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Abstract—We present PLISS (Place Labeling through Image
Sequence Segmentation), a novel technique for place recognition
and categorization from visual cues. PLISS operates on video
or image streams and works by segmenting it into pieces
corresponding to distinct places in the environment. An online
Bayesian change-point detection framework that detects changes
to model parameters is used to segment the image stream. Unlike
current place recognition methods, in addition to using previously
learned place models for labeling, PLISS can also detect and
learn a previously unknown place or place category in an online
manner. Moreover, since both the inferred boundaries of places
(change-points) and the place labels are fully probabilistic, they
can indicate when the inference is uncertain. New places and
categories are detected using a systematic statistical hypothesis
testing framework. We present extensive experiments on a
large and difficult image dataset. We validate our claims by
comparing results obtained using different types of features and
by comparing results from PLISS against the state of the art.

I. INTRODUCTION

Place recognition is the task of consistently labeling a
particular place every time it is visited, while place catego-
rization is the corresponding problem for a category of places.
Such labels may range from “Place No. 1” and “Kitchen
on 2nd floor with microwave and coffee machine”, which
are labels for particular places, to “Kitchen” and “corridor”,
which are category labels. Place recognition and categorization
are essential in order for a robot or an intelligent agent to
recognize places in a manner similar to that done by people.
Place recognition facilitates human-robot communication [28]
and is an integral part of semantic mapping procedures [35].
For instance, the label of a place strongly affects, among other
things, the types of objects found there[29].

Most existing place recognition systems assume a finite
set of place labels, which are learned offline from supervised
training data. This is done using classifiers, which then cat-
egorize places based on input measurements during runtime.
Classifier-based systems have the advantage of simplicity but
also have many corresponding disadvantages

1) If a label category has large variation in measurements
(for e.g., offices are vastly dissimilar in all aspects), a
huge training set is necessary for adequate performance

2) The system is constrained to classify the input into the
specified category set and cannot recognize the existence
of a new label

3) Temporal consistency in the output labeling has to be
externally enforced since the classifier simply labels
each measurement individually

Figure 1. Place labeling using PLISS: Output is for an image sequence of
1043 frames containing 5 labels. Thumbnails of the images are shown on top,
followed by groundtruth and maximum-likelihood output labeling. Many, but
not all, changes in labels correspond to visible changes in appearance of the
image thumbnails. The change-point posterior on segment lengths is shown
at the bottom with darker regions denoting higher probability.

In this paper, we present a new place recognition method
called PLISS, for Place Labeling through Image Sequence
Segmentation, which tackles these problems. As its name
suggests, PLISS works with video or image streams, thus in-
trinsically considering the temporal component of the problem.
We take the novel approach of using change-point detection
to segment the image streams into portions corresponding to
places. Change-point detection is the problem of detecting
abrupt changes to the parameters of a statistical model. The
locations of these abrupt changes within the image stream are
also the place boundaries, where a place is entered or exited.

We use an online Bayesian change-point detection algorithm
that computes the probability of a change-point occurring at
each timestep. The algorithm keeps track of all possibilities
and does not make an irrevocable decision at any step. The
probability of a change-point at any given timestep is obtained
by combining a prior on the occurrence of change-points
with the likelihood of the current measurement given all
the possible scenarios in which change-points could have
occurred in the past. We demonstrate that this computation
can be done exactly for certain classes of prior and likeli-
hood functions. Since the memory requirement for the exact
algorithm increases linearly with the number of measurements
processed thus far, we also provide an approximation using
Rao-Blackwellized particle filters that is fast and requires only
constant memory.

While change-point detection provides boundaries, the place



label is assigned probabilistically based on the measurement,
the most recent label, and the change-point distribution. Sta-
tistical hypothesis testing is used to determine if the current
measurement could have been generated by any of the pre-
learned place models. If this is not the case, the measurement
is declared to have come from a previously unknown place. In
this manner, PLISS can systematically recognize a previously
unknown place type and assign it a new label if required.
Further, PLISS can learn and update place models online,
which is helpful in cases where measurements from the same
category show variation (albeit only if the variation is gradual).
Hence, PLISS can operate with labeled data, which is used to
learn place models at training time, or without it, when it
recognizes new place categories as they arise and learns place
models for them online.

