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Abstract—A mobile robot is deployed to search for a stationary
target that intermittently emits short duration signals. The
searching mission is accomplished as soon as the robot reces =7
a signal from the target. However, the robot cannot perceive \
the signal unless the target is within its limited sensing rage.

1
Therefore, the time to search the target is inherently randon 'y
and hence unknown despite its importance in many searching : S
1
1
1
1

and rescue applications. Here we propose the expected selirg
time (EST) as a metric to evaluate different robot motion plans y
under different robot configurations. We derive a closed fom AR

solution for computing the EST. To illustrate the EST model,
we present two case studies. In the first case, we analyze two
common motion plans: a slap method and a random walk. The 0] a

EST analysis shows that the slap method is asymptotically &er

than the random walk when the searching space size increases Fig. 1. A robot attemps to search for a target (the red dot)ithermittently
In the second case, we compare a team of low-cost equally- emits short duration signals in a square. The gray circladsrégion that the
configured robots with a super robot that has the sensing rang robot can sense the signal from the target. The dashed lsisot trajectory.
equal to that of the summation of then robots. The EST analysis

shows that the low-cost robot team take®9(1/n) time and the

super robot takes ©(1/y/n) time as n — oo. In both cases, our  To address this new problem, we propose the expected
EST model successfully demonstrates its ability in assesgi the  ga5rching time (EST) as a metric for the searching ability.
searching performance. The analytical results are also cdimmed . ?
in simulation. We model the searching process as a delayed alternating
renewal process and derive the EST as a function of the
searching space size, the signal transmission rate, and the
I. INTRODUCTION robot sensing range. The resulting closed-form solution of

_ ~the EST can be used to analyze the searching efficiency for
Mobile robots are often employed to perform searchinggerent robot configurations and searching plans. Sihee t

tasks such as finding a black box in a remote area after gdel components can be obtained from online measurements
airplane crash, searching victims after an earthquake dna M4 known robot parameters, a great benefit of the resulting

collapse disaster, or Iocating_ artifa_cts on the_ ocean flhmr._mode| is that it is capable of predicting the EST for an ongoin
many cases, the target can intermittently emit short dematisearching process. This characteristic is important foeti
signals to assist searching. For example, an airplane blggkical searching and rescue applications.

box transmits radio signals periodically. An earthqualatimi The contributions of the paper are trying to bring analytica

may knock the rubble from time to time. The searching tagkgits to interpret well-known searching strategies. ESS

is accomplished once the robot detects the signal emitted fiy,ysis not only can reveal our common believes about-exist
the target. However, the robot usually has a limited sensi

: searching methods but also predict how the effectiveats
range and cannot detect the target that is out of the rangeyl{se methods changes as trajectory selection, sensigg,ran

seems straightforward that we can use the traditional e@eer searching space size, and robot distribution change. Build
based motion plans to guide the robot to cyclically scan the, the |atest development in random walk in constrainedespac
searching space to locate the target. However, the time fgm stochastic modeling community, our analysis for thet fir
search the target is inherently random and hence remajfise show that traditional slap metho®(u?)) actually is
unknow_n despite its importance in many searching and resimptotically faster than the random watR(¢2 log a)) for
applications. a squared searching space of the size leagthhich is never
. . _ , , known before. In the second case, we compare a team of
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Again, this new analytical result has not been seen befale arecause we want to see if our analytical model can show
is important for developing new search strategies. similar results under similar constraints/conditions.
The analytical results are confirmed in simulation for both Our group has built experience in searching for targets that
cases. The EST model successfully demonstrates its abilityermittently transmit signals by developing algorithiasd
in assessing the searching performance under differemtt robystems to detect an unknown wireless sensor network [16]-
configurations and motion plans. [18]. In these problems, the robot can accumulate the infor-
The rest of the paper is organized as follows. We begination about the target location over time through the digna
with the related work in Section Il. We define the problem istrength readings and antenna models. The searching proble
Section Ill. We derive the EST in a closed form in Section IMs less difficult because the robot can utilize the inforomati
The two case studies are presented in Section V. The arallytie the planning process. However, such information is often
results are validated in simulation in Section VI before wgot available in many searching tasks, which is the focus of
conclude the paper. this paper.

