
Closing the Learning-Planning Loop with
Predictive State Representations

Byron Boots
Machine Learning Dept.

Carnegie Mellon University
Pittsburgh, PA, USA

Email: beb@cs.cmu.edu

Sajid M. Siddiqi
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA, USA

Email: siddiqi@google.com

Geoffrey J. Gordon
Machine Learning Dept.

Carnegie Mellon University
Pittsburgh, PA, USA

Email: ggordon@cs.cmu.edu

AbstractÑ A central problem in artiÞcial intelligence is to
choose actions to maximize reward in a partially observable,
uncertain environment. To do so, we mustlearn an accurate
model of our environment, and then plan to maximize reward.
Unfortunately, learning algorithms often recover a model which
is too inaccurate to support planning or too large and complex for
planning to be feasible; or, they require large amounts of prior
domain knowledge or fail to provide important guarantees such
as statistical consistency. To begin to Þll this gap, we propose a
novel algorithm which provably learns a compact, accurate model
directly from sequences of action-observation pairs. To evaluate
the learner, we thenclose the loopfrom observations to actions:
we plan in the learned model and recover a policy which is near-
optimal in the original environment (not the model). In more
detail, we present a spectral algorithm for learning a Predictive
State Representation (PSR). We demonstrate the algorithm by
learning a model of a simulated high-dimensional, vision-based
mobile robot planning task, and then performing approximate
point-based planning in the learned model. This experiment
shows that the learned PSR captures the essential features of the
environment, allows accurate prediction with a small number of
parameters, and enables successful and efÞcient planning. Our
algorithm has several beneÞts which have not appeared together
in any previous PSR learner: it is computationally efÞcient and
statistically consistent; it handles high-dimensional observations
and long time horizons by working from real-valued features of
observation sequences; and Þnally, our close-the-loop experiments
provide an end-to-end practical test.

I. I NTRODUCTION

Planning a sequence of actions or a policy to maximize
reward has long been considered a fundamental problem for
autonomous agents. In the hardest version of the problem, an
agent must form a plan based solely on its own experience,
without the aid of a human engineer who can design problem-
speciÞc features or heuristics; it is this version of the problem
which we must solve to build a truly autonomous agent.

Partially Observable Markov Decision Processes
(POMDPs) [23, 3] are a general framework for single-
agent planning. POMDPs model the state of the world as
a latent variable and explicitly reason about uncertainty
in both action effects and state observability. Plans in
POMDPs are expressed aspolicies, which specify the action
to take given any possible probability distribution over
states. Unfortunately, exact planning algorithms such asvalue

iteration [23] are computationally intractable for most realistic
POMDP planning problems. Furthermore, researchers have
had only limited success learning POMDP models from data.

Predictive State Representations (PSRs)[11] and the closely
related Observable Operator Models (OOMs)[8] are gen-
eralizations of POMDPs that have attracted interest because
they both have greater representational capacity than POMDPs
and yield representations that areat leastas compact [20, 4].
In contrast to the latent-variable representations of POMDPs,
PSRs and OOMs represent the state of a dynamical system
by tracking occurrence probabilities of a set of future events
(called tests or characteristic events) conditioned on past
events (calledhistories or indicative events). Because tests
and histories are observable quantities, it has been suggested
that learning PSRs and OOMs should be easier than learning
POMDPs. And, many successful approximate planning tech-
niques for POMDPs can be used to plan in PSRs and OOMs
with minimal adjustment.

The quality of an optimized policy for a POMDP, PSR,
or OOM depends strongly on the accuracy of the model:
inaccurate models typically lead to useless plans. We can
specify a model manually or learn one from data, but due
to the difÞculty of learning, it is far more common to see
planning algorithms applied to hand-speciÞed models, and
therefore to small systems where there is extensive and goal-
relevant domain knowledge. For example, recent extensions
of approximate planning techniques for PSRs have only been
applied to hand-constructed models [9, 7].

Learning models for planning in partially observable en-
vironments has met with only limited success. As a result,
there have been few successful attempts at closing the loop
by learning a model from an environment, planning in that
model, and testing the plan in the environment. For example,
Expectation-Maximization (EM) [1] does not avoid local min-
ima or scale to large state spaces; and, although many learning
algorithms have been proposed for PSRs [21, 30, 13, 26, 2]
and OOMs [8, 5, 31], none have been shown to learn models
that are accurate enough for planning.

Several researchers have, however, made progress in the
problem of planning using a learned model. In one in-
stance [17], researchers obtained a POMDP heuristically from
the output of a model-free algorithm [12] and demonstrated

planning on a small toy maze. In another instance [16], re-
searchers used Markov Chain Monte Carlo (MCMC) inference
both to learn a factored Dynamic Bayesian Network (DBN)
representation of a POMDP in a small synthetic network
administration domain, as well as to perform online planning.
Due to the cost of the MCMC sampler used, this approach
is still impractical for larger models. In a Þnal example,
researchers learned Linear-Linear Exponential Family PSRs
from an agent traversing a simulated environment, and found a
policy using a policy gradient technique with a parameterized
function of the learned PSR state as input [29, 27]. In this
case both the learning and the planning algorithm were subject
to local optima. In addition, the authors determined that the
learned model was too inaccurate to support value-function-
based planning methods [27]. Perhaps the closest prior work
is that of Rosencrantz et al. [15]: like our method, their algo-
rithm uses a straightforward sequence of algebraic operations
to derive parameter estimates from matrices of observable
statistics. However, Rosencrantz et al. do not attempt to
provide a detailed proof of consistency such as the one in
Equations 4(aÐc) and Section III below. And, their method
does not easily generalize to allow real-valued observations,
Òindicative features,Ó and Òcharacteristic features,Ó as we de-
rive in Sections III-A and III-B below; in our experience,
using these features (instead of discrete, mutually-exclusive
events) greatly reduces the variance of our estimated model
parameters. Finally, the experiments of Rosencrantz et al.
focus on the observation-only case, rather than on estimating
the effects of actions and using the learned model for planning.
(We describe several more-minor differences between the
algorithms below in Section III.)

