the robots i and j are neighbors in the communication
graph. The goal of our algorithm is to detect and resolve
inconsistencies in this graph G ⊆ Gmap in a decentralized
fashion.

Definition 2.4: An association set is a set of features such
that they form a connected component in G. Such set is an
inconsistent association or a conflictive set if there exists a
path in G between two or more features from the same robot.
A feature is inconsistent or conflictive if it belongs to an
inconsistent association.

Along this paper, we name msum the number of features
in G, msum =

∑n
i=1 mi. We name d the diameter of G, the

length of the longest path between any two nodes in G. The
diameter satisfies d ≤ msum. We name W ∈ Nmsum×msum

the adjacency matrix of G,

W =

 W11 . . . W1n

...
. . .

...
Wn1 . . . Wnn

 , (2)

where Wij is the block within W for the associations between
robots i and j,

Wij =

{
Aij if j ∈ {Ni ∪ i},
0 otherwise.

(3)

III. DECENTRALIZED DETECTION OF INCONSISTENT
ASSOCIATIONS

Considering definition 2.4 we observe that in order to detect
an inconsistent association it is required to compute the paths
that exist among the elements in G. As the following lemma
states [4], given a graph G, the powers of its adjacency matrix
contains the information about the number of paths existing
between the nodes of G:

Lemma 3.1 (Lemma 1.32 [4]): Let G be a weighted graph
of order |V | with un-weighted adjacency matrix W ∈
{0, 1}|V |×|V |, and possibly with self loops. For all i, j ∈
{1, . . . , |V |} and t ∈ N the (i, j) entry of the tth power of W ,
W t, equals the number of paths of length t (including paths
with self loops) from node i to node j.

The computation of the powers of W requires, a priori, the
information about the whole matrix. We show now that this
computation can also be done in a decentralized manner. Let
each robot i ∈ Rcom maintain the blocks within W t associated
to its own features, Xij(t) ∈ Nmi×mj , j = 1, . . . , n, t ≥ 0,,
which are initialized as

Xij(0) =

{
I, j = i,
0, j 6= i,

(4)

and are updated, at each time step, with the following algo-
rithm

Xij(t + 1) =
∑

k∈{Ni∪i}

WikXkj(t), (5)

with Wik as defined in (3). It is observed that the algorithm is
fully distributed because the nodes only use information about
its direct neighbors in the communication graph.

Theorem 3.2: Let [W t]ij ∈ Nmi×mj be the block within
W t related to the associations between robot i and robot
j. The matrices Xij(t) computed by each robot i using
the decentralized algorithm (5) are exactly the sub-matrices
[W t]ij ,

Xij(t) = [W t]ij , (6)

for all i, j ∈ {1, . . . , n} and all t ∈ N.
Proof: The proof is done using induction. First we show

that eq. (6) is satisfied for t = 0. In this case we have that
W 0 = I , thus for all i, j ∈ {1, . . . , n}, [W 0]ii = I and
[W 0]ij = 0, which is exactly the initial value of the variables
Xij (eq. (4)).

Now we have that for any t > 0,

[W t]ij =

n∑
k=1

Wik[W t−1]kj =
∑

k∈{Ni∪i}

Wik[W t−1]kj ,

because Wik = 0 for k /∈ {Ni ∪ i},
Assuming that for all i, j ∈ {1, . . . , n} and a given t > 0,

Xij(t− 1) = [W t−1]ij is true, then

Xij(t) =
∑

k∈{Ni∪i}

WikXkj(t− 1) =

=
∑

k∈{Ni∪i}

Wik[W t−1]kj = [W t]ij . (7)

Then, by induction, Xij(t) = [W t]ij is true for all t > 0.
Corollary 3.3: The variables Xij(t) contain the informa-

tion about all the paths of length t between features observed
by robots i and j.