We model places using the Multivariate Polya distribution,
also known as the Dirichlet Compound Multinomial (DCM)
model [19]. The DCM is a bag-of-words model and captures
burstiness of the data, i.e. it models the observation that if a
word occurs once in a document, it usually occurs repeatedly.
We use the DCM model to model histogram measurements
obtained by quantizing dense features computed on the images.

A sample result from PLISS on a sequence with 5 labels is
shown in Figure 1. To test our claims, we present experiments
on the large and difficult Visual Place Categorization (VPC)
dataset [32]. We also provide comparisons using different
types of features, as well as comparisons of the performance
of PLISS against the VPC system [33].

II. RELATED WORK

Work on place recognition in robotics has ranged over
matching SIFT features across images [37] or other derived
measures of distinctiveness for places such as Fourier signa-
tures [18], subspace representations [11], and color histograms
[31]. These methods have the disadvantage of not being able to
generalize and also are invariant to perspective mainly through
the use of omnidirectional images. Many approaches that
generalize well, learn classifiers, such as SVMs, for each place
from labeled data [25], [27]. A very recent system by Pronobis
et al [24] focusses on merging cues from different sensing
modalities, the output for each of which is obtained from
individually trained SVMs. These, and similar classifier-based
approaches cannot detect or learn previously unknown places
and place categories, in contrast to PLISS. Place classification
methods based on laser and sonar range scans also exist [13],
[20], though we do not review them here.

In computer vision, place classification is also known as
scene classification and image categorization. Two broad meth-
ods can be discerned - those that model local features [2] and
distinctive parts of images[26], and those that extract global
representations of images and learn from them[22][10][3]. The
latter is closer to this work and includes the CENTRIST-
based VPC system [33], and Spatial Pyramid Matching [15].
These methods also use classifiers to learn place categories
and cannot detect new categories online. Further, they do not
deal with image streams and videos except when filtering

Figure 2. Change-point detection: (a) Univariate Gaussian input data
(blue/dashed) with 4 segments and inferred segment means (in black) (b)
Groundtruth for change-points shown as length of segments, which is the
variable ct used in our inference. (c) Output of change-point detection which
is probability distribution on ct.

procedures are added on top to get temporal consistency [33].
Other approaches use keypoint matching for location recogni-
tion based on image retrieval [21][6] but cannot generalize.

Change-point detection has a long history in statistics and
the best-known technique is the CUSUM detector [23] which
involves piece-wise segments of Gaussian mean with noise.
A more realistic method is segmented regression [7]. In our
exposition, we closely follow the more general methods of
[1], [9] which is applicable to conjugate-exponential models.
Many applications in computer vision have used change-point
detection previously[36][30][5]. However, to our knowledge,
this is the first application of change-point detection to place
recognition.

III. PLACE RECOGNITION USING CHANGE-POINTS

We formulate the place recognition problem as follows.
We are given a measurement stream that produces measure-
ments at (possibly changing) intervals, which we will also
call as timesteps. For each measurement, we are required
to come up with a label corresponding to the type of the
place. The place types are given in the form of L place
models M1,M2, . . . ,ML. We are also required to say if the
measurement does not correspond to any of these labels.

We approach the problem by noting that the place label
remains the same for the period of time when a robot is moving
inside the particular type of place. It only changes sporadically
when the robot travels into the next place. Thus, the measure-
ment stream can be segmented into pieces corresponding to
places, i.e. measurements in each segment are assumed to have
been generated by the corresponding place model. The start
and end of segments where the generating model changes,
hence called change-points, provide a very strong indication
regarding the place label.