IIl. PROBLEM DEFINITION

Searching an object in physical space is one of the m(%stAs illustrated in Fig. 1, a single robot searches for a single

: . . target in a squared 2D Euclidean space with a side length of
important tasks for robots or humans. When prior infornratio , . . .
S , ._a. Defined, as the maximum sensing distance of the sensor
such as the spatial distribution of the target is known, ihis
) . . on the robot. The robot travels at the constant speed b
comparable to the foraging behavior of animal [1]. Howeve%r .
. . o : .~ formulate the problem and focus on the most relevant issues,
prior target information is often not available. If the tatds . ;
. - . : : . . we make the following assumptions,
continuously emitting signals, just simply scanning théren i o ) ) .
searching space once enables the robot to find the targee Sin 1) There is no prior information about possible locations
the worst case for the searching time is the time to cover ©Of the target. Therefore, the target is assumed to be
the entire searching space, the searching problem becomes Uniformly distributed in the searching space. This is
a coverage problem [2]-[4]. For a known environment, a _ actually the most difficult searching case. o
coverage problem for a single robot often employs different2) The target transmits short duration signals periodicall
approaches to decompose the searching space and output a &ccording to a Poisson process with a known rate
continuous path that allows the robot to cover the entire  1he signal duration is short due to energy concerns. A
searching space. If the searching space can be modeled as P0iSSon process is a good approximation to a general

a set ofuw-disjoint discrete choices, searching a target with ~ random arrival process in stochastic modeling [19]. In
a limited sensing range and-choice is known as a-lane some cases, the target may be a continuous beacon; but
Cow-Path problem [5]. it is very difficult to be detected due to environment

conditions or unreliable sensing, which can also be
modeled as a target with intermittent signals.

During the searching process, either the target is static

its movements are negligible in comparisondio The
searching space is much larger than the sensing distance:

Il. RELATED WORK

While the running time is well understood for the coverage
problems [6], [7], this is not the case when the searching
process depends on the signal emitted by the target becau
the collocation of the robot and the target does not nedgssar
mean that the target is found. When the target is not emitting
a signal, the robot cannot find the target. The robot has to %~ ds.
keep scanning the searching space. The deterministicageer Condition 1 (Sensing Condition)The robot cannot sense
algorithm becomes a Las Vegas algorithm [8] where the tardBe signal unless an actively-transmitting target is waithi
will eventually be found but the searching time is randonglistanced; due to the sensing range limit.

However’ the Searching time can be crucial for many Seq[;chin As illustrated in Flg 1, this defines a circle centered at the
tasks. For example, victims of an earthquake often havédimi target with the radius of;, which is the region that robot has
survival time. Although searching itself is a very old pretnl, & chance to sense the target. We refer to the region as “the
few models exist for analyzing the effectiveness of a séagch Circle” in the rest of the paper. Due to the fact that the robot
strategy when the source is intermittently emitting signal does not know the location of the target, the actual position

Another set of related work is robot exploration and may®f the circle in the searching space is also unknown.
ping problems where the environment is not previously known Condition 2 (Termination Condition)The searching task
[9]. The task is not only to cover the entire space but aldd accomplished as soon as the robot senses a signal.
to output the true representations of the environment. iRec&ondition 2 implies that the robot cannot find an inactiveér
advances in using a multi-robot team to perform exploratidyen it is collocated with the target. For example, an ampla
and mappmg tasks main|y focuses on the coordination of tir%not be able to notice the survivor on an island if the person
robot/sensor team [10]-[15] under various dynamics, comm@oes not send a signal (e.g. fire or smoke). On the other hand,
nication, sensing, and energy constraints. Although mectly only one signal reception is needed in the searching process
applicable to our problem, researchers have accumulated @Pnditions 1 and 2 establish a new type of searching problem
teresting empirical results that are using a team of lowt-ca®S Oppose to a regular coverage problem. Let us défjnes
robots usually performs faster and more fault-tolerant] [14he searching time for the robot to find the target. Therefore
than a single expensive robot. This really inspires our jgrob our problem is defined as follows,