Proof: By direct application of Lemma 3.1.
Analyzing the previous algorithm the first issue to deal with

is how to simplify the computation of the matrices in order
to avoid high powers of W. In the case we are studying it is
just required to know if there is a path between two elements
in G and not how many paths are. This means that in this
situation it is enough that [Xij(t)]r,s > 0 in order to know
that features f i

r and f j
s are connected by a path. Another issue

is to decide when the algorithm in (5) must stop. Since the
maximum length of a path between any two nodes in a graph
is its diameter, then after d iterations the algorithm should
stop. However, in general situations the robots will not know
neither d nor msum, which makes this decision hard to be
made a priori.

Definition 3.4: We will say that two matrices W and W̄
of the same dimensions are equivalent, W ∼ W̄ , if for all r
and s it holds

[W ]r,s > 0⇔ [W̄ ]r,s > 0 and [W ]r,s = 0⇔ [W̄ ]r,s = 0.
In practice any equivalent matrix to the Xij(t) will provide
the required information, which allows us to simplify the
computations simply by changing any positive value in the
matrices by 1. Moreover, the equivalency is also used to find
a criterion to stop the algorithm:

Proposition 3.5: For a robot i, let ti be the first time instant,
t, such that Xij(t) ∼ Xij(t − 1) for all j = 1, . . . , n. Then
robot i can stop to execute the algorithm at time ti.



Proof: Let X̄ij(t) be the components in Xij(t), such
that [Xij(t − 1)]r,s = 0 and [Xij(t)]r,s > 0. The cardinal,
|X̄ij(t)|, represents the number of features f j

s ∈ Sj such that
the minimum path length in G between them and one feature
f i
r ∈ Si is t. At time ti, Xij(ti) ∼ Xij(ti − 1) ∀j for the

first time, and then
∑n

j=1 |X̄ij(ti)| = 0 because no component
has changed its value from zero to a positive. This means that
there is no path of minimum distance ti linking any feature
f i
r with any other feature in G. By the physical properties of

a path, it is obvious that if there are no features at minimum
distance ti, it will be impossible that a feature is at minimum
distance ti + 1 and all the paths that connect features of robot
i with any other feature have been found.

Corollary 3.6: All the robots end the execution of the
iteration rule (5) in at most in d + 1 iterations.

Proof: Recalling that the maximum distance between two
nodes in G is the diameter of the graph, denoted by d, then∑n

j=1 |X̄ij(d + 1)| = 0 for all i = 1, . . . , n.
If a robot j at time t does not receive the information Xij(t)

from robot i then it will use the last matrix received, because
robot i has already finished computing its paths and Xij(t) ∼
Xij(t− 1).

It remains to analyze which features are conflictive and
which are not. Each robot has the information about all the
association paths of its features and the features of the rest of
the robots in the network in the different variables Xij(ti).
The robots detect all the conflictive features using two simple
rules. A feature f i

r is conflictive if and only if one of the
following conditions are satisfied:

(i) There exists other feature f i
r′ , with r 6= r′, such that

[Xii(ti)]r,r′ > 0; (8)

(ii) There exist features f j
s and f j

s′ , s 6= s′, such that

[Xij(ti)]r,s > 0 and [Xij(ti)]r,s′ > 0. (9)

In conclusion, the proposed algorithm will be able to find all
the inconsistencies in a finite number of iterations. The algo-
rithm is decentralized and it is based only on local interactions
between the robots. Each robot only needs to know its local
data associations. It updates its information based on the data
exchanged with its neighbors. When the algorithm finishes,
each robot i can extract from its own matrices Xij(ti) all the
information of any conflict that involves any of its features.
If the robot has any conflictive feature, it also knows the rest
of features that belong to the conflictive set independently of
the robot that observed such features. In the next section we
present an additional technique to solve the inconsistencies
found by the algorithm.

IV. DECENTRALIZED RESOLUTION OF INCONSISTENT
ASSOCIATIONS

The resolution of inconsistent associations consists of delet-
ing edges from G so that the resulting graph is conflict-free.