We assume that a sequence of data y1, y2, . . . , yt can be
segmented into non-overlapping but adjacent segments. The
boundaries between these segments are the change-points. We
deal with the model-based change-point scenario here, wherein
the form of the probability distribution in each segment
remains the same and only the parameter value changes. We
assume that the data are i.i.d within each segment and denote
by ct the length of the segment at time t. Note that ct is also
the time since the last change-point. If the current timestep
is a change-point, then ct = 0, and if no change-points have
occurred yet, then ct = t. A sample problem setup and output



for change-point detection in the univariate Gaussian case in
shown in Figure 2.

We denote the place label at time t as xc
t . The place label

is indexed by the current segment since the whole segment
has a single label. However, this label is updated with each
measurement, and hence the time index t is also used. The
probability distribution over xc

t is taken to be a discrete
distribution of size L, one for each of the place models.
The case where the place label takes none of these values
is detected using statistical hypothesis testing.

We need to compute the joint posterior on ct and xc
t given

the data, p(ct, xc
t |y1:t), where y1:t denotes all the data from

time 1 to time t. The posterior can be factored as

p(ct, xc
t |y1:t) = p(ct|y1:t)p(xc

t |ct, y1:t) (1)

The first term is the posterior over the segment length while
the second term is the conditional posterior on the place
label given the segment length. Note that the posterior over
segment length is equivalent to inferring the change-points
since ct = 0 implies a change-point. Further, though the place
label posterior is conditioned on the segment length, this does
not imply that the place label can only change at a change-
point. Since the place label is updated at every timestep, the
algorithm can “change it’s mind” regarding the place label at
any point in time, given enough evidence.

We address change-point detection, i.e. computing p(ct|y1:t)
in the next section. The place label posterior p(xc

t |ct, y1:t) is
addressed subsequently in Section V.

IV. MODEL-BASED CHANGE-POINT DETECTION

In the following exposition, we closely follow [1] and [9],
both of which state essentially similar algorithms but with
different state representations. We represent the likelihood of
the data in segment ct as p(yt|ξc

t ) where ξc
t is a parameter set.

The data inside each segment are assumed to be i.i.d and the
parameters are assumed i.i.d according to a prior parameter
distribution.

The change-point posterior from (1) can be expanded using
Bayes law as

p(ct|y1:t) ∝ p(yt|ct, y1:t−1)p(ct|y1:t−1) (2)

The first term is the likelihood while the second term can be
further expanded by marginalizing over the segment length at
the previous timestep to yield a recursive formulation for ct

p(ct|y1:t−1) =
∑
ct−1

p(ct|ct−1)p(ct−1|y1:t−1) (3)

where p(ct|ct−1) is the transition probability, p(ct−1|y1:t−1)
is the posterior from the previous step, and we have made use
of the fact that c1, c2, . . . , ct form a Markov chain.

A. The Transition Probability

For characterizing the transition probability p(ct|ct−1) in
(3), we note that the only two possible outcomes are ct =
ct−1 + 1 when there is no change-point at time t, and
ct = 0 otherwise. Hence, this is a prior probability on the

“lifetime” of this particular segment where the segment ends if
a change-point occurs. In survival analysis, such situations are
routinely modeled using a hazard function, which represents
the probability of failure in a unit time interval conditional
on the fact that failure has not already occurred. If H(.) is a
hazard function, the transition probability can be modeled as

p(ct|ct−1) =

{
H(ct−1 + 1) if ct = 0
1−H(ct−1 + 1) if ct = ct−1 + 1

(4)

In the simplest case where the probability of a change-point at
every step is assumed constant, the length of a segment has to
be modeled using an exponential distribution with time scale
λ [9], so that H(t) = 1/λ.

B. The Data Likelihood

The data likelihood from (2) can be calculated only if we
know the distribution parameter to use. Hence, we integrate
over the parameter value using the parameter prior

p(yt|ct, y1:t−1) =
�

ξc

p(yt|ξc)p(ξc|ct, yc
t−1) (5)

where ξc is the model parameter for segment ct, and yc
t−1

is the data from the current segment. The above integral
can be computed in closed form if the two distributions
inside the integral are in the conjugate-exponential family
of distributions. Expensive numerical integrations have to be
employed otherwise. In the following exposition, we assume
the conjugate case.

