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Abstract— The constraints of a low-cost consumer product pose
a major challenge for designing a localization system. In previous
work, we introduced Vector Field SLAM [5], a system for
simultaneously estimating robot pose and a vector field induced
by stationary signal sources present in the environment. In this
paper we show how this method can be realized on a low-cost
embedded processing unit by applying the concepts of the Exactly
Sparse Extended Information Filter [15]. By restricting the set of
active features to the 4 nodes of the current cell, the size of the
map becomes linear in the area explored by the robot while the
time for updating the state can be held constant under certain
approximations. We report results from running our method on
an ARM 7 embedded board with 64 kByte RAM controlling a
Roomba 510 vacuum cleaner in a standard test environment.

I. INTRODUCTION

Deploying a localization system for the autonomous naviga-
tion of a low-cost consumer product is a non-trivial task. The
majority of today’s robotic floor cleaners employ relatively
simple behaviors resulting in a more or less random movement
in the environment. In order to achieve more systematic
cleaning, the robot needs to estimate and track its position,
a pre-requisite for mapping areas it has already cleaned and
knowing where to go next.

Recently, a few notable systematic cleaners were introduced.
Samsung’s Hauzen vacuum cleaner, moving in straight lines
while keeping its initial orientation, utilizes a SLAM system
based on ceiling vision [9] for keeping track of its pose.

Neato Robotics uses a miniature laser range finder [11] on
their XV-11 robot and employ standard range finder mapping
techniques [10, 13] for estimating map and robot position.

Our solution to localization for a consumer product uses
the information from time-stationary signals present in the
environment. Examples of such signals are the signal strengths
to WiFi stations or cellular networks, or the direction to unique
beacons in the environment. These signals can often be well
modelled when observed directly, i.e. sensor and signal source
are on a direct path [4]. Signal reflections from walls and
furniture, however, can disturb the measurements significantly.

Trying to model or discard signal reflections is a difficult
task often resulting in unreliable and error-prone position
estimates. Instead, recent research focused on building repre-
sentations that map ground positions to expected signal values
as they would appear at those locations. If learned off-line in
a training phase, such a representation can practically be used
for localization [6]. Ferris at al. showed that using Gaussian
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Fig. 1. Component Spot1 X of a vector field learned by EKF-SLAM.

Process Latent Variable Models allows building of such signal
maps from collected WiFi signal strength data [1].

In our work, we represent this signal map as a vector field
over space approximated by a piece-wise linear function. Our
model contains estimates of the signal values at so-called node
positions of a regular grid laid onto the ground. Signal values
at arbitrary positions are predicted by bilinear interpolation.
Using this model, both vector field and robot pose are then
learned through the application of simultaneous localization
and mapping (SLAM). Previously, we introduced this ap-
proach as Vector Field SLAM and showed how an extended
Kalman filter (EKF) as well as a non-linear optimization can
accurately localize the robot and estimate signal maps in an
environment equipped with a pair of active beacons [5]. As an
example, Fig. 1 shows one component of a vector field learned
by our EKF implementation of Vector Field SLAM.

Since the time and space complexity of EKF-SLAM is
quadratic in the number of map features [13], an implementa-
tion on low-cost hardware with limited processing and memory
resources is not practical. The contribution of this paper is the
development of a constant-time algorithm with linear space
requirements that allows running Vector Field SLAM on such
hardware. We achieve this by a formulation of the exactly
sparse extended information filter (ESEIF) [15] in which the
set of active features is limited to the signal values of the four
nodes of the cell occupied by the robot. In experiments, we
verify that our application of ESEIF produces pose estimates
comparable to our previous EKF solution.

This paper is organized as follows. After an introduction to
Vector Field SLAM in the next section, we briefly describe the



ESEIF in Section III. Section IV presents our application of the
ESEIF to Vector Field SLAM followed by an implementation
using active beacons in Section V. Experimental results are
described in Section VI. We draw conclusions in Section VII.