The current paper differs from these and other previous
examples of planning in learned models: it both uses a
principled and provably statistically consistent model-learning
algorithm, and demonstrates positive results on a challenging
high-dimensional problem with continuous observations. In
particular, we propose a novel, consistent spectral algorithm
for learning a variant of PSRs calledTransformed PSRs[15]
directly from execution traces. The algorithm is closely re-
lated to subspace identiÞcation for learning Linear Dynamical
Systems (LDSs) [22, 25] and spectral algorithms for learn-
ing Hidden Markov Models (HMMs) [6] and Reduced-Rank
HMMs [18]. We then demonstrate that this algorithm is able
to learn compact models of a difÞcult, realistic dynamical
system without any prior domain knowledge built into the
model or algorithm. Finally, we perform approximate point-
based value iteration (PBVI) in the learned compact models,
and demonstrate that the greedy policy for the resulting value
function works well in the original (not the learned) system.
To our knowledge this is the Þrst research that combines all
of these achievements, closing the loop from observations to
actions in an unknown nonlinear, non-Gaussian system with
no human intervention beyond collecting the raw transition
data and specifying features.

II. PREDICTIVE STATE REPRESENTATIONS

A predictive state representation (PSR) [11] is a compact
and complete description of a dynamical system. PSRs rep-
resent state as a set of predictions of observable experiments
or teststhat one could perform in the system. SpeciÞcally, a
test of lengthk is an ordered sequence of action-observation
pairs ! = a!

1o!
1 . . . a!

k o!
k that can be executed and observed

at a given time. Likewise, ahistory is an ordered sequence
of action-observation pairsh = ah

1 oh
1 . . . ah

t oh
t that has been

executed and observed prior to a given time. Theprediction
for a test! is the probability of the sequence of observations
! O = o!

1 , . . . , o!
k being generated, given that we intervene

to take the sequence of actions! A = a!
1 , . . . , a!

k . If the
observations produced by the dynamical system match those
speciÞed by the test, the test is said to havesucceeded. The key
idea behind a PSR is that, if we know the expected outcomes
of executing all possible tests, then we also know everything
there is to know about the state of a dynamical system.

In PSRs, actions in tests areinterventions, not observations.
We use a single vertical bar to indicate conditioning and a
double vertical bar to indicate intervening: e.g.,Pr[! O | h || ! A]
is the probability of the observations in test! , given an
observed historyh, and given that we intervene to execute
the actions in! . We write Q(h) for the prediction vectorof
success probabilities for a set of testsQ = { qi } :

Q(h) = [Pr[qO
1 | h || qA

1], ..., Pr[qO
|Q| | h || qA

|Q|]]
T

Knowing the probabilities of some tests may allow us to
compute the probabilities of other tests. That is, given a test
! and a set of testsQ, there may exist aprediction function
f ! such thatPr[! O | h || ! A] = f ! (Q(h)) for all historiesh.
In this case, we sayQ(h) is a sufÞcient statisticfor ! .

Formally, a PSR is a tuple!A, O, Q, F, m 1". A is the set of
possible actions, andO is the set of possible observations.Q
is a core set of tests, i.e., a set whose prediction vectorQ(h)
is a sufÞcient statistic forall tests.F is the set of prediction
functionsf ! for all tests! (which must exist sinceQ is a core
set), andm1 = Q(") is the initial prediction vector after seeing
the empty history". In this work we will restrict ourselves
to linear PSRs, in which all prediction functions are linear:
f ! (Q(h)) = r T

! Q(h) for some vectorr ! # R|Q| .
SinceQ(h) is a sufÞcient statistic for all tests, it is astate

for our PSR: i.e., we can remember justQ(h) instead ofh
itself. After taking actiona and seeing observationo, we can
updateQ(h) recursively: if we writeM ao for the matrix with
rows r T

ao! for ! # Q, then we can use BayesÕ Rule to show:

Q(hao) =
M aoQ(h)

Pr[o| h || a]
=

M aoQ(h)
mT

! M aoQ(h)
(1)

wherem! is a normalizer, deÞned bymT
! Q(h) = 1 ($h).

Specifying a PSR involves Þrst Þnding a core set of testsQ,
called thediscovery problem, and then Þnding the parameters
M ao, m! , andm1 for these tests, called thelearning problem.
A core setQ for a linear PSR is said to beminimal if the
tests inQ are linearly independent [8, 20], i.e., no one testÕs

prediction is a linear function of the other testsÕ predictions.
The discovery problem is usually solved by searching for
linearly independent tests by repeatedly performing Singular
Value Decompositions (SVDs) on collections of tests [30]. The
learning problem is then solved by regression.

Transformed PSRs (TPSRs) [15] are a generalization of
PSRs: TPSRs maintain a small number of sufÞcient statistics
which are linear combinationsof a (potentially very large
and non-minimal) set of test probabilities. Accordingly, TPSRs
can be thought of aslinear transformationsof regular PSRs.
Therefore, TPSRs include PSRs as a special case, since this
transformation can be the identity. The main beneÞt of TPSRs
is that, given a core set of tests, the parameter learning
problem can be solved and a large step toward solving the
discovery problem can be achieved in closed form, as we will
see below. In this respect, TPSRs are closely related to the
transformed representations of LDSs and HMMs found by
subspace identiÞcation[25, 22, 6].

