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AbstracN A central problem in artibcial intelligence is to iteration[23] are computationally intractable for most realistic
choose actions to maximize reward in a partially observable, pOMDP p|anning prob|ems_ Furthermore, researchers have
uncertain environment. To do so, we mustlearn an accurate had only limited success learning POMDP models from data.

model of our environment, and then plan to maximize reward. 2 .
Unfortunately, learning algorithms often recover a model which Predictive State Representations (PSR4] and the closely

is too inaccurate to support planning or too large and complex for related Observable Operator Models (OOM$§] are gen-
planning to be feasible; or, they require large amounts of prior eralizations of POMDPs that have attracted interest because
domain knowledge or fail to provide important guarantees such they both have greater representational capacity than POMDPs
as statlstlc_al consistency. To begin to Pll this gap, we propose aand yield representations that aleastas compact [20, 4].
novel algorithm which provably learns a compact, accurate model | trast to the latent-variabl tati fPO’MDP
directly from sequences of action-observation pairs. To evaluate n contrast to the latent-variable representations o . S,
the learner, we thenclose the loopfrom observations to actions: PSRs and OOMs represent the state of a dynamical system
we plan in the learned model and recover a policy which is near- by tracking occurrence probabilities of a set of future events
gp:lnﬁl&ﬂ in the ortlglnal ertMTor}meTh (n?t tlhe mOdeD-P'ndr_mt)_re (called tests or characteristic evens conditioned on past
elaul, we present a spectral aigorithm Tor learning a Fredictive —ayents (calledhistories or indicative evenfs Because tests
State Representation (PSR). We demonstrate the algorithm by . . - .
learning a model of a simulated high-dimensional, vision-based and h'StO'_"eS are observable quantities, it has_ been squested
mobile robot p|anning task, and then performing approximate that |eam|ng PSRs and OOMs should be easier than |eal’n|ng
point-based planning in the learned model. This experiment POMDPs. And, many successful approximate planning tech-
shows that the learned PSR captures the essential features of thenjques for POMDPSs can be used to plan in PSRs and OOMs
environment, allows accurate prediction with a small number of with minimal adjustment.

parameters, and enables successful and efpcient planning. Our . L .
algorithm has several benebts which have not appeared together The quality of an optimized policy for a POMDP, PSR,

in any previous PSR learner: it is computationally efbcient and Of OOM depends strongly on the accuracy of the model:
statistically consistent; it handles high-dimensional observations inaccurate models typically lead to useless plans. We can

and long time horizons by working from real-valued features of specify a model manually or learn one from data, but due
observation sequences; and Pnally, our close-the-loop experiments; o difbculty of learning, it is far more common to see
provide an end-to-end practical test. - . . .
planning algorithms applied to hand-specibPed models, and

therefore to small systems where there is extensive and goal-
relevant domain knowledge. For example, recent extensions
of approximate planning techniques for PSRs have only been

Planning a sequence of actions or a policy to maximizpplied to hand-constructed models [9, 7].
reward has long been considered a fundamental problem fotLearning models for planning in partially observable en-
autonomous agents. In the hardest version of the problem,véwonments has met with only limited success. As a result,
agent must form a plan based solely on its own experientkere have been few successful attempts at closing the loop
without the aid of a human engineer who can design problefny learning a model from an environment, planning in that
specibc features or heuristics; it is this version of the problemodel, and testing the plan in the environment. For example,
which we must solve to build a truly autonomous agent. Expectation-Maximization (EM) [1] does not avoid local min-

Partially Observable Markov Decision Processe#ma or scale to large state spaces; and, although many learning
(POMDPs) [23, 3] are a general framework for singlealgorithms have been proposed for PSRs [21, 30, 13, 26, 2]
agent planning. POMDPs model the state of the world asnd OOMs [8, 5, 31], none have been shown to learn models
a latent variable and explicitly reason about uncertainthat are accurate enough for planning.
in both action effects and state observability. Plans in Several researchers have, however, made progress in the
POMDPs are expressed pslicies which specify the action problem of planning using a learned model. In one in-
to take given any possible probability distribution ovestance [17], researchers obtained a POMDP heuristically from
states. Unfortunately, exact planning algorithms sucliahise the output of a model-free algorithm [12] and demonstrated

I. INTRODUCTION



planning on a small toy maze. In another instance [16], re- Il. PREDICTIVE STATE REPRESENTATIONS
searchers used Markov Chain Monte Carlo (MCMC) inferenceA predictive state representation (PSR) [11] is a compact

both to Iearn a factored Dynamlc Bayesian Netw_ork (DB nd complete description of a dynamical system. PSRs rep-
representation of a POMDP in a small synthetic networ

e ) . ) ._resent state as a set of predictions of observable experiments
administration domain, as well as to perform online plannlngT teststhat one could perform in the system. Specibcally, a