II. VECTOR FIELD SLAM
Vector Field SLAM learns the signal distribution of a time-

invariant vector field over the environment while at the same
time tracking the pose of the robot. A vector field of dimension
M is defined as

VF : SE(2) → RM (1)

mapping a ground pose to a vector of signal values.
We assume that the dependency of signals on robot orien-

tation can be fully characterized by some internal calibration
parameters c of the sensor that allow for a rotational variabil-
ity of measurements. For example, a WiFi receiver might show
changes in signal strength on rotation caused by the directional
sensitivity of the antenna. A sensor measuring bearing and
elevation to beacons can show variations due to calibration
errors of the sensor’s vertical axis.

Under these assumptions we decompose the space of poses
SE(2) into position and orientation. The vector field over
position is then modeled as a piece-wise linear function by
laying a regular grid of node positions bi = (bi,x, bi,y)T ,
i = 1 . . . N onto the ground. This creates cells with one node
at each of the cell’s four corners. Each node i holds a vector
mi ∈ RM describing the expected signal values when the
robot is located at bi and oriented in a preset direction θ0.

For an arbitrary robot position with orientation θ0, the signal
values are computed by bilinear interpolation from the four
nodes of the cell containing the robot. Let xt = (x, y, θ)T

be the robot pose and bi0 . . .bi3 the cell nodes enclosing the
robot as shown in Fig. 2. The signal values at (x, y) with
orientation θ0 are then computed as:

h0(x, y,m1 . . .mN ) =

3∑
j=0

wjmij (2)

where mi0 . . .mi3 are the signal values at the cell nodes and
w0 . . . w3 weights of the bilinear interpolation:

w0 =
(bi1,x − x)(bi2,y − y)

(bi1,x − bi0,x)(bi2,y − bi0,y)
(3)

w1 =
(x− bi0,x)(bi2,y − y)

(bi1,x − bi0,x)(bi2,y − bi0,y)
(4)

w2 =
(bi1,x − x)(y − bi0,y)

(bi1,x − bi0,x)(bi2,y − bi0,y)
(5)

w3 =
(x− bi0,x)(y − bi0,y)

(bi1,x − bi0,x)(bi2,y − bi0,y)
. (6)

The final signal values are computed by taking into account
robot orientation θ and sensor calibration c:

h(xt, c,m1 . . .mN ) = hR(h0(x, y,m1 . . .mN ), θ, c). (7)

Here hR is a continuous function that transforms the interpo-
lated signal values obtained through (2) by the robot orienta-
tion and calibration. This is usually a rotation by orientation
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Fig. 2. Bilinear interpolation from cell nodes

θ followed by a correction with the rotational variability c.
We will provide a particular instance of hR in an application
using active beacons in Section V.

Robot path x0 . . .xT , xt ∈ SE(2), rotational variability c
and node values m1 . . .mN ,mi ∈ RM are estimated through
SLAM. Without loss of generality, x0 = (0, 0, 0)T . At each
time step t = 1 . . . T the robot receives a motion input ut with
covariance Rt and a measurement zt with covariance Qt.

A motion model defined by a function g describes the
motion of the robot since the previous time step:

xt = g(xt−1,ut) + eu (8)

where eu is a zero mean error with covariance Rt.
Furthermore, our sensor model (7) predicts an observation

given current robot pose, sensor calibration and features:

zt = h(xt, c,m1 . . .mN ) + ez (9)

where ez is a zero mean error with covariance Qt.
In online SLAM [13], an algorithm estimates the state

yt = (xt, c,m1 . . .mN )T (10)

recursively over time. The EKF is one example of such an
algorithm. Starting from an initial mean µ0 and covariance Σ0

the state is updated on motion and sensor observation using
the well-known EKF equations [5, 12, 13].

In general, the initial state often contains a minimal set of
map features. For Vector Field SLAM we include only the
four nodes of the first cell in the initial state:

y0 = (x0, c,m1 . . .m4)T . (11)

An estimate for y0 can be obtained through non-linear op-
timization on a small set of collected measurements. In our
approach we use RANSAC [2] for estimating a linear model of
the vector field around the robot and then compute mean values
m̂1 . . . m̂4 of the four nodes. The initial mean and covariance
are then found as

µ0 = (0, 0, 0, ĉ, m̂1 . . . m̂4)T (12)
Σ0 = diag(0, 0, 0,∞ . . .∞) (13)

where ĉ is an initial guess of rotational variability. Although a
tighter initial covariance can be found from the residual fitting
error, in practice Eq. (13) is often sufficient since the node
covariances decrease quickly after a few measurements.