A. Observable Representations
Our learning algorithm is based on anobservable represen-

tation of a PSR, that is, one where each parameter corresponds
directly to observable quantities. This representation depends
on a core set of testsT (not necessarily minimal). It also
depends on a setH of indicative events, that is, a mutually
exclusive and exhaustive partition of the set of all possible
histories. We will assumeH is sufÞcient(deÞned below).

For purposes of gathering data, we assume that we can
sample from some distribution# over histories; our observable
representation depends on# as well. E.g.,# might be the
steady-state distribution of some exploration policy. Note that
this assumption means that wecannot estimatem1, since
we donÕt have samples of trajectories starting fromm1. So,
instead, we will estimatem" , an arbitrary feasible state, which
is enough information to enable prediction. If we make the
stronger assumption that we can repeatedly reset our PSR to
its starting distribution, a straightforward modiÞcation of our
algorithm will allow us to estimatem1 as well.

We deÞne several observable matrices in terms ofT , H , and
#. After each deÞnition we show how these matrices relate
to the parameters of the underlying PSR. These relationships
will allow us to deÞne an equivalent TPSR, and will also be
key tools in designing our learning algorithm and showing
its consistency. The Þrst observable matrix isPH # R|H| ,
containing the probabilities of every eventH i # H when we
sample a historyh according to#:

[PH]i % Pr[H i] =& PH = Pr[H] (2a)

Here we have deÞnedPr[H i] to meanPr[h # Hi], andPr[H]
to mean the vector whose elements arePr[H i] for H i # H .

The next observable matrix isPT ,H # R|T |#|H| , whose
entries arejoint probabilities of tests! i # T and indicative
eventsHj # H when we sampleh ' # and take actions! A

i :
[PT ,H]i,j % Pr[! O

i , H j || ! A
i] % E[r T

! i
Q(h) | H j] Pr[H j]

% r T
! i

sH j Pr[H j]

=& PT ,H = RSD (2b)

Here we deÞnesH j = E[Q(h) | H j] to be the expected state
given indicative eventH j ; and as above, the vectorr ! i lets us
compute the probability of test! i given the state. Finally, we
let R # R|T |#| Q| be the matrix with rowsr T

! i
, S # R|Q|#|H|

be the matrix with columnssH j , andD = diag(Pr[H]).
Eq. (2b) tells us that the rank ofPT ,H is no more than

|Q|, since its factorsR andS each have rank at most|Q|. At
this point we can deÞne asufÞcientset of indicative events as
promised: it is a set of indicative events for which the rank of
PT ,H is equal to |Q|.

The Þnal observable matrices arePT ,ao, H # R|T |#|H| , one
matrix for each action-observation pair. Entries ofPT ,ao, H

are probabilities oftriples of an indicative event, the next
action-observation pair, and a subsequent test, if we intervene
to executea and ! A

i :

[PT ,ao, H]i,j % Pr[! O
i , o, Hj || a, ! A

i]

= E[Pr[! O
i , o| h || a, ! A

i] | H j] Pr[H j]

= E[Pr[! O
i | h, o || a, ! A

i] Pr[o| h || a] | H j] Pr[H j]

= E[r T
! i

Q(hao) Pr[o| h || a] | H j] Pr[H j]

= E[r T
! i

M aoQ(h) | H j] Pr[H j] by Eq. (1)

= r T
! i

M aosH j Pr[H j]

=& PT ,ao, H = RM aoSD (2c)

Just likePT ,H , the matricesPT ,ao, H have rank at most|Q|
due to their factorsR andS.

We can also relate the factorS to the parametersm! and
m" : for m! , we start from the factmT

! S = 1 T (since each
column of S is a vector of core-test predictions), repeatedly
multiply by S andS , and use the factSS = I .

mT
! S = 1 T

k =& mT
! SS = 1 T

k S =& mT
! = 1 T

k S (3a)

=& mT
! S = 1 T

k S S =& 1T
k = 1 T

k S S (3b)

Here, k = |H| and 1k denotes the ones-vector of lengthk.
For m" , we note that each column ofS is a feasible state,
and so we can takem" to be any convex combination of the
columns ofS. In particular, we will takem" = S Pr[H].

We now deÞne a TPSR in terms of the matricesPH , PT ,H ,
PT ,ao, H and an additional matrixU # R|T |#| Q| such thatUT R
is invertible. A natural choice forU is the left singular vectors
of PT ,H , although a randomly-generatedU will work with
probability 1. We can think of the columns ofU as specifying
a core setQ$ of linear combinationsof tests which deÞne a
state vector for our TPSR. Finally we simplify the expressions
using Equations 2(aÐc) to show that our parameters are only a
similarity transform away from the original PSR parameters:

b" % UT PT ,H 1k = UT RSD1k = (UT R)m" (4a)

bT
! % PT

H (UT PT ,H) = 1 T
n S SD(UT PT ,H)

= 1 T
n S (UT R)%1(UT R)SD(UT PT ,H)

= 1 T
n S (UT R)%1 = mT

! (UT R)%1 (4b)

Bao % UT PT ,ao, H (UT PT ,H)

= UT RM aoSD(UT PT ,H)

= UT RM ao(UT R)%1(UT R)SD(UT PT ,H)

= (UT R)M ao(UT R)%1 (4c)

The derivation of Eq. 4b makes use of Eqs. 3a and 3b. To
get b1 = (UT R)m1 instead ofb" in Eq. 4a, replacePT ,H 1k ,
the vector of expected probabilities of tests forh ' #, with
the vector of probabilities of tests forh = ".

