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Abstract—Tasks such as street mapping and security surveil-
lance seek a route that traverses a given space to perform a
function. These task functions may involve mapping the space
for accurate modeling, sensing the space for unusual activity,
or processing the space for object detection. With a prior map,
an optimal path can be computed using a graph to represent
the environment and generating the solution using known graph
algorithms. However, the prior map may be inaccurate due to
factors such as occlusion, outdatedness, dynamic objects, and
resolution limitations. In this work, we address the NP-hard
problem of optimal environmental coverage with incomplete
prior map information.
To utilize related algorithms in graph theory, we represent the

environment as a graph. Using this representation, we present a
graph coverage approach for optimal plan generation based on
the Undirected Chinese Postman and Rural Postman problems.
This approach produces a tractable solution through the use of
low complexity algorithms in a branch-and-bound framework.
Additionally, as the robot receives sensor updates during traversal
of the environment, we update the graph to reflect those changes.
The updated graph can be highly disconnected so computing an
optimal solution can be NP-hard. To combat this, we introduce
a heuristic for coverage path generation that helps maximize the
connectivity of the updated graph. We evaluate our approach on
a set of comparison tests in simulation.

I. INTRODUCTION
Many tasks, such as street sweeping, mail delivery, and

robotic surveillance and patrol, require a robot to visit all
points in an environment to accomplish a goal. These goals
usually entail effectively mapping, sensing, or processing the
space. In this work, we address this coverage problem where
a robot is required to visit most locations in a given area.
We assume a map of the environment is available. This is
a reasonable assumption since information of most outdoor
spaces can be obtained via satellite images. However prior
maps can differ from the actual environment due to factors
such as occlusions, datedness, and lower map resolutions.
Even with an otherwise accurate map, dynamic conditions
such as the presence of people or vehicles can diminish
the effective accuracy of prior information. Therefore, an
additional goal for the coverage problem we are addressing is
to efficiently replan when changes occur in the environment.
In robotics, there is a number of related work in the area

of continuous space coverage. In continuous space coverage,
the robot must pass a detector over all points in the space
in order to complete a task [1][2][3][4]. While these methods
ensure completeness in terms of the area covered, they do not
guarantee optimal path length. In graph theory and operations

research, researchers have tackled this problem by representing
the environment as a graph, and using routing algorithms such
as the traveling salesman [5] [6] or postman problems [7] [8] to
generate optimal solutions. Because we seek optimal paths for
coverage efficiency, we choose to use the graph representation
as the foundation of our solution approach.
In the graph representation, nodes in the graph denote

locations in the environment and edges in the graph are the
paths between the locations. For example, the map in Figure
1 is converted into a graph shown in Figure 2(a) by changing
each street intersection into a node and each street into an
edge. Each edge has a cost assigned to it where the cost can
represent measurements such as Euclidean distance between
locations, terrain traversability, travel time, or a combination of
several metrics. Additionally, each edge is undirected meaning
it can be traversed in both directions. Another example is a
Voronoi diagram where the paths are edges in the graph and
the path intersections are nodes. This is one way to generate
optimal paths for some of the problems in continuous space
coverage.
For our problem, we seek a coverage path that visits all the

edges or a designated edge subset of the graph. This coverage
problem can be modeled as an arc-routing problem. We focus
on two types of arc-routing problems: the Chinese Postman
Problem [9] and the Rural Postman Problem. The Chinese
Postman Problem (CPP) seeks an optimal path that visits all
the edges of the graph at least once, and the Rural Postman
Problem (RPP) seeks an optimal path that visits a predefined
subset of graph edges at least once. We define an optimal
path as the lowest cost coverage path given the current graph
information.
The CPP and RPP differ in two ways. The CPP has a

polynomial time solution of O(n3) [7] [10]. It works well
for applications where it is necessary to traverse every part of
the space. For example, Sorensen uses the CPP to plan tours
for farming machines in static known environments [11].
In many practical problems, it is not necessary to traverse

all the edges in the graph. The RPP seeks a tour that traverses
a required subset of the graph edges using the extra graph
edges as travel links between the required edges. Unlike the
CPP, the RPP is a NP-hard problem. Optimal solutions exist
that formulate the RPP as an integer linear program and
solve it using branch-and-bound [8]. One recent approach [12]
introduced new dominance relations such as computing the
minimum spanning tree on the connected components in a