Problem 1 (The EST Computationiven A, ds, and a, found. Therefore, we can compufgT¢) by conditioning on
calculate the ESTE(Ts), where E(-) denotes the expectedN,

value function.
E(Ty) = E(T{|N > 0)P(N > 0)+E(T{|N = 0)P(N = 0),
3)
IV. MODELING where P(N > 0) = 1 — e and P(N = 0) = e ™
One immediate question about Problem 1 is whether vaecording to (2).
can obtain the EST without referring to or being limited to a Now let us computeZ(T¢|N > 0). Since eventN > 0 is
particular motion plan. To address this dependency, we fiexjuivalent to eveni’¢ < r,,, we have
characterize the motion plans based on their outcomeseefor . B P
modeling the EST. E(TIN > 0) = B(TZI|T3 < 7w)
1 7—|Ne—>\T|N
= - @

A 1—e

because the conditional distributi@i§|T¢ < 7, is a truncated

Peno@cally, the robot plgpner outputs a motion plan ared ttéxponential distribution. It is worth noting that (4) is ihbnly
system is naturally a repetitive scanning process. We nésne.

. . . T if 0. This is guaranteed according to Definition 1. On
trajectory in each period astaur. The dashed line in Fig. 1 th;hé)tier hand we? Know 9
illustrates a tour. '

Definition 1: A tour starts at the moment when the robot E(T{IN =0) = 7w + Tour + E(TY) (5)

enters the target circle and ends at next moment when the , . . .
robot enters the circle again. EJecause the robot cannot find the inactive target in the gurre

Tours may be quite different based on the planner. For exatnc)ll-Jr and has to start all over again in next tour.

ple, tour length varies each time if the robot follows a ramdo Plugging (4) and (5) into (3) and (1), we have the following

. Theorem.
walk. As another example, a deterministic planner usually h e .
a fixed tour trajectory. Theorem 1:Given the expected timé’' (D) for the robot

Based on Condition 2. we know that the robot does nift reach the circle, the Poisson arrival rate of sighalf the
accumulate the knowledge regarding the target locatiom frotf”‘rget’ the trayeling “”_‘3“ inside the circle, and the_ traveling
tours to tours because no signal has been perceived befdhE Tour outside the circle, the EST of the target is
the moment the searching mission is accomplished. Hence we B(T.) = E(D 1 e~ AN
can treat each tour as independently and identically Higed (Ts) = E(D) + 1 + Tour

A 1—e ' ©)
(1i.d). This allows us to model the searching process as 4Theorem 1 has a surprisingly succinct format revealing the
renewal process.

Wh bedi he robot i d o _ﬁflationship between the EST and the corresponding vasabl
1en a tou_r ?9'”5’.t e robot first spends some time INSIgE ¢ riher explain (6), let us consider the following extieem
the circle, which is defined as,. After that, the robot leaves

r

) . X > cases:
the circle and spends some time before entering the C|rcleCase 1:\When )\ — oo, it means that the target continuously
again, where the next tour starts. This yields an altergat'ﬂansmits signals. An example is that a lost hiker keeps fire

renewal process. Thg duration outside Fhe circle is def'BEdbabrning. Hence the light and the smoke of the fire become
Tour. HENCeT, + 7our is the overall duration for the tour. the continuous signal. Now the searching time becomes the

time that it takes for the robot to enter the circle. The
B. Modeling the EST problem degenerates to the traditional coverage probleenavh

Without loss of generality, we assume the robot starts tl%(Ts) = E(D). ) ) )
searching process from the origin which is on the boundariesC@se 2:When o, = 0, it means that the signal emitted by
of the searching space. It takes some time to reach the cirdlg targetis so powerful that the circle defineddyycan cover
where the first tour starts. Define the time as delayFrom the entire searching space. In this caggp) = 0. Hence
Conditions 1 and 2, we know that the robot cannot find thé(Ts) = 1/A. This is sensible because the result means the
target in D. The searching process is a delayed alternatif@POt can find the target as soon as it emits a signal.
renewal process. DefirES as the time to find the target after Case 3:Whenr,, — 0, which happens whed, is infinites-

the robot enters the repetitive tours. Hence, the EST is  imally small, we haveE(T) — oo. This result conforms to
our expectation.