During exploration new nodes need to be added to the state.
In our approach these are created by a structure copy. Let
yt = (xt, c,m1 . . .mn) be the state vector at time t and



bn+1 the position of a new node. Let bj1 and bj2 be the
positions of two nodes already contained in the state that lie
on a straight line passing through bn+1. The new node mn+1

is then initialized by extrapolation from mj1 and mj2 as:

mn+1 = A1mj1 + A2mj2 + e1 (14)

where A1 and A2 contain the extrapolation factors and e1 is a
zero mean error term with a preset covariance S allowing the
node values to change. An example of extrapolation factors is
described in our implementation in Section V. The state of the
EKF is then augmented with the new node and its covariance
is expanded accordingly [5].

In our recent work we collected data on a robotic vacuum
cleaner moving in an environment with active beacons. Our
results demonstrate that both EKF-SLAM and an off-line
GraphSLAM version of Vector Field SLAM significantly im-
prove position estimates when compared to raw odometry or a
direct triangulation of sensor data [5]. The limitations of EKF-
SLAM are in the time and space complexity which is quadratic
in the number of map features [13]. While this allows running
the method on PC hardware, the requirements practically
exceed the resources of low-cost embedded processors.

III. EXACTLY SPARSE EXTENDED INFORMATION FILTER

In order to solve the problem of scalability in SLAM,
representations of the state distribution different than the mean
and covariance of an EKF have been researched. In a seminal
paper, Thrun et al. [14] presented a sparse extended informa-
tion filter (SEIF) with almost linear time complexity. Recently
Walter et al. [15] further developed this approach to an exactly
sparse extended information filter (ESEIF) producing estimates
that are conservative relative to the EKF solution.

In general, the extended information filter (EIF) represents
the state yt at time t by an information vector ηt and infor-
mation matrix Λt. The relation to the mean µt and covariance
Σt of an EKF is given by:

ηt = Σ−1t µt Λt = Σ−1t . (15)

On sensor observation the EIF state is updated as [14]:

ηt = η̄t + HT
yQ
−1
t (zt − h(µ̄t) + Hyµ̄t) (16)

Λt = Λ̄t + HT
yQ
−1
t Hy (17)

where η̄t and Λ̄t are the EIF state after a motion update (see
below) and Hy is the Jacobian of h w.r.t. the state evaluated
at an estimate µ̄t of the mean:

Hy =
∂h

∂y
(µ̄t). (18)

The update time is quadratic in the number of observed
features which is often small in practical applications.

The EIF update on motion is more complicated. It can be
formulated by first augmenting the state with the new robot
pose followed by a marginalization over the old pose [15].
Given a robot pose estimate µx and the EIF state at time t−1
separated into robot variables x and map variables M:

ηt−1 =

(
ηx
ηM

)
Λt−1 =

(
Λxx ΛxM
ΛMx ΛMM

)
(19)

we compute information vector and matrix on motion as:

η̄t =

(
η̄x
η̄M

)
Λ̄t =

(
Λ̄xx Λ̄xM
Λ̄Mx Λ̄MM

)
(20)

where

η̄x = ΨT ηx + (Rt + GxΛ−1xxG
T
x )−1∆x (21)

η̄M = ηM − ΛMx(Λ−1xx ηx − Ωηx −Ψ∆x) (22)
Λ̄xx = (Rt + GxΛ−1xxG

T
x )−1 (23)

Λ̄xM = ΨTΛxM Λ̄Mx = ΛMxΨ (24)
Λ̄MM = ΛMM − ΛMx(Λ−1xx − Ω)ΛxM (25)

∆x = g(µx,ut)−Gxµx (26)
Ψ = G−1x −G−1x Rt(Rt + GxΛ−1xxG

T
x )−1 (27)