Fig. 1. The map of an urban environment is shown where the box-like shapes
represent buildings and the spaces between the buildings are roads.

graph to solve large problem instances. Additionally, many
TSP heuristics have been extended to the RPP [13]. For
example, Christofides’ approximation for the Euclidean TSP
was modified for the undirected RPP and maintains its 3
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constant factor performance [14]. Improvements heuristics
have been developed as postoptimality procedures for these
approximation algorithms by modifying and shortening the
suboptimal solution path to be as close to optimal as pos-
sible [15].
While most research on arc routing problems focus on the

static environments, there has been work that address dynamic
graphs. Moreira et al. present a heuristic-based approach for
the Dynamic Rural Postman Problem (DRPP) [16]. They
frame the problem as a machine cutting application where
the graph changes as pieces of the cutting surface are cut
and removed. They introduce and compare two heuristics for
choosing the next edge to cut. While the run times they
obtained were reasonable, the solution paths generated were
not optimal.
In this paper, we present two contributions. First, we in-

troduce a general approach for the online coverage problem
with an incomplete prior map. As changes in the environment
are detected, we present a method for updating the graph
to reflect the new changes. Our approach uses the lower
complexity Chinese Postman algorithm within a branch-and-
bound framework to solve the harder Rural Postman problem.
Second, we present a new heuristic for path generation that
traverses the graph in such a way that when changes occur, the
heuristic helps keep the new coverage problem polynomial.
The rest of the paper is organized as follows. In Section II,

we introduce and describe each component of the coverage
algorithm. In the next section, we explain the set of tests we
conducted. The results are presented and discussed in Section
IV. Finally, we conclude and list future directions for this work.

II. COVERAGE ALGORITHM

A. Chinese Postman Problem
We assume the environment is initially known in the form

of a prior map. This prior map is converted into a graph
structure with goal locations as nodes in the graph and paths
between goals as edges in the graph. The first step in solving
the coverage problem is to assume the prior map is accurate
and generate a tour that covers all the edges in the graph. This
problem can be represented as a Chinese Postman Problem
(CPP).

(a)

(b)

Fig. 2. (a) We represent the prior map as a graph where edges (white lines)
denote the roads and vertices (stars) denote the road intersections. (b) Dotted
and solid lines represent the CPP solution and are super-imposed on the above
graph. Dotted lines denote edges that are traversed once and solid lines denote
edges that are traversed more than once.

Algorithm 1: Chinese Postman Problem Algorithm
Input: s, start vertex

G, connected graph where each edge has a cost value
Output: P , tour found or empty if no tour found
if IsEven(G) then1

P = FindEulerCycle(G, s);2
else3

O = FindOddV ertices(G);4
O′ = FindAllPairsShortestPath(O);5
Mate = FindMinMatching(O′);6
G′ = (G,Mate);7
P = FindEulerCycle(G′, s);8

end9
return P ;10

The CPP optimal tour consists of traversing all the edges
in the graph at least once and starting and ending at the
same node. To solve this problem, we used the Edmonds and
Johnson algorithm [17] [18], detailed in Algorithm 1.
The first step in the algorithm is to calculate the degree

of each vertex. If all the vertices have even degree, then the
algorithm finds an Euler tour using the End-Pairing technique
(line 2). If any vertices have odd degree, a minimum weighted
matching [19][20] among the odd degree vertices is found
using an all pairs shortest path graph of the odd vertices (line
5). Because the matching algorithm requires a complete graph,
the all pairs shortest pairs algorithm is a way to optimally
connect all the odd vertices. The matching finds the minimum
cost set of edges that connect the odd nodes (line 6). The
edges in the matching are doubled in the graph making the
degree of the odd nodes even (line 7). Finally, the algorithm
finds a tour on the new Eulerian graph (line 8).
We ran the CPP algorithm on the example graph shown

earlier. Since the graph is odd, a solution to the problem
requires some of the edges to be traversed more than once.
In Figure 2(b), the solution tour is depicted where the dotted
and solid lines represent edges traversed once and edges
traversed more than once, respectively.