E(T,) = E(D) + E(TY). (1) Remark 1:It is worth noting that (6) does not depend on a
9 particular motion plan or the shape/dimension of the séagch
space, which makes it widely applicable in practice. Adyual
the EST can be also applied to analyze searching tasksdarrie
VNI by humans. In many cases, the signal transmissi_on)raisa

P(N =k) = € (A7) L k=0,1,2,...,00. (2) known_;E(D) can be estimated based on observatienssan

k! be estimated based afy andwv; and 7,,; can be measured

We know that eventV > 0 means that at least one signabased on observations that how often a robot would revisit a
transmission happens during,. This means the target isregion with the same size of the circle. Based on the known

A. Characterizing Planners

Define N as the number of signal transmissions durity
in a tour. Since the arrival process of the signal transimissi
is Poisson,N conforms to a Poisson distribution,



information and online measurements, we can even predict th; as the distance between the center of the circle and the
EST for an ongoing searching process regardless its motiore. Since the target is uniformly distributed in the 2D epa
plan, which is of great importance in applications where th®; ~ U(0, d,) is uniformly distributed. From Fig. 2(b), we

searching time literally means life or death. know
Dy 2 V d? — Dl2 (9)
TN=—="— = ——.
V. ANALYSIS OF COMMON SEARCHING STRATEGIES " v v
Theorem 1 can be used to analyze the searching perforP1u99ing (7), (8) and (9) into (6) and conditioning dn,
mance under different robot motion plans and configuratioﬁ’¥e have,
i i i 2 2 2
We begin with demonstratln_g how Theorem 1 can reveal the (T.IDy) ~ a N l o a® 2\/d? — D; 160\ D)
difference between two motion plans from common coveragé” (Ts|D: dvd, A \2ud, 1
methods, namely, the slap method and the random walk. (20)
where 1
A. The Slap Method P\, Dy) = V=2 (11)
e »  —1
a— —— — —
R Sincea > dy, 7o > 7, and XEZL s negligible if
A compared with;%-, we have,
oot K ’
L () ETID) ~ -+ L ) (12)
Lo : | D SV qody TN 2wa, 0 0T
y i Lﬁi Lo " Hence we have the EST for the slap method,
i | i b d, ]
O l X = o a : E(TS) - 5=0 E(TS|Dl B 6)d_sd6
@ (b) 2 1 2
T [(APY (13)
Fig. 2. (a) A sample motion plan for the slap method. (b) Ausilfation of dvd A 2vd,
how a tour (linel) intersects the circle of the target. where

ds

" Lsoupyas (14

The slap method [20], also known as the trapezoidal de- g(ds,\) = E(¢(\, D)) :/ y
6=0 Ys

composition [21] in robotics, sequentially scans the entir
searching space back and forth. Fig. 2(a) gives the rohadt § = d, cosd, we can transform (14) into

motion plan for the square case. The plan is a sety-of /2
axis parallel lines (appears to be vertical lines in Fig.)2(a g(ds, \) :/ R — sin 6d6. (15)
that cover the entire searching space. The vertical lines ar 9=0 e~ v —1

inter-connected using the boundaries of the searchingespacwnen A and d,/v are very small, (14) can be further
to formulate a complete tour. To guarantee an intersectigpnpiified,

between the circle and the tour, the distance between adjace ., v
vesl g(ds, \) = 1 (16)
vertical lines is set to béd,. 4)d,

‘The red %" in Fig. 2(a) is the starting point of the tour. Remark 2:Eq. (13) also suggests that a fast robot (large
Since tours are exactly the same in the slap method, %ewith great sensing distancd, reduces the EST. This
subsequent tours start exactly at the same location. Thalbvesgnclusion agrees with our intuition that mobility and segs
tour length is approximately®/(2d;). Given the robot speed gre the key elements in searching. However, it also takes a
v, we know it takes target’s cooperation to further reduce the EST. When thetrob

a? reaches its speed and sensing limit, the only way to reduce
20d, (") ESTis to increasa. Of course, the target usually has energy
time for the robot to finish the tour. Since the target could bceonstralnts ar.ld cannot arbltrar-lly increase . . .
anywhere in the searching space with equal probabilities, w The a}naIyS|s assumes Fhe d|stancg betweep vertical lines is
know that 2§ls, which ensures there is only one mtgrsgcuon between the

circle and the tour. When a smaller spacing is used, the thvera
_ ] (8) tour length increases and so dags The analysis is slightly
dvd; more complicated because it needs to be conditioned on the