Given these parameters, we can calculate the probability
of observationso1:t , given that we start from statem1 and
intervene with actionsa1:t . Here we write the product of a
sequence of transitions asM ao1: t = M a1 o1 M a2 o2 . . . M at ot .

Pr[o1:t ||a1:t]= mT
! (UTR)%1(UTR)M ao1: t(U

TR)%1(UTR)m1

= bT
! Bao1: t b1 (5)

In addition to the initial TPSR stateb1, we deÞne normalized
conditionalinternal statesbt by a recursive update:

bt +1 =
Baot bt

bT
! Baot bt

(6)

It is straightforward to show recursively thatbt can be used
to compute conditional observation probabilities. (If we only
haveb" instead ofb1, then initial probability estimates will be
approximate, but the difference in predictions will disappear
over time as our process mixes.) The linear transform from
a TPSR internal statebt to a PSR internal stateqt = Q(ht)
is given byqt = (UT R)%1bt . If we choseU by SVD, then
the prediction of testsPr[T O | h || T A] at time t is given by
Ubt = UUT Rqt = Rqt (since by the deÞnition of SVD,U is
orthonormal and the row spaces ofU andR are the same).

III. L EARNING TPSRS

Our learning algorithm works by building empirical esti-
mates!PH , !PT ,H , and !PT ,ao, H of the matricesPH , PT ,H , and
PT ,ao, H deÞned above. To build these estimates, we repeatedly
sample a historyh from the distribution#, execute a sequence
of actions, and record the resulting observations.

Once we have computed!PH , !PT ,H , and !PT ,ao, H , we can
generate!U by singular value decomposition of!PT ,H . We can
then learn the TPSR parameters by plugging!U, !PH , !PT ,H ,
and !PT ,ao, H into Equation 41:

!b" = !UT !PH 1k

!b! = (!PT
T ,H

!U) !PH

!Bao = !UT !PT ,ao, H (!UT !PT ,H)

As we include more data in our averages, the law of large
numbers guarantees that our estimates!PH , !PT ,H , and !PT ,ao, H

converge to the true matricesPH , PT ,H , andPT ,ao, H (deÞned
in Equation 2). So by continuity of the formulas above, if our
system is truly a PSR of Þnite rank, our estimates!b" , !b! , and

1The learning strategy employed here may be seen as a generalization of
Hsu et al.Õs spectral algorithm for learning HMMs [6] to PSRs. Note that since
HMMs and POMDPs are a proper subset of PSRs, we can use the algorithm
in this paper to learn back both HMMs and POMDPs in PSR form.

!Bao converge to the true parameters up to a linear transformÑ
that is, our learning algorithm isconsistent. Although pa-
rameters estimated with Þnite data can sometimes lead to
negative probability estimates when Þltering or predicting,
this problem can be avoided in practice by thresholding the
predicted probabilities by some small positive probability.

Note that the learning algorithm presented here is distinct
from the TPSR learning algorithm presented in Rosencrantz et
al. [15]. In addition to the differences mentioned above, a key
difference between the two algorithms is that here we estimate
the joint probability of a past event, a current observation,
and a future event in the matrix!PT ,ao, H , whereas in [15],
the authors instead estimate the probability of a future event,
conditioned on a past event and a current observation. To
compensate, Rosencrantz et al. later multiply this estimate by
an approximation of the probability of the current observation,
conditioned on the past event. Rosencrantz et al. also derive the
approximate probability of the current observation differently:
as the result of a regression instead of directly from empirical
counts. Finally, Rosencrantz et al. do not make any attempt
to multiply by the marginal probability of the past event,
although this term cancels in the current work. In the absence
of estimation errors, both algorithms would arrive at the same
answer, but taking errors into account, they will typically
make different predictions. The difÞculty of extending the
Rosencrantz et al. algorithm to handle real-valued features
stems from the difference between joint and conditional prob-
abilities: the observable matrices in Rosencrantz et al. are
conditional expectations, so their algorithm depends on being
able to condition on discrete indicative events or observations.
In contrast, the next section shows how to extend our algorithm
to use real-valued features.

A. Learning TPSRs with Features

In data gathered from complex real-world dynamical sys-
tems, it may not be possible to Þnd a reasonably-sized core
set of discrete testsT or sufÞcient set of indicative eventsH .
When this is the case, we can generalize the TPSR learning
algorithm and work withfeaturesof tests and histories, which
we call characteristic featuresand indicative featuresrespec-
tively. In particular letT and H be large sets of tests and
indicative events (possibly too large to work with directly)
and let $T and $H be shorter vectors of characteristic and
indicative features. The matricesPH , PT ,H , andPT ,ao, H will
no longer contain probabilities but ratherexpected valuesof
features or products of features. For the special case of features
that areindicator functionsof tests and histories, we recover
the probability matrices from Section II-A.

Here we prove theconsistencyof our estimation algorithm
using these more general matrices as inputs. In the following
equations! T and ! H are matrices of characteristic and
indicative features respectively, with Þrst dimension equal to
the number of characteristic or indicative features and second
dimension equal to|T | and|H| respectively. An entry of! H

is the expectation of one of the indicative features given the
occurrence of one of the indicative events. An entry of! T

is the weight of one of our tests in calculating one of our
characteristic features. With these features we generalize the
matricesPH , PT ,H , andPT ,ao, H :

[PH]i % E($H
i (h)) =

"
H &H Pr[H]! H

iH

=& PH = ! H Pr[H] (7a)

[PT ,H]i,j % E($T
i (! O) á$H

j (h) || ! A)

=
"

! &T

"
H &H Pr[! O , H || ! A]! T

i! ! H
jH

=
"

! &T r T
! ! T

i!
"

H &H sH Pr[H]! H
jH by Eq. (2b)

=& PT ,H = ! T RSD! H T
(7b)

[PT ,ao, H]i,j % E($T
i (! O) á$H

j (h) á%(o) || a, ! A)

=
"

! &T

"
H &H Pr[! O , o, H || a, ! A]! T

i! ! H
jH

=
#"

! &T r T
! ! T

i!