Definition 4.1: Let c denote the number of conflictive sets
in G. We say a conflictive set C is detectable by a robot i

if there exists a r ∈ {1, . . . ,mi} such that f i
r ∈ C. The set

of robots that detect a conflictive set C is R ⊆ Rcom. The
number of features from each robot i ∈ R involved in C is
m̃i. We say G is conflict-free if c = 0.

All the edges whose deletion transforms G into a conflict-
free graph, belong to any of the c conflictive sets of G.
Since the conflictive sets are disjoint, they can be considered
separately. From now on, we focus on the resolution of one of
the conflictive sets C. The other conflictive sets are managed in
the same way. The resolution problem consists of partitioning
C into a set of disjoint conflict-free components Cq such that

∪
q
Cq = C, and Cq ∩Cq′ = ∅,

for all q, q′ = 1, 2, . . . . The number of such conflict-free
components is a priori unknown and it will be discussed later
in this section.

Obtaining an optimal partition that minimizes the number
of deleted edges is complicated. If there were only two
inconsistent features f i

r, f i
r′ , it could be approached as a max-

flow min-cut problem [19]. However, in general there will be
more inconsistent features, m̃i ≥ 2, within C associated to a
robot i ∈ R. Besides, there may also be m̃j ≥ 2 inconsistent
features belonging to a different robot j ∈ R. The application
of [19] separately to any pair of inconsistent features does
not necessarily produce an optimal partition. It may happen
that a single edge deletion simultaneously resolves more than
one inconsistent association. Therefore, an optimal solution
should consider multiple combinations of edge deletions, what
makes the problem computationally intractable, and imposes a
centralized scheme. We propose a resolution algorithm that is
not optimal but is efficient and is proven to be correct. Besides,
it allows a decentralized computation.

Proposition 4.2: Let R be the set of robots that detect C.
Let i? be the robot with the most features involved in C,

i? = arg max
i∈R

m̃i. (10)

The number of conflict-free components in which C can be
decomposed is lower bounded by m̃i? .

Proof: Each conflict-free component can contain, at
most, one feature from a robot i ∈ R. Then there must be, at
least, maxi∈R m̃i = m̃i? components.

The resolution algorithm constructs m̃i? conflict-free com-
ponents using a strategy close to a BFS tree construction.
Initially, each robot i detects the conflictive sets for which
it is the root using its local information Xi1(ti), . . . , Xin(ti).
The root robot for a conflictive set is the one with the most
inconsistent features involved. In case two robots have the
same number of inconsistent features, the one with the lowest
robot id is selected. Then, each robot executes the resolution
algorithm (Algorithm 1).

The root robot creates m̃i? components and initializes each
component Cq with one of its features f i? ∈ C. Then, it tries
to add to each component Cq the features directly associated
to f i? ∈ Cq . Let us consider that f j

s has been assigned to Cq .
For all f i

r such that [Wij ]r,s = 1, robot j sends a component



Algorithm 1 Decentralized resolution algorithm - Robot i
1: – Initialization
2: for each conflictive set C for which i is root (i = i?) do
3: create m̃i? components
4: assign each inconsistent feature f i?

r ∈ C to a different
component Cq

5: send component request to all its neighboring features
6: end for
7: – Algorithm
8: for each component request from f j

s to f i
r do

9: if (b) or (c) then
10: [Wij ]r,s = 0
11: send reject message to j
12: else if (d) then
13: assign f i

r to the component
14: send component request to all its neighboring features
15: end if
16: end for
17: for each component reject from f j

s to f i
r do

18: [Wij ]r,s = 0
19: end for

request message to robot i. When robot i receives it, it may
happen that
(a) f i

r is already assigned to Cq;
(b) f i

r is assigned to a different component;
(c) other feature f i

r′ is already assigned to Cq;
(d) f i

r is unassigned and no feature in i is assigned to Cq .
In case (a), f i

r already belongs to the component Cq and
robot i does nothing. In cases (b) and (c), f i

r cannot be added
to Cq; robot i deletes the edge [Wij ]r,s and replies with a
reject message to robot j; when j receives the reject message,
it deletes the equivalent edge [Wji]s,r. In case (d), robot i
assigns its feature f i

r to the component Cq and the process is
repeated.