The remaining undetermined variableg. Let us define number of intersections between the tour and the circle. The
D, as the distance traveled inside the cirdl®, is the length results actually share a similar format with (15) and theesam
of intersection when the line intersects the circle astitated asymptotical properties with respectdpv, and\. Since our
in Fig. 2(b). Here we ignore the boundary effect where tHecus is to compare the asymptotic behavior of the slap naetho
circle is not a full circle because > d,. Line [ in Fig. 2(b) with that of the random walk, we omit the analysis here.
is a part of the tour. When intersects the circle, we define Another reasonable concern is that whether ignoring the

Tin + Tour =

a2

E(D) = (7 + Tour)/2




boundary effect impacts the final result. When the circle @o not depend on lattice size but local transitional propert
located at the boundary of the square, distabgecannot be Hence,

computed using (9). Since the target has to be located within a ra 1

d, distance of the boundary to create the scenario, the prob- E(D) = / / E(D|X; = 2,Y; = y)—dudy, (18)
ability that such event happens is less tHdst = 4= < 1, 0 20 0 e

sinceds < a. Hence its impact to the final EST is ignorable N0 M / / Iny/x? + y2dxdy. (19)
becauseD,, for such case is not significantly different from 2vds — 2vds Jo Jo

that of the non-boundary case. Therefore, we will ignore Since

boundary effect in the rest of the paper. a ra 2In2 -6
/ / In /22 + y2dedy = a*Ina + 7T++a2
0 0

we have
a 2

E(D) =~

B. Random Walk

2In2 —
<ao + o 1na+o¢1ﬂ-+fm>. (20)

2udy

The remaining unknown term in (6) iE(TOUT%).
A/*‘\ Given the robot speed, 7, is uniquely determined by the
-\@ distance in the circlé,,, which is independent of the overall
trajectory. AlsOE(7our) &~ E(7our + Tw) given thata > d;.

YT < 2d, Hence,

A

e—)\ﬂN e—>\TIN

) ~ E(TOUT + TIN)E(

E(our ). (21)
Since the 2D lattice-based random walk is undirected and

Fig. 3.  An illustration of robot motion plan based on a 2D itattbased symmetric in transitional probability, we know that the-sta
random walk. . s . - . : wd?
tionary probability of staying inside the circle j5. = —=.

Another popular motion plan is to employ a 2D random herefore, we know the following is true according to Renewa

walk to traverse the searching space. As illustrated in Big. Réward theorem,

1 _ e*)\TW 1 _ €7>\T|N

O X a

we partition the entire searching space using a 2D finiteéatt E(y) wd?

with a spacing of2d, in each dimension. Denoting/, as =Pc= "5 (22)
p g s ) »s E(7our + Tin) a

the number of lattice nodes, we hake = el nodes. Finer

lattice is possible but usually associated with higher WerPIuggmg (22) into (21), we have

cost because the robot has to make a lot more turns. e AT a? e~
. o Eltopn———— | —E(m)E|{———]. (23)
The robot always moves from one lattice node to its 1 — =AW wd? 1 — =AW
neighboring node with equal probabilities. The robot doefs n

cross the boundaries. According to [22], this is a finite ZIRas a spacing dfd,, two scenarios exist when the tour on the
H H H H Sy
lattice with reflective boundaries. Recall that a tour stat Iﬁpice intersects the circle: i) the nearest lattice paintthe

the moment the robot enters the circle. Since the robot mig[ oL . .. . .
not enter the circle at the exactly same location in differe our is inside the circle and ii) the nearest lattice pointoa
our is outside the circle as illustrated in Fig. 4. Let us mefi

tours, each tour is not necessarily a completely closedecurvy

as that in the slap method case. The closed curve tour in Figre.\@?nts f[hat scenarios |)_and ) happen as evéman_d Eo,
) o espectively. Since the circle center is uniformly locatethe
only happens with a probability of/4.