Ω = Λ−1xxG
T
x (Rt + GxΛ−1xxG

T
x )−1GxΛ−1xx (28)

and Gx is the Jacobian of motion model (8) w.r.t. robot pose:

Gx =
∂g

∂x
(µx,ut). (29)

Our formulation through Eqs. (20-29) is equivalent to the
one presented by Walter et al. [15] after utilizing the Woodbury
matrix identity [3]. The advantage of Eqs. (20-29) is that the
motion covariance Rt itself and not its inverse is used for
updating the state. This allows for motions with arbitrarily
small errors. The price of this formulation is that the motion
Jacobian Gx must be invertible. In Section V, we show that
this holds for a standard odometry motion model [13].

The most expensive operation of the motion update lies in
Eq. (25) and is quadratic in the number of non-zero elements
of the cross-information matrix ΛxM , i.e. the number of map
features that share information with the robot pose. In its
plain form the EIF does not restrict this number and thus,
does not provide a better solution than the EKF in terms of
scalability [15]. The advancements of the SEIF and ESEIF
are in controlling this number such that the space and time
complexities are bounded.

The ESEIF divides map features into active and passive
ones based upon whether or not they share information with
the robot pose. The algorithm then poses an upper bound Γa
on the number Na of active features. As long as Na ≤ Γa the
state is updated on motion and sensor observation using the
EIF Eqs. (16-29) as presented above.

When receiving an observation zt that would cause an EIF
update (16,17) to exceed the Γa threshold, a sparsification
procedure takes place. For this zt is partitioned into two sets:

zt = {zα, zβ} (30)

such that |zβ | ≤ Γa. The measurements zα are then used in
a regular EIF update (16,17) followed by marginalizing over
the robot pose and relocating it using the measurements zβ .

Marginalization removes the robot variables from the state:

η̌t = η̄M − Λ̄MxΛ̄−1xx η̄x (31)
Λ̌t = Λ̄MM − Λ̄MxΛ̄−1xx Λ̄xM (32)

and can be computed in time quadratic in Γa.



For relocating the robot, the ESEIF computes a new robot
pose xt given the map features Mβ and measurements zβ :

xt = f(Mβ , zβ) + ex (33)

where ex is a zero mean error with covariance Rx. The final
state is then computed by augmenting the new robot pose:

η̆t =

(
R−1x

(
f(µ̌Mβ

, zβ)− FM µ̌t
)

η̌t − FTMR−1x
(
f(µ̌Mβ

, zβ)− FM µ̌t
) ) (34)

Λ̆t =

(
R−1x −R−1x FM

−FTMR−1x Λ̌t + FTMR−1x FM

)
(35)

where FM is the Jacobian of relocation model (33) w.r.t. map:

FM =
∂f

∂M
(µ̌Mβ

, zβ). (36)

This requires time quadratic in |zβ | and resets the set of
active features to those in zβ . Therefore, since |zβ | ≤ Γa
the computation time is fully controlled by parameter Γa.

In the ESEIF, an estimate of the mean µt is needed when
computing Jacobians or updating the information vector. This
mean can be found by solving a linear equation system:

Λtµt = ηt. (37)

A naı̈ve approach of inverting Λt requires time cubic in the
size of the state which destroys the scalability of the algorithm.
As Walter et al. [15] pointed out we are often only interested
in a subset of the mean. Therefore, (37) is partitioned into(

Λll Λlb
Λbl Λbb

)(
µl
µb

)
=

(
ηl
ηb

)
(38)

where µl is a local portion to solve for and µb the benign
portion for which we already have an estimate. This leads to:

µl = Λ−1ll (ηl − Λlbµb) (39)

and requires only a subset of µb corresponding to the non-zero
elements in Λlb, i.e. the Markov blanket of the local portion.
The time for computing (39) is linear in the size of the Markov
blanket and cubic in the size of the local portion.

The ESEIF has been shown to produce estimates close to
those of an EKF with significant savings in memory usage and
run-time improving the scalability of on-line SLAM [15].