Further, let the integrated function be denoted as p(yt|ct, ηc
t )

where ηc
t parametrizes the integrated data likelihood. Even

though this function is usually not in the exponential family,
it may be possible to update it directly using the sufficient
statistics of the data corresponding to the current segment
{yc

t−1, yt}, i.e. the integration need not be performed at every
step. In the case where t is a change-point, the function is
computed with prior values for η(0)

t (since ct = 0) instead of
any sufficient statistics.

C. Computational Cost

The algorithm described so far is exact. After n mea-
surements, the possible segment lengths range from 0 to n,
and the posterior contains the probability of all these cases.
Further, if the optimal change-point locations are also needed,
the posteriors from all timesteps have to be kept. Hence,
the runtime and memory costs per timestep are O(n) while
the total memory cost is O(n2). These requirements are
incompatible with long term online operation. Hence, we next
provide a simple and intuitive particle filtering approximation
that exhibits constant runtime and O(n) total memory cost.

D. Online Operation Using Particle Filtering

We need the locations of change-points and the exact al-
gorithm above accomplishes this by maintaining the posterior
over segment lengths ct for all t. We now approximate the
posterior using N weighted particles, thereby obtaining a
constant runtime algorithm.



Combining (2), (3), and (4) we get the segment length
posterior as

p(ct|y1:t) ∝

8<:w
(0)
t

P
ct−1

H(ct−1 + 1)ρt−1 if ct = 0

w
(c)
t

P
ct−1

{1− H(ct−1 + 1)} ρt−1 if ct = ct−1 + 1

(6)
where w

(c)
t = p(yt|ct, yc

t−1) and, for the case where t is a
change-point and yc

t−1 is the empty set, w(0)
t = p(yt|ct).

ρt−1 = p(ct−1|y1:t−1) is the posterior from the previous
timestep.

Clearly, the posterior (6) is amenable to straight-forward
use in a particle filter with wt as the particle weights. We use
the optimal stratified resampling method of [8] that ensures
runtime and memory usage proportional to the number of
particles, i.e. O(1) with regard to number of measurements
seen so far. The particle weights are given by (5).

Note that since the likelihood parameters ξc in (5) are
integrated out, this particle filter is Rao-Blackwellized [4] and
has lower variance than a standard particle filter. This also
makes the convergence of the algorithm more efficient.

V. INFERRING THE PLACE LABEL

The conditional posterior on the place label from (1) can
be expanded using Bayes law as

p(xc
t |ct, y1:t) ∝ p(yc

t |xc
t , ct)p(x

c
t |ct) (7)

where yc
t is the data in the current segment, i.e. yc

t =
{yt−ct

, . . . , yt}, since the place label only depends on these
measurements. If we have L place models M1,M2, . . . ,ML,
the probabilities of each of these cases can be updated using
(7). We simply use the label probability for the segment
computed in the previous timestep as the prior, i.e. p(xc

t |ct) =
xc

t−1. For a new segment with ct = 0, we set the prior to be
a uniform distribution over the known labels.

Detection of an unknown place requires more involved
calculation. In this case, we are required to show that the
data does not arise from any of the models corresponding to
known places. A systematic way of arriving at this conclusion
involves statistical hypothesis testing. Hence, at each timestep,
we perform L hypothesis tests to determine if the data arises
from a known place. If these tests are expensive, they may
also be performed once every T timesteps.

We now consider hypothesis testing for model Mi with
parameter vector η so that the exact probability under this
model is p0 = p(yc

t |η). The significance of the observed
data is the probability of all the data that is equally or less
probable (more extreme) under η, pσ =

∑
p(y|η)<p0

p(y|η).
This expression is exact but intractable for almost all but the
most trivial models. We approximate using the likelihood ratio
where the ratio of the model under the maximum likelihood
parameter value and the true parameter value is computed

R =
p0

p(yc
t |ηml)

(8)

where ηml = argmax η p(y
c
t |η).