B. Rural Postman Problem
In the Rural Postman Problem, there are two sets of graph

edges: required and optional. We define the required subset
of edge as coverage edges, and the optional subset as travel
edges. Any solution would include all coverage edges and
some combination of travel edges.
For combinatorial optimization problems such as the RPP,

a common planning framework is branch-and-bound [21].
Branch-and-bound is a method of iterating through a set of
solutions until an optimal solution is found. It consists of two
steps, a branching step and a bounding step. In the branching
step, the algorithm forms n branches of subproblems where
each subproblem is a node in the branch-and-bound tree. The
solution to any subproblem could lead to a solution to the
original problem. In the bounding step, the algorithm computes
a lower bound for the subproblem. These lower bounds enable
branch-and-bound to guarantee a solution is optimal without
having to search through all possible subproblems. Branch-
and-bound is a general method for handling hard problems
that are slight deviations from low complexity problems even
though faster, ad hoc algorithms exist for each deviation. The
process of partitioning the problem into subproblems works
to our advantage since it enables the use of the applications
of low complexity algorithms like the CPP as bounds on the
subproblems.
In our approach, we use the branch-and-bound approach to

iterate through all combinations of travel edges. We call the
set of travel edges our partition set. At each branching step,
we generate two subproblems by including and excluding a
travel edge. Next, each subproblem in the branch-and-bound
tree is solved using the CPP algorithm. The cost of the CPP
solution is the lower bound on the cost of the RPP for the
particular branch. If the travel set is large, this method can be
computationally expensive.
To keep computation costs low, we reduce the partition set

given to the branch and bound algorithm. First, we define a
few terms used in the algorithm. A coverage or travel vertex
is a vertex in the graph incident to only coverage or travel
edges, respectively. A border vertex is a vertex in the graph
incident to at least one coverage edge and at least one travel
edge. A travel path is a a sequence of travel segments and
travel vertices connecting a pair of border vertices. Finally,
an optimal travel path (OTP) is a travel path connecting a
pair of border vertices such that it is the lowest cost path (of
any type) between the vertices, and the vertices are not in the
same cluster (i.e., there is no path consisting of just coverage
segments between them). In other words, OTPs are shortest
paths between clusters of coverage segments that do not cut
through any part of a coverage cluster. Additionally, we modify
the CPP algorithm to permit the use of travel edges as part of
the shortest path between the set of odd nodes. This allows
the CPP to reason directly about the paths that cut through
coverage clusters.
All the OTPs are computed by finding the lowest cost path

pij (searching over the entire graph) between each pair of
border vertices vi and vj in different clusters. If pij is a travel

path, we save it as an OTP. If pij is not a travel path, then vi
and vj do not have an OTP between them (i.e., pij = NULL).
The OTPs become our partition set. The OTPs are unlabeled at
the beginning of the algorithm. We iterate through the OTP set
within the branch-and-bound framework. At each branch step,
the algorithm generates a new subproblem by either including
or excluding an OTP. At the beginning of the RPP algorithm
shown in Algorithm 2, we assign cost 0 to the unlabeled OTPs
and solve the problem with all the OTPs set as required edges
using the CPP algorithm (lines 2,3). The problem and CPP cost
are pushed onto a priority queue (line 4). The CPP cost is the
lower bound on the problem since all the OTPs have zero cost.
While the queue is not empty, the lowest cost subproblem is
selected from the queue (lines 5,6).

Algorithm 2: Rural Postman Problem Algorithm
Input: s, start vertex

G = (C, T ), graph where each edge has a label and a
cost value. C is the subset of coverage edges, and T is
the subset of travel edges
OTP , subset of OTPs

Output: P , tour found or empty if no tour found
pq = [];1
G′ = [G,OTP ] where ∀OTP , cost(pij) = 02
P = CPP (s,G′);3
AddToPQ(pq, [G′, P ]);4
while !isEmpty(pq) do5