$
M ao

#"
H &H sH Pr[H]! H

jH

$ by
Eq. (2c)

=& PT ,ao, H = ! T RM aoSD! H T
(7c)

where%(o) is an indicator for observationo. The parameters
of the TPSR (b" , b! , andBao) are now deÞned in terms of a
matrix U such thatUT ! T R is invertible (we can takeU to be
the left singular values ofPT ,H), and in terms of the matrices
PH , PT ,H , and PT ,ao, H . We also deÞne a new vectore s.t.
! H T

e = 1 k ; this means that the ones vector1T
k must be in

the row space of! H . Since! H is a matrix of features, we
can always ensure that this is the case by requiring one of our
features to be a constant. Finally we simplify the expressions
using Equations 7(aÐc) to show that our parameters are only a
similarity transform away from the original PSR parameters:

b" % UT PT ,H e = UT ! T RSD! H T
e

= UT ! T RSD1k = (UT ! T R)m" (8a)

bT
! % PT

H (UT PT ,H) = 1 T
n S SD! H T

(UT PT ,H)

= 1 T
n S (UT ! T R)%1(UT ! T R)SD! H T

(UT PT ,H)

= 1 T
n S (UT ! T R)%1 = mT

! (UT ! T R)%1 (8b)

Bao % UT PT ,ao, H (UT PT ,H)

= UT! TRM ao(UT! TR)%1(UT! TR)SD! H T
(UTPT ,H)

= (UT ! T R)M ao(UT ! T R)%1 (8c)

Just as in the beginning of Section III, we can estimate!PH ,
!PT ,H , and !PT ,ao, H , and then plug the matrices into Equa-
tions 8(aÐc). Thus we see that if we work with characteristic
and indicative features, and if our system is truly a TPSR of
Þnite rank, our estimates!b" , !b! , and !Bao again converge to
the true PSR parameters up to a linear transform.

B. Kernel Density Estimation for Continuous Observations

For continuous observations, we use Kernel Density Estima-
tion (KDE) [19] to model the observation probability density
function (PDF). Although use of kernel density estimation for
continuous observations in PSRs is not new [28], extending
our algorithm to use KDE results, for the Þrst time, in a statis-
tically consistent learning algorithm for PSRs with continuous
observations. We use a fraction of the training data points
as kernel centers, placing one multivariate Gaussian kernel at

each point.2 The KDE of the observation PDF is a convex
combination of these kernels; since each kernel integrates to
1, this estimator also integrates to1. KDE theory [19] tells
us that, with the correct kernel weights, as the number of
kernel centers and the number of samples go to inÞnity and
the kernel bandwidth goes to zero (at appropriate rates), the
KDE estimator converges to the observation PDF inL 1 norm.
The kernel density estimator is completely determined by the
normalized vector of kernel weights; therefore, if we can
estimate this vector accurately, our estimate of the observation
PDF will converge to the observation PDF as well. Hence
our goal is to predict the correct expected value of this
normalized kernel vector given all past observations. In the
continuous-observation case, we can still write our latent-state
update in the same form, using a matrixBao; however, rather
than learning each of the uncountably-manyBao matrices
separately, we learn one base operator per kernel center, and
use convex combinations of these base operators to compute
observable operators as needed. For details on practical aspects
of learning with continuous observations, see Section IV-B.

C. Practical Computation of the TPSR Parameters

As deÞned above, each element of!PH is the empirical
expectation (over histories sampled from#) of the corre-
sponding element of the indicative feature vectorÑthat is,
elementi is 1

w

" w
t =1 $H

it , where$H
it is thei th indicative feature

evaluated at thetth sampled history. Similarly, each element
of !PT ,H is an empirical expectation of theproduct of one
indicative feature and one characteristic feature, if we sample
a history from# and then follow an appropriate sequence of
actions. We can compute all elements of!PT ,H from a single
sample of trajectories if we sample histories from#, follow
an appropriate exploratory policy, and then importance-weight
each sample [2]:[!PT ,H]ij is

" w
t =1 &t $T

it $H
jt , where&t is an

importance weight. (In our experiments below, the importance
weights are constant by design, and therefore cancel out.)

Once we have constructed!PT ,H , we can compute!U as the
matrix of left singular vectors of!PT ,H . One of the advantages
of subspace identiÞcation is that the complexity of the model
can be tuned by selecting the number of singular vectors in
!U, at the risk of losing prediction quality.

Finally, since there may be many large matrices!PT ,ao, H ,
rather than computing them directly, we instead compute
!UT !PT ,ao, H for each paira, o. The latter matrices are much
smaller, and in our experiments, we saved substantially on
both memory and runtime by avoiding construction of the
larger matrices. To construct!UT !PT ,ao, H , we restrict to those
training trajectories in which the action at the middle time step
is a. Then, each element of!PT ,ao, H is a weighted empirical
expectation (among the restricted set of trajectories) of the
product of one indicative feature, one characteristic feature,
and elemento of the observation kernel vector. So,

2We use a general elliptical covariance matrix, chosen by PCA: that is,
we use a spherical covariance after projecting onto the eigenvectors of the
covariance matrix of the observations, and scaling by the square roots of the
eigenvalues.

!UT !PT ,ao, H =
wa%

t =1

&a
t (!UT $T

t)($H
t)T 1

Zt
K (ot (o) (9)

where K (á) is the kernel function andZt is the kernel
normalization constant computed by summing over the ob-
servation kernels for eachot . As above, in our experiments,
the importance weights&a

t are uniform.