The statistic used in the hypothesis test is −2 lnR, where
R is the likelihood ratio (8). This statistic can be shown to

converge to the Chi-squared distribution with k−1 degrees of
freedom [14] where k is the dimensionality of the parameter
vector θ. The model Mi can be rejected if the Chi-squared
probability is less than some threshold, usually set at 5% (0.05)
or 1% (0.01). The test statistic converges to the Chi-squared
distribution at the rate of O(N−1), where N is the number
of measurements used to compute the maximum likelihood
parameter value ηml [12]. In our case, each image feature is a
measurement, and since the number of features per image is
in the hundreds, convergence is not an issue.

We carry out the above test for each known place model
and declare the place to be previously unknown if the tests
reject all of them. Since the Chi-squared probabilities from
the test do not say anything about the probability of the
new label, the place distribution is set to a prior value for
unknown places p(x|new label), which in our case is set
so that the new label has probability 0.5 and all the other
labels are equally probable. The new place label can be either
stored for future reference along with the maximum likelihood
model parameters ηml, or be discarded if new places are of
no interest. Thus, PLISS can detect new places and learn
models for them online in contrast to most existing place
categorization methods.

In terms of implementation, we augment the change-point
algorithm of Section IV so that the discrete distribution on
places is stored with each segment ct. Similarly, in the particle
filter, each particle maintains a place distribution. The place
distribution becomes increasingly confident as the length of
the segment ct increases and is robust to noisy measurements
and outliers. However, since it is also recomputed with each
measurement, the algorithm does not make any irrevocable
decision with regard to the place label and can “change its
mind” given enough evidence. The cost of updating the place
distribution is linear in the number of labels and hence, does
not affect the runtime of the change-point algorithm.

VI. MEASUREMENTS AND PLACE MODELS

We model images using a “bag of words” model wherein
a histogram is used to represent the image. These histograms
are also used as input measurements to the PLISS algorithm.
First, in an offline phase, SIFT features are computed on a
dense grid on each of a set of images. The features are vector
quantized using K-means to create a codebook of pre-specified
size. Note that it is not necessary in this step for the image
set used to be similar to the test images, though better results
are obtained if this is true.

We compute a spatial pyramid [15] from the quantized
SIFT features which is used as input to the PLISS system.
The spatial pyramid is obtained by computing histograms, at
various spatial resolutions, of feature frequencies in each of
the codebook clusters. Following [15], we obtain successive
spatial resolutions by dividing the image into a grid as shown
in Figure 3. Note that only the histograms at the finest
resolution need to be computed since the coarser resolution
histograms can be obtained by simply adding the appropriate
histograms at an immediately finer level. All the histograms



Figure 3. The Spatial Pyramid histogram: Histograms of clustered SIFT
features, computed on image regions at different spatial resolutions, are
concatenated to yield the representation of the image. The image regions
are obtained by dividing it into successively finer grids.

from the different grids are then concatenated to yield the
spatial pyramid representation. The two parameters for com-
puting the spatial pyramid are thus, the number of levels in
the pyramid V and the number of clusters computed in SIFT
space (size of the dictionary) K. SIFT features only have local
information about an image patch while an image histogram
only has global information. By combining both of these at
different scales, the spatial pyramid obtains more fine-grained
discriminative power.

In addition to SIFT features, we also compute spatial pyra-
mids using two other features, CENTRIST [32] and texture,
which we now describe. CENTRIST is based on the census
transform [34], which is a local feature computed densely
for every pixel of an image, and encodes the value of a
pixel’s intensity relative to that of its neighbors. It was origi-
nally introduced for identifying correspondence between local
patches. The census transform is computed by considering a
patch centered at every pixel. The transform value is a positive
integer that takes a range of values depending on the size of the
patch. For instance, a patch size of 3, where there are 8 pixels
in the patch apart from the central pixel, yields transform
values between 0 and 255 (2^8 values). This is equivalent
to having a dictionary size of 256 without the need for the
clustering step. Computing a histogram of these 256 values
yields the CENTRIST (census transform histogram) descriptor.
Additionally, the census transform itself is extremely efficient
to compute. Hence, a spatial pyramid can be calculated much
faster using CENTRIST than using SIFT features.