[G′, P ] = PopLowestCost(pq);6
pij = FindMaxOTP (G′);7
if pij == [] then8

return P ;9
end10
G′′ = IncludeEdge(G′, pij);11
P1 = CPP (s,G′′);12
AddToPQ(pq, [G′′, P1]);13
G′′ = RemoveEdge(G′, pij);14
P2 = CPP (s,G′′);15
AddToPQ(pq, [G′′, P2]);16

end17
return []18

For the subproblem, the algorithm selects an unlabeled OTP
pij with the highest path cost (line 7). By employing this
strategy of choosing the OTP with the highest path cost, our
aim is to increase the lower bound by the largest amount,
which may help focus the search to the correct branch and
prevent extraneous explorations. Once an OTP pij is selected,
two branches are generated; the first branch includes pij in the
solution (line 11), this time with the real path cost assigned,
and the second branch omits pij from the solution (line 14). A
solution to each branch is found using the CPP algorithm (lines
12,15). Because each solutions is generated with a cost of 0
assigned to the unlabeled OTPs in the subproblem, the costs
of the inclusion and exclusion CPP solutions represent lower
bounds on the cost of the RPP with and without using pij for
travel, respectively. These new subproblems are added to the
priority queue (lines 13, 16), and the algorithm iterates until
the lowest cost problem in the queue contains no OTPs (line
8). The solution to this problem is the optimal solution to the
RPP since it has either included or excluded every single OTP



in the solution, and has a path cost that is equal to or lower
than the lower bounds of the other branches. The branch-and-
bound algorithm for the RPP is an exponential algorithm with
a complexity of O(|V |32t) where t is the number of OTPs and
|V | is the number of vertices in the graph.

C. Online Changes
Dynamic changes occur when the environment differs from

the original map. There are two categories of planners that
handle these differences. Contingency planners model the un-
certainty in the environment and plan for all possible scenarios.
Assumptive planners [22] presume the perceived world state
is correct and plan based on this assumption. If disparities
arise, the perceived state is corrected and replanning occurs.
We choose to use the lower complexity assumptive planning
in order to generate solutions quickly.
In our planner, an initial plan is found based on the graph of

the environment. As the vehicle uncovers differences between
the map and environment during traversal, the algorithm prop-
agates them into the graph structure. This may require a simple
graph modification such as adding, removing, or changing the
cost of an edge. But it can also result in more significant graph
restructuring. As mentioned earlier, these changes may convert
the initial planning problem into an entirely different problem.
For the coverage problems we are addressing in this work,

most changes to the environment are discovered when the
robot is actively traversing the space. These online changes are
typically detected when the robot is not at the starting location,
but at a middle location along the coverage path. At this point,
some of the edges have already been visited. Because it is not
necessary to revisit the edges that are already traversed, the
visited edges in the previous plan are converted to travel edges.
As shown in Algorithm 3, if the unvisited edges in the new
problem are connected, we run the CPP algorithm; otherwise,
we run the RPP.
When environmental changes are found online, replanning

is done on the updated graph with different starting and ending
vertices. To remedy this disparity, we add an artificial edge
from the current vehicle location c to the ending vertex s in
the graph (line 3). This edge (c, s) is assigned a large cost
value to prevent it from being doubled in the solution. Using
this modified graph, a tour from s to s is found. The edge
(c, s) is then deleted from the graph and from the tour (line
11). The algorithm adjusts the coverage path to start at the
current location and travel to the end location (line 12). The
table below shows the details for adjusting the path. The terms
on the left hand side indicates the four possible initial path
configurations where s→c indicates an edge. The terms in
the middle are the procedures for adjusting the specific path,
and the terms on the right are the final paths returned by the
coverage algorithm.

s...s→(c...s) ⇒ (c...s)→s...s ⇒ c...s...s
(s...c)→s...s ⇒ Reverse(s...c)→s...s ⇒ c...s...s
s→(c...s) ⇒ (c...s)→s ⇒ c...s
(s...c)→s ⇒ Reverse(s...c)→s ⇒ c...s

Fig. 3. During traversal of the CPP solution, the robot discovers that the
third edge in the path is missing and ends the traversal. Dotted lines denote
edges that are traversed once and solid lines denote edges that are traversed
more than once.

Fig. 4. To prevent visiting edges that have been already traversed, the
graph is modified by setting the traversed edges to be travel edges which
are represented by gray lines.