IV. VECTOR FIELD SLAM USING ESEIF

We now have the tools ready for using the ESEIF in Vector
Field SLAM. For the upper bound Γa of active features, we
seek the smallest possible number while still preserving a
good level of information necessary for approximating the full
Gaussian distribution of EKF-SLAM. By analyzing the sensor
model (7), we note that robot pose xt, sensor calibration c,
and the four nodes mi0 . . .mi3 enclosing the robot are sharing
information between each other. Our goal is to restrict the
number of active features to this configuration, thus Γa = 4.

As long as the robot stays within the same cell, the ESEIF
state is updated on sensor observation and motion through
EIF Eqs. (16-29) where the set M in (19,20) include sensor
calibration c and all nodes m1 . . .mn of the current state yt.

After moving into another cell, we reset the set of active
features to the four nodes of the new cell when receiving
a new sensor measurement. This involves performing the
sparsification procedure of the ESEIF. In our sensor model
(7) an observation zt is associated with only the nodes of one
cell. It is therefore not possible to partition zt into two non-
empty sets corresponding to different map features. We then
choose the partitioning of

zα = ∅ zβ = zt (40)

i.e. all measurements are used for relocating the robot.
The ESEIF sparsification applies the marginalization in

Eqs. (31,32). In Vector Field SLAM we not only marginalize
out the robot pose xt, but also the rotational variability c.
This has certain advantages which we outline further below.
Thus, for applying Eqs. (31,32) we set the robot variables to
x = {xt, c} and map variables to M = {m1 . . .mn}.

For re-inserting robot pose and rotational variability, we
need to find a function f for Eq. (33) that generates these
from the map Mβ and observation zβ . Unfortunately this turns
out to be a difficult task. In Vector Field SLAM there can
be areas where a single observation might not provide full
information about the robot pose, e.g. when only a small subset
of signals are observed, or when the measurement noise is
large. Furthermore, for determining rotational variability, often
measurements from different robot orientations are needed.

Instead of following Eqs. (34,35) we propose a two-step
procedure for relocating robot pose and rotational variability.
First, we augment the state with blank robot variables

η̆t =

(
Λ̆xxµ̄x
η̌t

)
Λ̆t =

(
Λ̆xx 0

0 Λ̌t

)
(41)

where µ̄x is the mean of robot variables before marginaliza-
tion, and Λ̆xx is a prior on robot pose and sensor calibration.

In the second step, the measurements zt are used for
updating this state using the regular EIF Eqs. (16,17). This
creates new information between robot pose, sensor calibration
and the nodes of the new cell, while all other cross information
between robot variables and map are zero, thus Na ≤ Γa.

The prior Λ̆xx plays an important role in our relocation
procedure. For a truly conservative filter, the prior should be
set to Λ̆xx = 0. The formulation then becomes equivalent
to Eqs. (34,35) modulo different approximation errors in the
involved Jacobians. In practical applications, however, it is
often useful to restrict robot and sensor calibration to an area
around the estimate before sparsification, since there was no
physical cause that would have allowed them to change by a
large amount. Since a non-zero prior can cause the filter to
become over-confident, it has to be carefully chosen. In our
application we maintain an estimate of the covariance Σxx of
robot variables and compute Λ̆xx as

Λ̆xx = (Σxx + R0)−1 (42)

where R0 is a minimal covariance that needs to be tuned in
order to ensure the filter produces non-optimistic estimates.



Motion update:
(ηt−1,Λt−1)

(19-29)−−−−−−−−−−−−−−−−→
x={xt},M={c,m1...mn}

(η̄t, Λ̄t)

Sensor observation update:
if robot in same cell then

Standard EIF update: (η̄t, Λ̄t)
(16-18)−−−−→ (ηt,Λt)

else
Marginalize: (η̄t, Λ̄t)

(31-32)−−−−−−−−−−−−−−−−→
x={xt,c},M={m1...mn}

(η̌t, Λ̌t)

while need new node do
Augment new node: (η̌t, Λ̌t)

(14,44)−−−−→ (η̌t, Λ̌t)
end
Augment blank: (η̌t, Λ̌t)

(41,42)−−−−−−→
x={xt,c}

(η̆t, Λ̆t)

Standard EIF update: (η̆t, Λ̆t)
(16-18)−−−−→ (ηt,Λt)

end

Algorithm 1: ESEIF algorithm for Vector Field SLAM

For recovering an estimate of the mean µt we apply Eq. (39)
where the local portion is {xt, c,mi0 . . .mi3}. In the same
way we obtain an estimate of covariance Σxx by replacing ηt
in (39) with unit vectors corresponding to the robot variables.