Theorem 4.3: Let us consider that each robot i ∈ Rcom

executes the decentralized resolution algorithm (Algorithm 1)
on G, obtaining G′,

(i) after t = n iterations no new features are added to any
component Cq and the algorithm finishes;

(ii) each obtained Cq is a connected component in G′;
(iii) Cq is conflict free;
(iv) Cq contains at least two features;

for all q ∈ {1, . . . , m̃i?} and all conflictive sets.
Proof: (i) The maximal depth of a conflict-free compo-

nent is n since, if there were more features, at least two of
them would belong to the same robot. Then, after at most n
iterations of this algorithm, no more features are added to any
component Cq and the algorithm finishes.

(ii) There is a path in G between any two features belonging
to a conflictive set C. Therefore, there is also a path in G
between any two features assigned to the same component
Cq . Since the algorithm does not delete edges from G within a
component (case (a)), then Cq it is also connected in G′. Since

none feature can be assigned to more than one component
(case (b)), the components are disjoint. Therefore, Cq is a
connected component in G′.

(iii) By construction, two features from the same robot
are never assigned to the same component Cq (case (c)).
Therefore, each component is conflict-free.

(iv) Each conflictive set has more than one feature. Because
of Assumptions 2.1 and 2.2, each feature and its neighbors are
conflict free. Therefore, each component Cq contains, at least,
its originating feature, and a neighboring feature. Thus, it has
at least two features.

Corollary 4.4: After executing Algorithm 1, the size of
each conflict set C is reduced by at least 2 m̃i? , where
m̃i? ≥ 2.

When the algorithm finishes, each original conflictive set C
has been partitioned into m̃i? conflict-free components. It may
happen that a subset of features remains unassigned. These
features may still be conflictive in G′. The detection algorithm
can be executed on the subgraph defined by this smaller subset
of features.

Proposition 4.5: Consider each robot i iteratively executes
the detection (Section III) and the resolution (Section IV) al-
gorithms. Then, in a finite number of iterations, all conflictive
sets disappear.

Proof: After each execution of the resolution algorithm,
the size of each conflict set C is reduced by, at least, 2 m̃i? ≥ 4
(Corollary 4.4). Then, in a finite number of iterations, it hap-
pens that |C| < 4. A set with 3 features f i

r, f
i
r′ , f

j
s cannot be

conflictive; this would require the existence of edges (f i
r, f

j
s )

and (f i
r′ , f

j
s ), what is impossible (Assumption 2.2). A set with

2 features cannot be conflictive (Assumptions 2.1 and 2.2), and
a set with a single feature cannot be inconsistent by definition.
Therefore, there will be no remaining inconsistencies or con-
flictive sets.

The main interest of the presented resolution algorithm, is
that it is fully decentralized and it works on local information.
Each robot uses its own Xij(ti) for detecting the root robot
of each conflictive set. During the resolution algorithm, the
decisions and actions taken by each robot are based on its
local associations Wij , and the components assigned to its
local features. Moreover, each robot is responsible of deleting
the edges from its local association matrices Wij , with j ∈
{1, . . . , n}. In addition, the presented algorithm works in finite
time. Let us note that although we presented the algorithm
for a single conflictive set, all conflictive sets are managed in
parallel.