We also compute a spatial pyramid using texture. Texture
is extracted using the 17-dimensional Leung-Malik filter bank
[17]. Similar to the case of SIFT features, an image set is used
on which texture is extracted and clustered using K-means to
obtain a set of textons. Histograms containing the proportions
of each of the textons are computed at different resolutions as
before to obtain the texture-based spatial pyramid.

Place Models Using Spatial Pyramids

The place model is used to compute the measurement
likelihood in (5). Since the measurements are histograms of
word counts, we model them using a multinomial distribution
having dimensions equal to the dictionary size. Further the
prior over the multinomial parameter is the conjugate Dirichlet

Figure 4. Graphical model illustrating the Multivariate Polya distribution.
To obtain a measurement z, which is a quantized feature histogram, we first
sample from a Dirichlet distribution with parameter α to obtain a Multinomial
vector θ . This Multinomial distribution is, in turn, sampled to obtain the
measurement histogram y. Note that a different θ has to be sampled for each
y. Each α corresponds to a place or place category.

distribution to aid in ease of computation. Given a histogram
measurement y, its likelihood according to (5) is

P (y|α) =
�

θ

P (y|θ)P (θ|α) (9)

where θ = [θ1, θ2, . . . , θW ] and α = [α1, α2, . . . , αW ] are the
multinomial parameter and Dirichlet prior respectively, and
W is the dictionary size. Assuming that the histogram y has
bin counts given by [n1, n2, . . . , nW ], the distributions in the
integrand above can be written as

p(y|θ) =
n!

n1!n2! . . . nW !
θn1
1 θn2

2 . . . θnW

W (10)

p(θ|α) =
Γ(

∑W
w=1 αw)∑W

w=1 Γ(αw)
θα1−1
1 θα2−1

2 . . . θαW−1
W (11)

The likelihood model in (9), where P (y|θ) is a multinomial
distribution (10) and P (θ|α) is a Dirichlet distribution (11),
is called the Multivariate Polya model [19], or equivalently
in document modeling, the Dirichlet Compound Multinomial
(DCM) model [16]. The DCM distribution models burstiness
in the data, i.e. given that a quantized feature appears once in a
document, it is much more likely for it to occur multiple times
rather than just once or twice. This is an intuitive observation
in all realistic image data, particularly since we are dealing
with densely computed features.

Performing the integration in (9), we get the final form of
the likelihood, which is also our place model, as

P (y|α) ∝ n!∏W
w=1 nw

Γ(|α|)
Γ(n+ |α|)

W∏
w=1

Γ(nw + αw)
Γ(αw)

(12)

where n =
∑

w nw, |α| =
∑

w αw, and Γ(.) denotes the
Gamma function. Graphical intuition for the DCM model is
provided by Figure 4. If the likelihood of a set of measure-
ments is to be computed, then n is taken to be the total counts
across all measurements, while nw is the total count for a
particular word.



Given a set of D images with features detected on them, the
maximum likelihood value for α can be found by optimizing
using gradient descent. It can be shown that this leads to the
following fixed point update for the α parameter[19]

αnew
w = αw

∑D
d=1 ψ(ndw + αw)− ψ(αw)∑D

d=1 ψ(ndw + α)− ψ(α)
(13)

where α =
∑

w αw as before, and ψ(.) is the Digamma
function, the derivative of the Gamma function. Faster but
more complicated updates using Gauss-Newton iterations also
exist [19].

We use DCM distributions as place models in PLISS. The
α parameter for each place is learned from labeled images in
an offline training phase, if training data is provided. During
runtime, the distribution is used to compute the likelihood (5),
and the α parameter is also updated after each measurement
using the iterative rule (13) or the slightly faster Gauss-Newton
updates. This facilitates online learning but if online learning
is not required, the updated parameter can be discarded at the
end of the segment.