The last missing piece in using the ESEIF for Vector Field
SLAM is the initialization of state and new nodes. This follows
the same steps as in EKF-SLAM. The initial state is found as

η0 = Σ−10 µ0 Λ0 = Σ−10 (43)

where µ0 and Σ0 are computed by Eqs. (12,13). Inverting Σ0

is trivial since the matrix is diagonal.
When extrapolating a new node through Eq. (14), the mean

and covariance of the new node mn+1 are computed [5].
This requires knowledge of the mean and covariance of the
participating nodes mj1 and mj2 . While we maintain an
estimate of the full mean vector, the covariances of mj1 and
mj2 have to be recovered, an operation that is expensive in
the information form. We approximate the covariance Σmjmj
of node mj by conditioning it on all map features except
those contained in the node’s Markov blanket ∂mj , i.e. those
features that share information with mj . Since each node is
the corner of at most four cells, we have at most 8 nodes in
∂mj . The node covariance is then computed as:

Σmjmj =
(

Λmjmj − Λmj∂mjΛ
−1
∂mj∂mj

Λ∂mjmj

)−1
(44)

and is cubic in the size of the Markov blanket. It has been
noted that this approximation can result in over-confident
covariances [15]. We will revisit this issue in our conclusions.

Algorithm 1 summarizes our application of the ESEIF for
Vector Field SLAM. The computation time is dominated by
the covariance computation (44) for augmenting new nodes
and the recovery of the mean vector (39). Fortunately new
nodes are added rather infrequently and the time for computing
(44) is constant since |∂mj | ≤ 8. The time for mean recovery
(39) is also constant, since the size of the local portion is
constant and its Markov blanket contains only nodes that share
information with the four nodes of the local portion. Since
each node has at most 8 neighbors, the size of the Markov

blanket is constant. Thus, Vector Field SLAM using the ESEIF
is an algorithm with constant time.

The memory requirements of the ESEIF are linear in the
number of map nodes, due to the fact that each node shares
information with at most 8 neighboring ones. Since the number
of nodes is approximately proportional to the covered area of
the environment, our algorithm requires memory linear in the
size of the explored environment.

In the ESEIF marginalization (31,32) we chose to integrate
out both robot pose xt and sensor calibration c. While it
is possible to marginalize only over xt, the inclusion of c
has two advantages. First, when augmenting the state with
blank robot variables (41), process noise can be added to the
sensor calibration through the covariance R0. This allows the
sensor calibration to change over time or space, and ensures
numerical stability. Without marginalizing over c any addition
of process noise eventually fully populates Λt.

The second advantage of marginalizing out c is the constant
size of the Markov blanket in (39). If c is not removed from
the state, it creates shared information with all nodes and the
time complexity of mean recovery becomes linear in the size
of the explored area.

V. IMPLEMENTATION WITH ACTIVE BEACONS

We have implemented Vector Field SLAM using ESEIF on
a system using Northstar, a low-cost optical sensing system for
indoor localization [16]. A beacon projects a pair of unique
infrared patterns on the ceiling (see Fig. 3). An optical sensor
on the robot detects these patterns and measures the direction
to both spots. The sensor then reports the coordinates of both
direction vectors projected onto the sensor plane.