We now step through an example that illustrates the online
coverage algorithm. In Figure 2(b), a CPP solution of the
example graph is shown. In Figure 3, the vehicle traverses
the initial CPP path until it discovers the third edge in its
path is missing. The vehicle does not know about this change
until it reaches the previous edge. The algorithm then sets the
traversed edges in the path to be travel (Figure 4) and replans a
new coverage tour shown in Figure 5. However, it encounters
another missing edge as it travels along the new path. The
traversed edges in the previous path are also converted to travel
edges (Figure 6) and a final plan is found (Figure 7).
Algorithm 3: Online Coverage Algorithm
Input: s, start vertex,

c, current vertex,
G = (C, T ), graph where each edge has a label and a
cost value. C is the subset of coverage edges, and T is
the subset of travel edges
OTP , subset of OTPs

Output: P , tour found or empty if no tour found
G′ = G;1
if c "= s then2

G′ = [G, (c, s, INF )];3
end4
if IsConnected(C) then5

P = CPP (s,G′);6
else7

P = RPP (s,G′, OTP );8
end9
if c "= s and P "= [] then10

RemoveEdge(P, (c, s, INF ));11
AdjustPath(P, c, s);12

end13
return P ;14

D. Farthest Distance Heuristic
In our algorithm, when a robot encounters a change at a

particular node, these changes are obstacles which prevent the
robot from completing the current coverage solution. As a
result, the problem needs to be re-solved with the previously



Fig. 5. The planner replans a new tour for the modified graph starting at the
current location. During its new traversal, the robot discovers another edge in
the path is missing and stops traversal.

Fig. 6. For replanning, the traversed edges are again set to be travel edges,
denoted by gray lines, in the graph.

traversed edges converted to travel edges. The number of
optimal travel paths can be very large if the travel edges
break the coverage subgraph into a large number of connected
components. Therefore, to maintain efficiency, we want to
keep the number of coverage clusters close to one. Ideally, we
want the coverage subgraph and travel subgraph to be mutually
independent. This would ensure that the required subgraph is
connected, which is important for maintaining the coverage
problem as a CPP, and maximize the likelihood that when the
next change is detected, the travel edges do not disconnect the
coverage components.
In the CPP algorithm, we use the End-Pairing technique

to generate the Eulerian cycle from the graph. The algorithm
consists of two steps. First, it builds cycles that intersect at at
least one vertex. Next, the cycles are merged together two at
a time by adding one cycle onto another at the intersecting
vertex. The cycle building step is shown in Algorithm 4.
During each step of the algorithm, edges are added to a path
sequence and removed from the graph until the starting node of
the path is encountered. In the original End-Pairing algorithm,
the heuristic for choosing the next edge to add to the sequence
consisted of picking a random edge incident to the current
node.
To maintain a small coverage component set, we intuitively

want to choose edges in such a way that the path travels
away from the start and then travels back always visiting the
farthest unvisited edges until it reaches the start. Essentially the
coverage path should be always walking along the boundary
of the coverage subgraph. This will allow the edges around

Fig. 7. The final path is replanned for the updated graph. This path starts
at the node where the previous traversal ended.

the start to be as connected as possible while separating the
coverage and travel subgraphs. This idea is translated into
the Farthest Distance heuristic shown in equation 1 where s
is the start node, i is the current node, {i, j} is the set of
edges incident to i, and D calculates the number of edges
in the shortest path between s and j. To reduce computation
time, we used D* Lite [23] to compute D(s, j) since s is the
same for each cycle generation step. In our CPP algorithm,
we modified the End-Pairing algorithm to use the Farthest
Distance heuristic to choose the next edge to add to the path.

e = argmax∀{i,j}D(s, j) (1)