Note that, since we are using spatial pyramids as input, it is
only required to model the histograms at the finest level using
the Multivariate Polya model since the coarser level histograms
are simply summations of these. Thus, for a pyramid with
V levels and level V = 0 denoting the whole image, the
dimensionality of α is 4V W . However, a value of V > 3 has
not been required in our experience. The expression for the
hypothesis testing statistic, which is −2 lnR where R is the
likelihood ratio, can also be easily obtained by substituting the
distribution expression (12) into the likelihood ratio (8).

A recap of the overall PLISS algorithm using the DCM
model is given in Algorithm 1.

VII. EXPERIMENTS

We tested the PLISS system extensively on actual image
data and describe the methodology and results here. The
PLISS system was implemented in Matlab with no attempt
made at any optimization. All parts of the algorithms, includ-
ing feature detection, were performed in Matlab.

We use the Visual Place Categorization (VPC) dataset [32]
for our experiments. The dataset consists of image sequences
from six different homes, each containing multiple floors. The
image set from each home consists of between 6000 and 10000
frames. In our experiments, we consider sequences from each
floor to be a different image sequence. The dataset has been
manually labeled into 5 categories to provide ground truth for
the place categorization problem. In addition, a “transition”
category is used to mark segments that do not correspond
clearly to any class. The VPC dataset is significantly difficult
since no effort has been made to keep all the images in the
sequence informative. Thus, a number of images contain only
a wall, which is something that could also be expected when
a robot is moving around.

We computed SIFT features on a grid having width and
height 8 pixels per cell. Features were computed on 16x16

Algorithm 1 Particle filtering algorithm for PLISS with online
learning using the Multivariate Polya model

1) Initialize: Set prior parameter α0. For all particles, c0 = 0
and x0

0 = unif (unif. dist. over known labels).
2) Update particle set:

For every timestep t do -
For every particle {wt−1, ct−1, x

c
t−1, α

c
t−1} do

• Create two new particles (1) No change-point case l1 =
{wt−1, ct−1 + 1, xc

t−1, α
c
t−1} (2) change-point l2 =

{wt−1, 0, unif, αc
t−1}

• Compute the prior for the (4) and update weights of l1
and l2

• Using yt, learn new parameter αc
t for l1 using (13) and

set parameter α0
t for l2 to α0

• Compute incremental weights for l1 and l2 from likeli-
hood function (12) and multiply with particle weights

3) Resample from weights to get new set of particles
4) Update place distributions:

For every particle {wt, ct, x
c
t−1, α

c
t} do

• Perform a statistical hypothesis test using the likelihood
ratio test (8) for each known place model

• If a test indicates yc
t to be arising from an existing place

model, update xc
t−1 using (7) to get xc

t

• If all existing place models are rejected, create new place
label and set xc

t to the prior distribution p(x|new label)

Figure 5. Results with no training data: (a)Change-point detection perfor-
mance for PLISS using various feature types (b)Place labeling accuracy

image patches. The features were clustered to obtain a dic-
tionary of size 256. For the CENTRIST features, we used
patch sizes of 3x3 and 5x5. While the natural dictionary size
of 256 was used for the 3x3 case, we clustered the census
transform obtained from the 5x5 case to obtain 256 clusters.
The number of textons generated for the texture features was
also 256. We used a two-level pyramid to compute the spatial
pyramid histogram in all cases. In experiments without training
data, the dictionary was computed using K-means clustering
of features extracted from a set of 500 images drawn randomly
from the VPC data. Prior values for the place model parameter
α to be used in the likelihood computation (5) at a change-
point (when no data is available for the segment) were learned
from this same 500 image set. The significance level for the
hypothesis tests was set at 1%. The prior distribution for a
new label p(x|new label) was set to 0.75 for the new label
and equal probability for the others. All results were obtained
using the particle filtering algorithm with 100 particles, as this
gave similar results to the exact algorithm.



Figure 6. Maximum likelihood output labeling for the 1st floor image sequence from Home 3 of the VPC dataset, which is one of the more difficult ones
and contains 6839 images. Thumbnails of original images, groundtruth labeling and the PLISS result are shown. Note that it is possible to spot many of the
change-points from just the high-level image characteristics visible here but not all of them.