Under ideal circumstances the reported spot coordinates
change linearly with the robot position. However, infrared
light reaches the sensor not only by direct line of sight but
also through multiple paths by reflecting off walls and other
objects, so the spot coordinates change in a non-linear way
as the robot approaches an obstructed area. Fig. 4 shows
the reported spot coordinate when moving the sensor along
a straight line orthogonal to a wall located on the right. While
the signal is quasi-linear on the left, reflections off walls distort
the signal significantly until it bends over on the right. Fig. 4
also shows the piece-wise linear approximation of the signal

Fig. 3. The Northstar system. An optical sensor on the robot measures the
bearing to two spots on the ceiling projected by an infrared beacon.
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Fig. 4. Signal response of Northstar under multi-path conditions.

curve as computed by Vector Field SLAM together with 2σ
intervals of the computed node covariances. Note that signal
reflections can cause complex and unpredictable distortions
relative to the ideal linear signal distribution.

The specific details for applying Vector Field SLAM to
Northstar are as follows. The Northstar sensor provides a pair
of spot coordinates, so M = 4 and

zt = (zx1 , zy1 , zx2 , zy2)T . (45)

The covariance Qt can be derived from zt along with two
additional sensor outputs measuring the signal strength.

Due to tolerances in manufacturing and the mounting of
the sensor on the robot, the sensor plane may not be perfectly
horizontal. The result of such small angular errors is well-
approximated by a coordinate offset for both spots. When
rotating the sensor in place this offset becomes apparent as
rotational variability. Thus, the calibration parameters are:

c = (cx, cy)T . (46)

In the ideal case, the offset vanishes and we set ĉ = (0, 0)T .
When turning the sensor the spot coordinates change ac-

cording to the rotation angle θ but in the opposite direction.
The rotational component hR of our model then becomes:

hR(hx1
, hy1 , hx2

, hy2 , θ, cx, cy) = (47)
cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ



hx1

hy1
hx2

hy2

+


cx
cy
cx
cy


where (hx1

, hy1 , hx2
, hy2)T is the output vector of (2).

For the extrapolation of a node according to (14) we only
consider node pairs which are equally spaced apart from the
new node, and where the closer node is in the 8-neighborhood.
The extrapolation factors in A1 and A2 are then set such that
the direction between Northstar spots is copied from the closer
node [5]:

A1 = −1

2


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

A2 =
1

2


3 0 1 0
0 3 0 1
1 0 3 0
0 1 0 3

 . (48)

This completes the implementation for Northstar.

For the motion model (8) we employ a standard odometry
model [13] where at each time step the robot translates along
a direction and then rotates. Jacobian Gx and its inverse are:

Gx =

1 0 −δy
0 1 δx
0 0 1

 G−1x =

1 0 δy
0 1 −δx
0 0 1

 (49)

where δx = xt − xt−1 and δy = yt − yt−1.
The motion covariance Rt is derived from input ut [13].

VI. RESULTS

For validating Vector Field SLAM using the ESEIF we
collected sensor data of a robotic vacuum cleaner equipped
with Northstar. Additionally, an optical motion capture system
was used to obtain ground truth data [8]. We evaluated Vector
Field SLAM on 9 different runs with increasing difficulty
in distortion of the Northstar signal by multi-path. For all
experiments we used a cell size of 1 meter in the vector field.

Fig. 5 shows the odometry data of the robot on run 3 as
computed from its wheel encoders. In this and the following
figures we superimpose the ground truth trajectory by finding
scale and rigid transformation that best aligns the data with
the one of the motion capture system.

The result of running ESEIF-SLAM on this data is shown
in Fig. 6 where small ellipses drawn every 25 cm indicate
the 1 σ pose uncertainty as computed by the filter. Compare
this to the result obtained by EKF-SLAM in Fig. 7. Both
methods compute the path of the robot close to the ground
truth positions. The ESEIF results were obtained by setting
R0 = diag(52cm2, 52cm2, 0.052rad2) when computing the
prior in (42). Larger diagonals in R0 produce more conserva-
tive estimates while smaller ones cause over-confidence. The
percentage of positions falling into a Mahanalobis distance of
4.61 of the filter estimates are 91 % and 92 % for ESEIF-
SLAM and EKF-SLAM respectively. This indicates that both
filters compute similar estimates and that the computed Gaus-
sians have reasonable parameters.