Algorithm 4: Cycle Building Algorithm
Input: s, start vertex,

G, graph
Output: C, cycle found
C = [s];1
i = s;2
e = NextEdgeHeuristic(G,s, i);3
i = OtherEndPoint(e, i);4
while i "= s do5

e = NextEdgeHeuristic(G,s, i);6
i = OtherEndPoint(e, i);7
C = [C; i];8
RemoveEdge(G,e)9

end10
return C;11

III. COMPARISON TESTS
The goal of our testing is to compare the Farthest Distance

heuristic against the original heuristic of randomly selecting
a neighboring edge as the next edge. For the tests, we vary
four different parameters: traversal heuristic, graph, starting
node s, and set of changes. At the beginning of the test,
the graph is connected and has no travel edges. Using the
CPP algorithm, a tour is computed. The test simulates a robot
executing the tour starting at node s. If along the execution,
the next edge to be traversed is in the change set, that edge
is considered blocked. It is removed from the graph, and the
graph is updated to reflect the visited edges and current vertex
location. The updated graph is either a CPP or RPP, and the
coverage algorithm calls the corresponding method to find a
new solution. The execution is simulated again until another
edge along the new path is found to be blocked or the traversal
is completed.
We conducted two sets of tests. The first test set evaluated

the two heuristics on rectilinear graphs, and the second set
evaluated the heuristics on a real-world road network. We will
first explain the procedure for each test set, and then present
the metrics for comparing the two heuristics. The code ran on
a machine with a 3.8GHz Intel Xeon processor with 5GB of
RAM.

A. Rectilinear Graphs
Rectilinear graphs are graphs where the vertices were gen-

erated uniformly in the plane. Edges connect one vertex to its
four closest neighbors, and are vertical and horizontal lines that



Fig. 8. This is the road network we used as our real-world example. This
network covers an area of 1.5 miles by 2 miles. The edges and nodes included
in our graph are highlighted in gray.

represent the Euclidean distance between the vertices. In other
words, these graphs consist of a regular pattern of nodes and
edges. We chose rectilinear graphs because they are similar to
the networks used in many coverage applications. For example,
in street coverage, the graph layout is similar to a grid where
all streets (edges) meet at intersection points (nodes), and most
intersections are four ways.
For our testing, three graph sizes were used; the sizes are

|V | = {10 × 10, 14 × 14, 17 × 17}. Five change sets were
randomly generated for each of the three graphs. The change
sets consisted of thirty different edges. We chose thirty because
it is a significant number of changes (10% to 30% of the
total edges in the graphs), but is a small enough number
to keep computation low. For each of the graph-changeset
combinations, we varied the starting node over all the nodes
in the graph to avoid bias. Therefore, the coverage algorithm
was called 3×5×30× |V | times for each of the two heuristics
where |V | is the number of nodes in the graph.

B. Real-world Example
The real-world example we used for testing is the road

network of an urban neighborhood obtained from a dataset
gathered by Newson and Krumm [24]. The network is shown
in Figure 8. We converted the network into a graph with 764
vertices and 1130 edges. We generated five sets of changes for
the data. Each change set consisted of five edges. Because the
graph was so large, instead of varying the starting node over
all nodes in the graph, we sampled a set of fifty distinct nodes
for each change set. The samples were consistent for the two
heuristics. In total, this test set yielded 5× 5× 50 replans for
the two heuristics.

C. Metrics
During each call to the coverage algorithm, the following

items were measured: the number of connected coverage
components in the graph, the number of optimal travel paths
in the partition set, the number of branches in the search tree,
the percentage of replanning calls that are CPP calls rather
than RPP calls, and the computation time in seconds. Since
the number of replanning calls was large, we placed a time

limit on the branch-and-bound algorithm. The time limit was
70 seconds for rectilinear graphs and 100 seconds for the road
network. If a replan was unable to produce a coverage path
within the time limit, the particular test set failed.

IV. RESULTS
Before presenting the results, we first highlight some aspects

of the graphs to supplement the results. This information is
shown in Table I. The first two columns display the number
of nodes and edges in the graphs. The last two columns show
the mean and standard deviation of the degrees of the vertices.