A. Experiments Without Offline Training

Almost all existing place recognition systems would be
unusable if no training data were available. However, PLISS
is still able to segment the data into pieces corresponding to
different places and learn their models online. Hence, this
experiment also tests the online learning capability of our
system. Output was obtained for six image sequences from
the VPC dataset containing a total of 14,346 frames. The
total number of changepoints in these sequences, taken to be
frames where the place label changes, was 76. The change-
point detection performance using various features is shown in
Figure 5(a). SIFT features perform best while texture features
perform the worst. The system was declared to have found the
change-point if it fired within 20 frames of the groundtruth.
Note that many of the change-points, especially involving
“transition” regions, are hard to recognize even for people.

Place labels for the sequences were also learnt online, and it
was expected that the system would give the same place label
when returning to a specific place but not when encountering
another place with the same category label. The labeling was
modified manually to reflect this for the six sequences and
39 distinct places were labeled. Results for place labeling are
given in Figure 5(b). Considering that no training data has been
used, the results are very promising when compared with the
VPC system (Figure 8).

B. Place Recognition and Categorization

We next present experiments on specific place recognition
which differs from the task of place categorization. The same
six sequences were used, with 39 distinct labeled places, as
in the previous experiment. We trained the system on every
3rd image and its corresponding label from these sequences
to obtain the place models for each place. Note that k-means
clustering and prior learning were done on the whole training
set. Results obtained on the 9564 test image frames are given
in Figure 7. The recognition rates are much higher since the
training data and test data are similar, due to which all three
features also yield similar results. While a more realistic test
would also account for variation in lighting in the test data,

the current results provide indication of the soundness of our
approach even for a relatively large number of places.

Figure 7. Results for place
recognition

We evaluated PLISS on the place
categorization problem using the
leave one out strategy followed by
[32] to facilitate comparison. The
system was trained on labeled data
from 5 houses and tested on the 6th
one. Average place categorization re-
sults from all 6 houses are reported.
In practice, we only used every 3rd
frame of the training set. We also
omitted frames from the “transition”
category during training and a model
for this category was not learned. During runtime, any frame
not belonging to one of 5 known labels was labeled as a
“transition” frame. The maximum likelihood place labeling
for a sequence is shown in Figure 6 along with groundtruth.

Figure 8 shows the result of place categorization across
all sequences for each of the six categories in the dataset.
Results for the VPC system are taken from [32], which does
not give performance for the “transition” class. PLISS using
SIFT features performs similar to the VPC system on average
and is better on a few individual classes. However, this is
a very strong result considering that we have used a simple
generative model while VPC uses SVM classifiers. Note that
we also include results of the “transition” class, which PLISS
can recognize reasonably well even without any training data
provided in that category. The SVM-based VPC system would
not be expected to perform well in this class since it is a catch-
all “other” category with widely varying visual characteristics.
PLISS with CENTRIST is a good compromise if a faster
system is required.

VIII. DISCUSSION

We have presented PLISS, a system for place recognition
and categorization based on change-point detection. PLISS
has significant advantages over existing methods of being
able to detect and learn previously unknown places and place



Figure 8. Results for place categorization (% correctness): VPC average is
over 5 categories while PLISS results include the “transition” category. VPC
results have been taken from [32].

categories, of being able to learn online, and of being able to
operate without any training data. Experiments on a difficult
dataset show that, along with these advantages, PLISS also
matches the state of the art in performance.

The basic assumption underlying PLISS is that places are
sufficiently distinct to be identified visually. If this is not
the case, i.e. the environment is severely perceptually aliased,
performance will degrade as with any vision-based system.
However, PLISS can be easily extended to incorporate multiple
sensors to overcome such scenarios.

We envision significant performance improvements with
more sophisticated place models. Such models may even
incorporate object and context information from places, which
cannot be done easily with SVM classifiers. Currently, PLISS
does not distinguish between place labels and category labels
and relies on the place models for making this distinction. It
is future work to overcome this deficiency.
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