Fig. 8 shows the mean position errors of odometry, pose
directly computed from Northstar [16], EKF-SLAM, ESEIF-
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Fig. 5. Odometry information of vacuum cleaner on run 3.
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Fig. 6. Trajectory result of ESEIF-SLAM on run 3.
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Fig. 7. Trajectory result of EKF-SLAM on run 3.
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Fig. 8. Mean position errors over all 9 runs.

SLAM and an off-line GraphSLAM version [5] over all runs.
Note how the error of Northstar increases from runs 1–4 to
runs 5–9. The SLAM methods are able to cope with this as
their mean error is not affected much. The overall mean error
of ESEIF-SLAM is 10 cm which is slightly better than that
of EKF-SLAM (11 cm) but worse than the full non-linear
optimization of GraphSLAM (8 cm). All methods compare
well to plain odometry (26 cm) or raw Northstar (47 cm).

We also implemented ESEIF-SLAM on an ARM 7 board
with 64kByte memory connected to a Roomba 510 vacuum
cleaner. A control program moves the robot around covering
the environment in a systematic way based on the pose
estimates provided by the ESEIF. We ran our system in a stan-
dard 5 × 4 meter test environment which is under discussion
at the International Electrotechnical Commission (IEC) for
evaluating the navigation capabilities of robotic floor cleaners.
Fig. 9 shows the layout of this room and the trajectory of one
robot run. The room is fully surrounded by walls. Solid blue
(dark gray) areas mark obstacles like sofa, TV stand, and chair
and table legs. The robot path starts in the upper right corner
and is indicated as a white line. Areas covered by the vacuum
cleaner are drawn in green (gray) while light red (light gray)
marks unexplored terrain. The total run-time was 21 minutes.

One component of the vector field computed by the ESEIF
in this run is shown in Fig. 10. While the sensor map contains
large smooth areas, there are several non-linear regions. The
big valley on the left corresponds to the sofa (largest obstacle
block in Fig. 9). Furthermore, there are hills towards the front
wall and the upper left corner.

We performed a total of 12 runs starting in each of the
four corners of the IEC room, with the robot facing in three
different directions. The position accuracy of all runs is shown
in Fig. 11. The overall mean position error of the ESEIF is
now 20 cm, which we attribute to the larger environment size.

For the computation of the ESEIF in these runs, a total of
42 nodes was necessary to cover the 6×5 meter environment.
This leads to 3 + 2 + 42 × 4 = 173 variables in the ESEIF
state. Thanks to the linear memory requirements, the size
of the total data structure for ESEIF (including mean and
robot covariance) fits into 12 kByte memory leaving room for
covering larger environments and for other control structures.

The ARM 7 spends about 9 ms for a motion update and 39
ms for integrating a sensor observation. The most expensive
operation is the recovery of mean and robot covariance, which
involves solving a linear equation system in 21 variables
through Cholesky decomposition. In summary, the total run-
time of the ESEIF is about 48 ms and allows running local-
ization with frame rates of up to 20 Hz.

VII. CONCLUSION

Vector Field SLAM using the ESEIF is a powerful tool
for learning the distribution of time-stationary signals over
the environment. By limiting the number of active features
to the four nodes of the cell enclosing the robot, we ob-
tain a constant-time SLAM algorithm with linear memory
requirements. The cost of this achievement is a tradeoff in the
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consistency of the filter. In order to arrive at our formulation,
a number of approximations were made:
• Our procedure for relocating the robot requires the tuning

of a prior and may result in over-confident estimates.
• The extrapolation of new nodes approximates covariances

using Markov blankets which can result in over-confident
covariances [15]. This can be compensated to some extent
by using a larger preset covariance S in (14).

• The mean recovery computes only the values of robot
pose, calibration and the nodes of the current cell. This
may be insufficient in particular when closing loops.

• Like in other on-line SLAM methods, the errors intro-
duced by evaluating motion and sensor Jacobians at the
latest state estimate may cause inconsistent results [7].

Our experiments show that ESEIF-SLAM is capable of
keeping a robotic vacuum cleaner localized in a home envi-
ronment using low-cost sensors on embedded hardware. This
opens the door for location-aware robotic consumer products
such as autonomous and systematic floor cleaners.
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