TABLE I

|V | |E| Mean Degree Std Dev
10×10 180 3.6 0.57
14×14 364 3.7 0.50
17×17 544 3.8 0.47
764 1130 2.96 1.00

Results from the testing are presented in Tables II through
V. The first table shows the average percentage of calls to
the CPP algorithm over all trials, average computation time
for successful trials, and the success percentage. The success
percentage is the average number of successful replans over
the total number of trials for each graph-heuristic combination.
The second table shows the number of coverage components in
the problem for each replan, number of OTPs when the number
of components is greater than 1, and number of branches in
the branch-and-bound tree for each RPP call. These values
are computed only on the successful trials since the failed
trials never return a solution path. Each column contains
two numbers. The first number in the column represents the
average for the metric and the second number represents the
maximum.
A. Rectilinear Graphs
For the rectilinear graphs, the Farthest Distance heuristic

performed a factor of two better than the random heuristic
in percentage of CPP calls as shown in Table II. Using
the heuristic, on average 96% of the replans resulted in
graphs where the coverage subgraph was connected (number
of connected components is one) and the lower complexity
CPP was used. For the random heuristic, roughly half of the
graphs were CPP graphs meaning half were the harder RPP
problems. Furthermore, with our traversal heuristic, when the
RPP algorithm did get called, the run time for all trials was
never more than 70 seconds which results in 100% success.
While the random heuristic did well on the 10×10 rectilinear
trials with 84% of the replans successful, as the graph size got
larger, the computation time for replans took longer and the
success percentage went down to roughly 43%.
Looking at Table III, we can see that on average, the Farthest

Distance heuristic keeps the number of connected coverage
components smaller. Furthermore, when branch-and-bound is
needed, the heuristic generates problems with a smaller set of
OTPs. This smaller set translates to a shallower search tree.
In terms of computation times, the Farthest Distance heuristic
performs roughly 150 times better than the random heuristic.



B. Real-world Example
For the road network, the Farthest Distance heuristic per-

formed more than a factor of two better than the random
heuristic in maintaining connectivity among the coverage
edges as shown in Table IV. When using the random heuristic,
due to the high number of calls to the RPP algorithm, the run
time on the majority of the trials exceeded the time limit. In
contrast, the Farthest Distance heuristic had 98.4% success
rate. Part of the reason for the drastic difference in successes
was due to the large size of the graph (this graph is more than
twice the size of the 17× 17 graph). This resulted in the RPP
algorithm needing more computation time. As shown in Table
V, the number of connected components was similar for both
heuristics. For the branch-and-bound data, we can see that the
number of OTPs for the Farthest Distance heuristic was half
the number of OTPs for the random heuristic which led to a
smaller search tree.

C. Evaluation of the Coverage Algorithm
So far, we have shown comparison results regarding the

Farthest Distance heuristic and the random heuristic. Next, we
want to show some results of the coverage algorithm. From
the road network data, we calculated the ratio of the travel
edges over the total number of edges in the graphs for all the
trials. The mean of the distribution was 0.44 with a standard
deviation of 0.28. This denotes the travel set ranged from
almost zero to almost the entire graph. Next, we calculated

TABLE II

Computational results I for Rectilinear Graphs
|V | Heuristic CPP Calls Time(s) Success Percentage

10×10 Random 46.67% 1.68 84.21%
FarDist 92.19% 0.01 100.0%

14×14 Random 55.18% 3.02 51.08%
FarDist 97.63% 0.02 100.0%

17×17 Random 59.59% 3.25 42.57%
FarDist 98.66% 0.02 100.0%

TABLE III

Computational results II for Rectilinear Graph
|V | Heuristic Components OTPs Branches

10×10 Random 2.11, 9.0 35.62, 153.2 352.45, 7823.8
FarDist 1.08, 3.8 9.42, 38.8 15.86, 268.6

14×14 Random 1.67, 7.2 38.96, 204.4 276.03, 3773.6
FarDist 1.03, 3.6 11.30, 36.6 24.42, 324.0

17×17 Random 1.52, 6.6 38.79, 244.2 182.52, 2135.2
FarDist 1.01, 2.8 11.97, 30.4 18.66, 106.2

TABLE IV

Computational results I for Road Network graph
|V | Heuristic CPP Calls Time(s) Success Percentage

764 Random 34.39% 12.63 30.40%
FarDist 87.25% 1.14 98.40%

TABLE V

Computational results II for Road Network data
|V | Heuristic Components OTPs Branches