IV. EXPERIMENTAL RESULTS

We have introduced a novel algorithm for learning TPSRs
directly from data, as well as a kernel-based extension for
modeling continuous observations. We judge the quality of
our TPSR learning algorithm by Þrst learning a model of a
challenging non-linear, partially observable, controlled domain
directly from sensor inputs and then Òclosing the loopÓ by
planningin the learned model. Successful planning is a much
stronger result than standard dynamical system evaluations
such as one-step squared error or prediction log-likelihood.
Unlike previous attempts to learn PSRs, which either lack
planning results [15, 28], or which compare policies within
the learned system [29], we compare our resulting policy to a
bound on the best possible solution in the original system and
demonstrate that the policy is close to optimal.

A. The Autonomous Robot Domain

Our simulated autonomous robot domain consisted of a
simple 45) 45 unit square arena with a central obstacle and
brightly colored walls (Figure 1(A-B)), containing a robot of
radius 2 units. The robot could move around the ßoor of the
arena and rotate to face in any direction. The robot had a
simulated16) 16 pixel color camera, with a focal plane one
unit in front of the robotÕs center of rotation, and with a visual
Þeld of 45' in both azimuth and elevation, corresponding to
an angular resolution of' 2.8' per pixel. The resulting 768-
element pattern of unprocessed RGB values was the only input
to the robot (images werenot preprocessed to extract features),
and each action produced a new set of pixel values. The robot
was able to move forward 1 or 0 units, and simultaneously
rotate 15' , (15' , or 0' , resulting in 6 unique actions. In
the real world, friction, uneven surfaces, and other factors
confound precisely predictable movements. To simulate this
uncertainty, a small amount of Gaussian noise was added to the
translation (mean 0, standard deviation .1 units) and rotation
(mean 0, standard deviation5') components of the actions.
The robot was allowed to occupy any real-valued(x, y, ')
pose that didnÕt intersect a wall; in case of an attempt to drive
through a wall, we interrupted the commanded motion just
before contact, simulating an inelastic collision.

The autonomous robot domain was designed to be a difÞcult
domain comparable to the most complex domains that previous
PSR algorithms have attempted to model. In particular, the
domain in this paper was modeled after the autonomous robot
domains found in recent PSR work [28, 29]. The proposed
problem, learning a model of this domain and then planning
in the learned model, is quite difÞcult. The autonomous robot
hasno knowledge of any of the underlying properties of the
domain, e.g. the geometry of the environment or the robot

motion model; it only has access to samples of the 256
pixel features, and how these features change as actions are
executed. Writing a correct policy for a speciÞc task in this
domain by hand would be at best tediousÑand in any case, as
mentioned above, it is often impractical to hand-design a pol-
icy for an autonomous agent, since doing so requires guessing
the particular planning problems that the agent may face in
the future. Furthermore, the continuous and non-linear nature
of this domain makes learning models difÞcult. For example,
a POMDP model of this domain would require a prohibitively
large number of hidden states, making learning and planning
next to impossible. PSRs are able to overcome this problem by
compactlyrepresenting state in a low-dimensional real-valued
space, and the algorithm presented in this work allows us to
efÞciently learn the parameters of the PSR in closed form.

B. Learning a Model

We learn our model from a sample of10000short trajecto-
ries, each containing 7 action-observation pairs. We generate
each trajectory by starting from a uniformly randomly sampled
position in the environment and executing a uniform random
sequence of actions. We used the Þrstl = 2000 trajectories
to generate kernel centers, and the remainingw = 8000 to
estimate the matricesPH , PT ,H , andPT ,ao, H .

To deÞne these matrices, we need to specify a set of
indicative features, a set of observation kernel centers, and a
set of characteristic features. We use Gaussian kernels to deÞne
our indicative and characteristic features, in a similar manner
to the Gaussian kernels described above for observations; our
analysis allows us to use arbitrary indicative and characteristic
features, but we found Gaussian kernels to be convenient
and effective. Note that the resulting features over tests and
histories are justfeatures; unlike the kernel centers deÞned
over observations, there is no need to let the kernel width
approach zero, since we are not attempting to learn accurate
PDFs over the histories and tests inH andT .

In more detail, we deÞne a set of2000 indicative kernels,
each one centered at a sequence of 3 observations from the
initial segment of one of our trajectories. We choose the kernel
covariance using PCA on these sequences of observations,
just as described for single observations in Section III-B.
We then generate our indicative features for a new sequence
of three observations by evaluating each indicative kernel
at the new sequence, and normalizing so that the vector of
features sums to one. (The initial distribution# is, therefore,
the distribution obtained by initializing uniformly and taking
3 random actions.) Similarly, we deÞne2000 characteristic
kernels, each one centered at a sequence of 3 observations
from the end of one of our sample trajectories, choose a
kernel covariance, and deÞne our characteristic feature vector
by evaluating each kernel at a new observation sequence and
normalizing. Finally, we deÞne 500observation kernels, each
one centered at a single observation from the middle of one
of our sample trajectories, and replace each observation by its
corresponding vector of normalized kernel weights. Next, we
construct the matrices!PH , !PT ,H , and !PT ,ao, H as the empirical

�ï�� �ï�� 0 �� ��
x 10

�ï��

�ï��

0

��

x 10
�ï��B.Outer Walls

Inner Walls

A. C.

Simulated Environment
Simulated Environment

3-d View (to scale)

D.