V. EXPERIMENTS

A. Data association of stochastic maps

The presented algorithm is of high interest in multi-robot ex-
ploration scenarios with limited communications. Each robot
has explored a section of the environment and it has built a
stochastic map. When the exploration finishes, the local maps
are merged into a global map of the environment. Each robot
can compute the data association between its local map, and
the maps of its neighbors. However, it does not know the data



associations obtained by other robots in the team. If they start
the merging process using only its local associations, and there
is any inconsistency, at some point a robot will be forced to
fuse two or more of its features into a single one. To avoid this
situation, they execute the presented algorithm for resolving
any inconsistent association before merging the maps.

(a) One cycle (b) Four cycles (c) Complete
Fig. 2. Communication graphs between the 9 robots after the exploration.

The behavior of the algorithm is analyzed under real data.
We use a data set [11] with bearing information obtained with
vision (Sony EVI-371DG). The landmarks are vertical lines
extracted from the images. The measurements are labeled so
that we can compare our results with the ground-truth data
association. We select 9 subsections of the whole path for
the operation of 9 different robots (Fig. 3 (a)). A separate
SLAM is executed on each subsection, producing the 9 local
maps (Fig. 3 (b)). The local data associations are computed
using the JCBB [18] since it is very convenient for clutter
situations like the considered scenario (Fig. 3 (b)). The JCBB
is applied to the local maps of any pair of neighboring
robots. We analyze the performance of the algorithm under
3 communication graphs (Fig. 2).

Table I gives statistics about the number of inconsistencies
found considering the different network topologies in Fig. 2.
We show the obtained associations compared to the ground
truth results. The number of association sets is the number of
connected components of W t. The number of good links (true
positives) are obtained associations between 2 features which
are true (ground truth). The missing links (false negatives)
are associations that are in the ground truth information, but
have been not detected. And spurious links (false positives)
are associations found between features that are different
according to the ground truth. The sixth row, c, is the number
of conflictive sets. The next row in the table shows the total
number of features which have been associated to any other
feature from other local map. The last row gives information
about how many of those features are conflictive. The amount

TABLE I
INITIAL ASSOCIATIONS BETWEEN THE 9 LOCAL MAPS

Comm. graph (a) (b) (c)
Association sets (ground truth) 242 284 400

Association sets 182 218 290
Good links (true positives) 160 190 228

Missing links (false negatives) 82 94 172
Spurious links (false positives) 22 28 62

Conflictive sets (c) 3 5 8
Number of features msum 138 144 154

Conflictive features 16 24 51

of missing and spurious associations obtained is very high

(a) Ring (b) Pyramidal

(c) Star-Ring (d) Complete
Fig. 4. Formations used in the experiments

for the three network topologies. This is the expected result
for many real scenarios, where the landmarks are close to
each other, and where the only available information are their
cartesian coordinates. As a result, the conflictive features are
more than a 10% of the total. In communication graphs with
more cycles (Fig. 2 (b)(c)), there are more conflictive features.
In the three cases, after a single execution of the detection and
the resolution algorithms, all the inconsistencies are solved
(Table II, 1st row). An interesting result is that, although
our algorithm cannot distinguish between good and spurious
edges, in practice a high number of the deleted edges (last
row) are spurious ones.

TABLE II
MANAGEMENT OF THE INCONSISTENCIES

Comm. graph (a) (b) (c)
Iterations 1 1 1

Initial conflictive sets 3 5 8
Deleted links 6 10 34

Good deleted links (true positives) 2 2 12
Spurious deleted links (false positives) 4 8 22

B. Matching sets of images

We have also tested the performance of our proposal with
a set of images. A team of robots equipped with cameras and
limited communication capabilities is a typical situation in
which not all the images are available to execute a global
matching. A solid set of matches is required independently
of the task the team is performing (visual SLAM, formation
control, etc.). In the proposed experiment 6 robots moving
in formation are considered. Each robot acquires one image
with its onboard camera and extracts SURF features [3]. The
local matching is only applied to pairs of images which
are connected in the communication graph. For the local
matching the epipolar constraint combined with RANSAC is
imposed [13]. The detection and resolution of inconsistencies
is analyzed for four different typical communication graphs
(Fig. 4).