To compute the EST in (6), we need to computeD). searching space,
Recall that the robot always starts at origin. Given thetioca
of target(Xy, Y;), computing the mean time that it takes the
robot to follow the random walk to reach a particular locatio
(X, 7) IS the mean first passage time (MFPT) .[23]’ [24ﬂntersects the circle as a straight line as shown in Fig..4(a)
problem in stochastic modeling. The exact solution to th|§{

. . . Hence we have
problem is expressed in the format of pseudo Green functions B Dy 25
and cannot be explicitlyzanalyzed. Singes d,, there are a Tl Eo = ==, (25)
large number of nodeg;l—g in the 2D lattice and each robot,, oo Dy, is defined in (9) and the right side dfis the

move takes? time. Hence we can apply the recent resultsondition for the equality to be true. This is a notation

Now, we focus on the computation ef,. Since the lattice

nd? o«
P(E;) = 21 1— P(E,). (24)

When eventF, happens, we know that the robot trajectory

of MFPT using its asymptotic format in [25], convention widely used in stochastic modeling [19]. Hence
a2 d
BDIX, Y0~ 5 (ao Fontny /X2 + YE), (17) B(r|E,) = 2 and (26)
— AT
where oy and «; are constants and can be determined by E (iwo) = g(ds, \). (27)
Monte Carlo methods. According to [23}y anda; strikingly 1— e



area ofa? /n each and allocate one robot for each sub square
field.

A single expensive robot (ASER) ca¥ée have an expen-
sive robot equipped with a very capable sensor that has a
sensing area equal to the combination of those ofrthew-
cost robots. If each of the low-cost robot has a sensing rahge
ds, then the area of the combined sensing regiomfmsbots is
nnd?. Therefore, the sensing distance for the expensive robot
Fig. 4. An illustration of how the robot trajectory in solithé¢ intersects the IS set tOd{"‘ = \/ﬁds to ensure the same-sized sensing coverage
circle. (a) Scenario i): when the nearest lattice point am ts located outside at any given time.
the circle. (b) Scenario ii): when the nearest lattice painttour is located We are now ready to compare these two robot configura-
inside the circle. The dashed line in the figure is part of tttck. tions. Since the slap method is asymptotically faster then t

When eventr; happens, one lattice point is inside the circler.andom walk, we build on the slap method results in _(39)'
As illustrated in Fig. 4(b), the lattice point inside the atér For the LCRT, only one robot actually has the target in its

partitions the lattice edges inside the circle into fourtgar sub f'ﬁ!d' Hence, thecrest m’f,_l “?tr’]"tﬁ are_|rreI(|evagt n th§0
l1,15,13, andly. When a robot trajectory intersects the circlg>€arening process. Lomparing with the original EST in (30),

the part of the trajectory inside the circle can be dividet in W& JUSt need to replace with 2. Defining the searching
two segments, which are defined Bsand L”, respectively. time for the LCRT asT;, we have

L’ refers to the segment that the robot takes to arrive at the , a2 1 a2

lattice node and.” refers to the segment that the robot takes E(T}) = dond, + 3 + mg(ds, A).- (31)

to leave the circle. Hence

Defining the searching time for the ASER &%, we have

L/ + L//
| Ei = et B a2 1 a2 (VRdo ) @2)
s )X ——— + -+ ——9(Vnds, A).
SinceL’ andL” have equal probabilities to take, I, I3, and dvy/nd, A 2vy/nds

l4, there is a total of 16 combinations. Conditioning on the 16 From (15), it is not difficult to see that
(L', L") combinations and the circle center locatio¥:, Y),
we get the same results as shown in (26) and (27). Combining 9(v/nds, A) = 0 as n — occ. (33)
those results for thez; and E, events by conditioning on Therefore, we have the following conclusion,

them, we have the unconditional expected values, Corollary 2: When traveling at the same velocity the
wd, low-cost robot team can find the target asymptotically faste
E(rn) = o0 and (28) than the single expensive robot does wheimcreases, ifl /A
e— AT is not the dominating factor in the EST.
g (m) = g(ds, A), (29) Proof: From (32) and (33), we knows (7)) = (= +

. , _ _ 1), From (31), we knowE(T!) = ©(1 + 1). Hence the
whereg(-) is defined in (15). Plugging (20), (23), (28), andéonclusion follows. oA -
(29) into (6), we can obtain the EST for the random walk case

"It is actually rather surprising to see the result in Corglta
B(T,) ~ a® <a fanata T+2In2 — 6> at the first sight. We have not expected such a significant
s/ opd \T0 T L 4 difference in the comparison. This conclusion is ratheerint
1 a2 esting because it shows that an expensive robot with superio
1T 2d5vg(ds’ A). (30) sensing capability is not as good as a large number of low-cos

_ . robots with less capable sensors when searching for tettgets
Comparing (30) to (13) , we have the follow conclusion, jntermittently transmits short duration signals.