Learned Subspace

Learned Representation
Mapped to

Geometric Space

re
d

m
agenta

gr
ee

n

blue

yellow

red

yellow

magenta

green blue

Fig. 1. Learning the Autonomous Robot Domain. Full-color Þgures are available in the online proceedings: http://www.roboticsproceedings.org/rss06/p36.html
(A) The robot uses visual sensing to traverse a square domain with multi-colored walls and a central obstacle. Examples of images recorded by the robot
occupying two different positions in the environment are shown at the bottom of the Þgure. (B) A to-scale 3-dimensional view of the environment. (C) The
2nd and 3rd dimension of the learned subspace (the Þrst dimension primarily contained normalization information). Each point is the embedding of a single
history, displayed with color equal to the average RGB color in the Þrst image in the highest probability test. The star-shaped manifold captures the visual
space of the robot with each ÒpointÓ of the star containing concentrations of embeddings that predict images predominantly composed of a particular color.
(D) The same points in (C) projected onto the environmentÕs geometric space, demonstrating that the manifold sensibly captures features of geometric space.

expectations over our8000 training trajectories according to
the equations in Section III. Finally we chose|Q$| = 5 as the
dimension of our TPSR, the smallest dimension that was able
to produce high quality policies (see Section IV-D below).

C. Qualitative Evaluation
Having learned the parameters of the TPSR according to the

algorithm in Section III, we can use the model for prediction,
Þltering, and planning in the autonomous robot domain. We
Þrst evaluated the modelqualitativelyby projecting the sets of
histories in the training data onto the learned TPSR state space:
!UT !PH . We colored each datapoint according to the average of
the red, green, and blue components of the highest probability
observation following the projected history. The features of the
low dimensional embedding clearly capture the topology of the
major features of the robotÕs visual environment (Figure 1(C-
D)), and continuous paths in the environment translate into
continuous paths in the latent space (Figure 2(B)).

D. Planning in the Learned Model
To test the quality of the learned model, we set up a

navigation problem where the robot was required to plan
to reach a goal image (looking directly at the blue wall).
We speciÞed a large reward (1000) for this observation, a
reward of(1 for colliding with a wall, and 0 for every other
observation. We learned a reward function by linear regression
from the embedded histories!UT !PH to the observed immediate
rewards. We used the learned reward function to compute an
approximate state-action value function via the PSR extension
of the Perseus variant of PBVI [14, 24, 9, 7] with discount
factor (= .8, a prediction horizon of 10 steps, and with
the 8000 embedded histories as the set of belief points. The
learned value function is displayed in Figure 2(A). We then
computed an initial belief by starting withb" and tracking for
3 action-observation pairs, and executed the greedy policy for
our learned value function. Examples of paths planned in the
learned model are presented in Figure 2(B); the same paths
are shown in geometric space in Figure 2(C). (Recall that the
robot only has access to images,neverits own position.)

The reward function encouraged the robot to navigate to
a speciÞc set of points in the environment, so the planning
problem can be viewed as a shortest path problem. Even
though we donÕt encode this intuition into our algorithm, we
can use it to quantitatively evaluate the performance of the
policy in the original system. First we randomly sampled 100
initial histories in the environment and asked the robot to
plan paths for each based on its learned policy. We compared
the number of actions taken both to a random policy and to
the optimistic path, calculated by A* search in the robotÕs
conÞguration space given thetrue underlying position. Note
that this comparison is somewhat unfair: in order to achieve
the same cost as the optimistic path, the robot would have to
know its true underlying position, the dynamics would have to
be deterministic, all rotations would have to be instantaneous,
and the algorithm would need an unlimited amount of training
data. Nonetheless, the results (Figure 2(D)) indicate that the
performance of the TPSR policy is close to this optimistic
bound. We think that this result is remarkable, especially
given that previous approaches have encountered signiÞcant
difÞculty modeling continuous domains [10] and domains with
similarly high levels of complexity [29].

V. CONCLUSIONS
We have presented a novelconsistentsubspace identiÞca-

tion algorithm that simultaneously solves thediscoveryand
learning problems for TPSRs. In addition, we provided two
extensions to the learning algorithm that are useful in practice,
while maintaining consistency: characteristic and indicative
features only require one to know relevant features of tests and
histories, rather than core sets of tests and sufÞcient sets of
histories, while kernel density estimation can be used to Þnd
observable operators when observations are real-valued. We
also showed how point-based approximate planning techniques
can be used to solve theplanning problem in the learned
model. We demonstrated the representational capacity of our
model and the effectiveness of our learning algorithm by learn-
ing a compact model from simulated autonomous robot vision
data. Finally, we closed the loop by successfully planning with
the learned models. To our knowledge this is the Þrst instance

Estimated Value Function
Policies Executed in
Learned Subspace

Paths Taken in
Geometric Space

�ï�� �ï�� 0 �� ��
x 10

�ï��

�ï��

0

��

�ï��

�ï�� �ï�� 0 �� ��
x 10

�ï��

�ï��

0

��

x 10
�ï��

12.8

22.8
291.5

Optimistic Learned Random

B.A. D.C.x 10

0 50 1000

.5

1

~~
Mean # of
Actions

of Actions

Opt.
Learned

RandomC
um

ul
at

iv
e

D
en

si
ty

re
d

m
agenta

gr
ee

n

blue

yellow

red

yellow

magenta

green blue

Fig. 2. Planning in the learned state space. (A) The value function computed for each embedded point; lighter indicates higher value. (B) Policies executed
in the learned subspace. The red, green, magenta, and yellow paths correspond to the policy executed by a robot with starting positions facing the red, green,
magenta, and yellow walls respectively. (C) The paths taken by the robot in geometric space while executing the policy. Each of the paths corresponds to the
path of the same color in (B). The darker circles indicate the starting and ending positions, and the tick-mark indicates the robotÕs orientation. (D) Analysis
of planning from 100 randomly sampled start positions to the target image (facing blue wall). In the bar graph: the mean number of actions taken by the
optimistic solution found by A* search in conÞguration space (left); taken by executing the policy found by Perseus in the learned model (center); and taken
by executing a random policy (right). Line graph illustrates the cumulative density of the number of actions given the optimal, learned, and random policies.

of learning a model for a simulated robot in a nonlinear, non-
Gaussian, partially observable environment of this complexity
using a consistent algorithm and successfully planning in the
learned model. We compare the policy generated by our model
to a bound on the best possible value, and determine that our
policy is close to optimal.