764 Random 1.62, 4.0 23.59, 56.6 53.47, 326.4
FarDist 1.14, 2.8 12.44, 40.0 18.65, 63.6
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Fig. 9. This graph shows the cor-
respondence between the number
of travel edges, along the x-axis,
and the number of OTPs, along the
y-axis, for the road network data.
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Fig. 10. This figure shows the
relationship between the OTP set
size, along the x-axis, and the num-
ber of branches in the search tree,
along the y-axis, for the road net-
work data.
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Fig. 11. This figure shows the
relationship between the OTP set
size, along the x-axis, and the com-
putation time (shown in seconds),
along the y-axis for the road net-
work data.
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Fig. 12. This figure shows the
relationship between the OTP set
size, along the x-axis, and the com-
putation time (shown in seconds),
along the y-axis for the rectilinear
graph data.

the size of the OTP sets that corresponded to each travel set
(Figure 9). The ratio of the OTPs to travel edges has a mean
of 0.08 with a standard deviation of 0.14. This indicates that
our coverage algorithm dramatically reduced the partition set
given to the branch-and-bound algorithm through the use of
OTPs.
Next, we show how the smaller partition set affected the

search tree and run time. From Figure 10, the maximum
number of branches in the search tree was 435. Given that the
largest number of travel edges was 1085, if we had used the
travel edges as the partition set, the branch-and-bound problem
corresponding to the maximum set would need to solve at
least 1085 subproblems before finding the optimal solution.
The smaller search tree translated into faster computation as
evidenced in Figure 11. Similarly, the relationship between
the number of OTPs and run time for the rectilinear graphs is
shown in Figure 12.

D. Discussion
The results show that the Farthest Distance heuristic im-

proves the percentage of CPP calls by a factor of two. The
difference in the percentage between the rectilinear graphs
and the road network is due to the lower degree of the
vertices in the road network. As we can see from Figure 8,
the road network is not a completely regular grid. There are
intersections where more than four roads meet. Additionally,
there are streets that dead end in one direction. One aspect of
the graph that the heuristic relies on is that there is a path from
the start node to another node j in the graph, and a path from j



back to the start. This assumption depends on path redundancy
in the graph which may not hold for all graphs. For example,
in a graph that contains bridges, the coverage problem will
almost definitely become the more complex RPP when graph
changes occur. This is due to the fact that converting a bridge
edge to a travel edge will usually separate the start node
and the remaining unvisited edges into different components.
Hence, covering a graph with multiple bridges will limit the
performance of not only the Farthest Distance heuristic, but
also the random heuristic.
As shown in the results, the coverage algorithm greatly

reduces the size of the partition set used to search for a
solution. By limiting the branch-and-bound algorithm to only
reason about the travel edges that make up the optimal path
between boundary nodes, the faster CPP can be used to
evaluate the remaining travel edges. For the RPP algorithm,
the results show lower computation time on rectilinear graphs
than for the road network graph. This is due to the smaller
problem sizes of the rectilinear graphs. The larger problem
size not only increases the run time of the CPP algorithm, but
it also increases the time it takes to generate the OTP set.

V. CONCLUSION AND FUTURE WORK
We present a general approach to the online coverage

problem with an incomplete prior map. By representing the
environment as a graph, our algorithm leverages the lower
complexity Chinese Postman algorithm to produce optimal
coverage solutions. This algorithm enables a faster run time
by reducing the partition set to sequences of edges rather
than single edges. Our algorithm is highly efficient when the
number of OTP edges is small compared to the number of
travel edges since it can exploit the faster CPP algorithm.
This means a better connected graph can greatly decrease the
computation time of our general coverage algorithm.
To improve the connectivity of the coverage graph when

changes occur, we introduce a heuristic for generating the
coverage path. Results from testing show that the Farthest Dis-
tance heuristic performs much better than the random heuristic
in keeping the problem polynomial. One of the benefits of
the Farthest Distance heuristic is that it is independent of
our coverage algorithm. For example, it can be added to any
coverage approach, either optimal or approximate, as a way
to lower the complexity of the coverage problem when graph
changes occur online.
For future work, we plan to test this method on a physical

robot with real-time sensor updates to gather practical results
of our approach. We also plan to extend this approach to
directed and mixed graphs. Finally, we intend to investigate the
potential of using the Farthest Distance heuristic on additional
arc-routing problems.
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