Corollary 1: With the same field side length the sensing  remark 3: This analysis also shows that if there are cost
rangeds, and the signal transmission ratgthe E(T’) value = fnctions associated with the number of robots, different
of the slap method is asymptotically smaller than that of the, g0y options, or different velocity options available, san

random walk wher: — oo. use the EST results as an objective function to optimize the
Proof: It is straightforward becausg(7,) = O(a?) for | gpot configuration for the task.

the slap method from (13) whil&(T%) = ©(a?Ina) for the

random walk according to (30). [ ] VI, EXPERIMENTS
We test our results using Monte Carlo simulation. The sim-

ulation program is written in Microsoft Visual C++.Net 2005
Theorem 1 can also be used to analyze cases under diffex@nta Desktop PC with an 32-bit Windows XP Professional

robot configurations. Here we compare two configurations. Edition OS. The Desktop PC has an Intel 2.13 GHz Core2Duo
A low-cost robot team (LCRT) casé/e haven identically- CPU with 2GB RAM and a 250 GB Hard disk.

configured low-cost robots. To coordinate the searching, weThe experimental results are illustrated in Figs. 5 and 6.

partition the searching space intosub square fields with an Each data point in both figures is an average of 10,000

C. Analysis of Different Robot Configurations
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Fig. 5. Simulation results in (a), (b), (c), and (d) for valithg Theorem 1 with respect g \, ds, andwv, respectively. SM stands for the slap method. RW
stands for the random walk. Model means the model prediaifoiie EST. Meas. means the measured mean searching time.

. . L . Figure a (m) A (UUsec) | ds (m) | v (mls)
independent trials. At the beginning of each trial, we reset Fig. 5(@) | 100-1000] 0.1 70 10
robot position to be af0,0) and generate the target location Fig. 5(b) 200 0.1-1.0 1.0 1.0
according to a 2D uniform distribution. We then run the robot E!g- 28 ggg 8-1 11-100 o 011-0100
. ; . ; ig. . . .01-
according to the selected motion plan and finish the trial as Fig. 6 200 01 10 10

soon as the target is found.
TABLE |

PARAMETER SETTINGS FOR RESULTS INFIG. 5 AND FIG. 6.
A. Validating Theorem 1 and Corollary 1

We test Theorem 1 using both the slap method and the ran-
dom walk because Theorem 1 is supposed to be independep]the curve trends with respect tg ), d, andv in Fig. 5
of motion pla_ns. T_he simulation is set up with differenth, are also consistent with our analysis in (13) and (30). The
ds, andv settings in Table I. In each setting, we collect bOtEST increases as the field side lengtiincreases. The EST
t_he model predicted EST and the .mea.sureq mean searcng reases as, ds, andwv increase. All figures show that the
time. The measured mean searching time is the average fldom walk is slower than the slap method. In particular,

the searching time over the 10k trials (the “Meas.” values 5 (a) is consistent with the asvmptotical difference in
Fig. 5). The model predicted ESTs, which are the “Model&gr'onafy)l ymp

values in Fig. 5, refer to the predicted ESTs according to
the measured, A, 7y, and ro; Values in the experiment.
In other words, we record their values and average them oWer Validating Corollary 2
the 10k trials and to obtain the estimationlgf\, E(D), and We have also implemented both LCRT and ASER robot
E(TOUT%). We then feed them into (6) to obtain theconfigurations. Again, the parameter settings are in the las
model prediction of the EST. row of Table I. The measured ESTs for both the configurations
As illustrated in Fig. 5, the model prediction is fairly cigs are shown in Fig. 6. It is clear that the EST for the LCRT is
tent with the measured mean searching time under all ssttinglways much smaller than that of the ASER. This is consistent
There are more fluctuations between the model predictiaith Corollary 2. Curves in the figure also show the trend that
and the measured mean searching time in random walk-batiesl EST decreases as thdancreases. This is consistent with
results than that of the slap method. This is expected becaosr analysis. Also, as gets very big, the curve levels at
of more random factors associated with the random walk.non-zero value. This indicates that the signal transomissi
Under the same trial number, the results from the randammte dominates the searching time. On the other hand, ittis no
walk should contain more randomness. desirable to arbitrarily increasebecause the marginal benefit
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