We believe the spectral PSR learning algorithm presented
here, and subspace identiÞcation procedures for learning
PSRs in general, can increase the scope of planning under
uncertainty for autonomous agents in previously intractable
scenarios. We believe that this improvement is partly due
to the greater representational power of PSRs as compared
to POMDPs, and partly due to the efÞcient and statistically
consistent nature of the learning method.

ACKNOWLEDGEMENTS

SMS (now at Google) was supported by the NSF under grant
number 0000164, by the USAF under grant number FA8650-
05-C-7264, by the USDA under grant number 4400161514,
and by MobileFusion/TTC. BB was supported by the NSF
under grant number EEEC-0540865. BB and GJG were sup-
ported by ONR MURI grant number N00014-09-1-1052.

REFERENCES

[1] J. Bilmes. A gentle tutorial on the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models.
Technical Report ICSI-TR-97-021, 1997.

[2] M. Bowling, P. McCracken, M. James, J. Neufeld, and D. Wilkinson.
Learning predictive state representations using non-blind policies. In
Proc. ICML, 2006.

[3] A. R. Cassandra, L. P. Kaelbling, and M. R. Littman. Acting optimally
in partially observable stochastic domains. InProc. AAAI, 1994.

[4] E. Even-Dar, S. M. Kakade, and Y. Mansour. Planning in POMDPs
using multiplicity automata. InUAI, 2005.

[5] A. K. H. Jaeger, M. Zhao. EfÞcient training of OOMs. InNIPS, 2005.
[6] D. Hsu, S. Kakade, and T. Zhang. A spectral algorithm for learning

hidden Markov models. InCOLT, 2009.
[7] M. T. Izadi and D. Precup. Point-based planning for predictive state

representations. InProc. Canadian AI, 2008.
[8] H. Jaeger. Observable operator models for discrete stochastic time series.

Neural Computation, 12:1371Ð1398, 2000.
[9] M. R. James, T. Wessling, and N. A. Vlassis. Improving approximate

value iteration using memories and predictive state representations. In
AAAI, 2006.

[10] N. K. Jong and P. Stone. Towards employing psrs in a continuous
domain. Technical Report UT-AI-TR-04-309, University of Texas at
Austin, 2004.

[11] M. Littman, R. Sutton, and S. Singh. Predictive representations of state.
In Advances in Neural Information Processing Systems (NIPS), 2002.

[12] A. McCallum. Reinforcement Learning with Selective Perception and
Hidden State. PhD thesis, University of Rochester, 1995.

[13] P. McCracken and M. Bowling. Online discovery and learning of
predictive state representations. InProc. NIPS, 2005.

[14] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. InProc. IJCAI, 2003.

[15] M. Rosencrantz, G. J. Gordon, and S. Thrun. Learning low dimensional
predictive representations. InProc. ICML, 2004.

[16] S. Ross and J. Pineau. Model-based Bayesian reinforcement learning in
large structured domains. InProc. UAI, 2008.

[17] G. Shani, R. I. Brafman, and S. E. Shimony. Model-based online
learning of POMDPs. InProc. ECML, 2005.

[18] S. Siddiqi, B. Boots, and G. J. Gordon. Reduced-rank hidden Markov
models. InProceedings of the Thirteenth International Conference on
ArtiÞcial Intelligence and Statistics (AISTATS-2010), 2010.

[19] B. W. Silverman.Density Estimation for Statistics and Data Analysis.
Chapman & Hall, 1986.

[20] S. Singh, M. James, and M. Rudary. Predictive state representations: A
new theory for modeling dynamical systems. InProc. UAI, 2004.

[21] S. Singh, M. L. Littman, N. K. Jong, D. Pardoe, and P. Stone. Learning
predictive state representations. InProc. ICML, 2003.

[22] S. Soatto and A. Chiuso. Dynamic data factorization. Technical report,
UCLA, 2001.

[23] E. J. Sondik. The Optimal Control of Partially Observable Markov
Processes. PhD thesis, Stanford University, 1971.

[24] M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based
value iteration for POMDPs.Journal of ArtiÞcial Intelligence Research,
24:195Ð220, 2005.

[25] P. Van Overschee and B. De Moor.Subspace IdentiÞcation for Linear
Systems: Theory, Implementation, Applications. Kluwer, 1996.

[26] E. Wiewiora. Learning predictive representations from a history. In
Proc. ICML, 2005.

[27] D. Wingate. Exponential Family Predictive Representations of State.
PhD thesis, University of Michigan, 2008.

[28] D. Wingate and S. Singh. On discovery and learning of models with
predictive representations of state for agents with continuous actions and
observations. InProc. AAMAS, 2007.

[29] D. Wingate and S. Singh. EfÞciently learning linear-linear exponential
family predictive representations of state. InProc. ICML, 2008.

[30] B. Wolfe, M. James, and S. Singh. Learning predictive state represen-
tations in dynamical systems without reset. InProc. ICML, 2005.

[31] M. Zhao, H. Jaeger, and M. Thon. A bound on modeling error in
observable operator models and an associated learning algorithm.Neural
Computation, 2009.