Although the epipolar constraint discards most part of the
wrong matches, some spurious associations are still found.
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Fig. 3. (a) Section of the dataset used in the experiments. (b) Local maps acquired by 9 robots exploring the region in (a).

Figure 5 shows an example of an inconsistency found by our
algorithm in the case of the formation (d). The figure also
shows how the Algorithm 1 solves such inconsistency; the
result is a subset of the initial matches with more connected
components than before but without any conflict.

More general results about the experiment can be seen in
Table III. Since for this experiment there is no ground truth
available, the number of missing and spurious links found
in the local matching cannot be provided. Some interesting
conclusions are extracted with the obtained results. First of
all, the number of association sets and the number of features
involved msum are increased with the number of edges in
Gcom. The more local associations there are, the more matches
the algorithm will have available. With respect to the inconsis-
tencies, they grow with the number of cycles in Gcom because
each cycle can generate inconsistencies independently of the
rest of the communication network. The size of the cycles also
influence on the conflicts, cycles of smaller length will cause
more inconsistencies because the number of local associations
required to find a conflict is also smaller.

TABLE III
INITIAL ASSOCIATIONS FOR THE DIFFERENT FORMATIONS

Formation (a) (b) (c) (d)
Association sets 528 590 605 632

Conflictive sets (c) 2 22 31 72
Number of features msum 1335 1643 1743 2069

Conflictive features 14 144 204 521

Another important aspect to analyze is how the resolution
of the conflicts is performed. We have observed that some
of the inconsistencies are caused by features that are very
close to each other in one image and due to the RANSAC
threshold the miss-match appears. These inconsistencies are
introduced because of the extractor parameters but the errors
they can cause are negligible. However, there are also some
other inconsistencies which can generate problems to the

vision system because they include features from the same
image which are far away from each other. Table IV shows
the statistics on how are the solutions to the conflicts provided
by our algorithm. Although ground truth is not available in
this experiment it is easily observable when the inconsistent
matches have been separated correctly in the used images and
when not (Fig. 5). We have manually classified the conflicts as
well solved and wrongly solved. We consider a conflict as well
solved when it does not contain any spurious edge in any of the
associations that the algorithm returns. The spurious and the
good links that the algorithm deletes, also manually counted,
are shown in fifth and sixth rows of table IV respectively.

TABLE IV
MANAGEMENT OF THE INCONSISTENCIES

Formation (a) (b) (c) (d)
Initial conflictive sets 2 22 31 72

Inconsistencies well solved 1 20 24 55
Inconsistencies wrongly solved 1 2 7 17

Deleted links 2 26 46 131
Good deleted links (true positives) 1 2 19 43

Spurious deleted links (false positives) 1 24 27 88

VI. CONCLUSIONS

We have presented a new technique to match several sets of
features observed by a team of robots in a consistent way under
limited communications. Local associations are found only
within robots that are neighbors in the communication graph.
After that a fully decentralized method to compute all the paths
between local associations is carried out, allowing the robots
to detect all the inconsistencies related with their observations.
For every conflictive set detected, in a second step the method
is able to delete local associations to break the conflict using
only local communications. The whole method is proved to
finish in a finite amount of time finding and solving all
the inconsistent associations. Experimental results show the
performance of the method in two different scenarios with



Fig. 5. Example of one inconsistency found by the algorithm. The inconsistency is represented by the whole set of depicted links. It is observed that if all
the links are considered, features of the same image are matched. After executing Algorithm 1 the inconsistency is solved. In this example the root of the
inconsistency is the top-middle image. The dark line with circles is the link deleted by the algorithm. Solid lines represent one of the conflict free components
and dashed lines the second. For clarity, the rest of the SURF features are only shown in the top middle image.

great interest in robotic tasks. To the best of our knowledge
this is the first algorithm that is able to do it.
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