Due _to _the cos_t of the MCMC sampler used, this approaggst of lengthk is an ordered sequence of action-observation
is still impractical for larger models. In a bnal example, ..., - 7 ¢ a0, that can be executed and observed
. - l l PRI k

researchers learned Linear-Linear Exponential Family PS a given time. Likewise, distory is an ordered sequence

frolr'n an agent tra?(ersmgda} S|mula:leq envwgrrl‘ment, and foqn%s‘action-observation pairs = alo}...ald! that has been
policy using a policy gradient technique with a parameterized - 1o and observed prior to a given time. Pinediction

function of the learned PSR state as input [29, 27]. In thfﬁr a test! is the probability of the sequence of observations

case both the learning and the planning algorithm were subjeet _ o o, being generated, given that we intervene
- 1y 1

to local optima. In addition, the authors determined that t@g take the sequence of actiond = al,...,a.. If the
learned model was too inaccurate to support value-functio Sservations produced by the dynamicalllsyst,enﬁ match those
based planning methods [27]. Perhaps the closest prior Wtk cibed by the test, the test is said to aweceededThe key

is that of Rosencrantz et al. [15]: like our method, their algqaea behind a PSR is that, if we know the expected outcomes
rithm uses a straightforward sequence of algebraic Operati(?ﬂsexecuting all possible tests, then we also know everything

to derive parameter estimates from matrices of observa%@ere is to know about the state of a dynamical system
statistics. However, Rosencrantz et al. do not attempt to '

id detailed f of ist h th ~“In PSRs, actions in tests argerventions not observations.
provide a detalied prool ol consistency such as the one |, se 4 single vertical bar to indicate conditioning and a
Equations 4(abc) and Section 1l below. And, their meth

. . ) uble vertical bar to indicate intervening: e®[! © |h||! 4]
does not easily generalize to allow real-valued observat|ori1§, e probability of the observations in tekt given an

Oindicative features,0 and Ocharacteristic features,O as we des o4 historyh, and given that we intervene to execute

ve mthSectlcf)nst Ni-A "?‘“‘1 “ld'B szl_ow; tm ourtexlgl)enenlce,lhe actions in! . We write Q(h) for the prediction vectorof
using these features (instea of discrete, mutually-exc us%’ﬁfcess probabilities for a set of teQs= {qg}:
events) greatly reduces the variance of our estimated mode

parameters. Finally, the experiments of Rosencrantz et al.  Q(h) = [Pr[ ¢ |h|| '], ... Prg, | h || oo 1T
focus on the observation-only case, rather than on estimating .
the effects of actions and using the learned model for plannirglowing the probabilities of some tests may allow us to

(We describe several more-minor differences between tpempute the probabilities of other tests. That is, given a test
algorithms below in Section II1.) I and a set of test®, there may exist grediction function

f, such thatPr[! © |h||!A] = f, (Q(h)) for all historiesh.
The current paper differs from these and other previows this case, we sa@(h) is asufbcient statistifor ! .

examples of planning in learned models: it both uses aFormally, a PSR is a tuplA, O, Q, F, m;". A is the set of
principled and provably statistically consistent model-learningpssible actions, an® is the set of possible observatiorg3.
algorithm, and demonstrates positive results on a challengigga core set of tests, i.e., a set whose prediction ve€gh)
high-dimensional problem with continuous observations. ig a sufbcient statistic foall tests.F is the set of prediction
particular, we propose a novel, consistent spectral algorittfoinctionsf, for all tests! (which must exist sinc® is a core
for learning a variant of PSRs callétansformed PSREL5]  set), andn; = Q(") is the initial prediction vector after seeing
directly from execution traces. The algorithm is closely rahe empty history'. In this work we will restrict ourselves
lated to subspace identiPcation for learning Linear Dynamic@l linear PSRs, in which all prediction functions are linear:
Systems (LDSs) [22, 25] and spectral algorithms for learfi; (Q(h)) = r Q(h) for some vector, # RIC!.
ing Hidden Markov Models (HMMs) [6] and Reduced-Rank SinceQ(h) is a sufbcient statistic for all tests, it isséate
HMMs [18]. We then demonstrate that this algorithm is ablgyr our PSR: i.e., we can remember judth) instead ofh
to learn compact models of a difbcult, realistic dynamicgself. After taking actiona and seeing observatian we can
system without any prior domain knowledge built into thpdateQ(h) recursively: if we writeM 5, for the matrix with

model or algorithm. Finally, we perform approximate pointrowsr!, for ! # Q, then we can use BayesO Rule to show:
based value iteration (PBVI) in the learned compact models,

and demonstrate that the greedy policy for the resulting value Q(hao) = MaoQ(h) = Mao Q(h) (1)
function works well in the original (not the learned) system. Priolh{la]  m[ MaQ(h)
To our knowledge this is the brst research that combines @l .oy, is a normalizer. debned by! Q(h) = 1($h).

of these achievements, closing the loop from observations toSpecifying a PSR involves brst bnding a core set of @sts
actions in an unknoyvn nonlinear, non-.Gaussmn SyStem,\_NEQIIed thediscovery problemand then bnding the parameters
no human intervention beyond collecting the raw transitioy ., andm; for these tests, called thearning problem
o aos LI ’
data and specifying features. A core setQ for a linear PSR is said to bminimal if the
tests inQ are linearly independent [8, 20], i.e., no one testOs




prediction is a linear function of the other testsO predictiomere we debnsy; = E[Q(h) | Hj] to be the expected state
The discovery problem is usually solved by searching fagiven indicative evenH;; and as above, the vector, lets us
linearly independent tests by repeatedly performing Singuleompute the probability of tedt given the state. Finally, we
Value Decompositions (SVDs) on collections of tests [30]. THet R # RIT# QI be the matrix with rows [, S # RIQHHI
learning problem is then solved by regression. be the matrix with columnsy, , andD = diag(Pr[ H]).
Transformed PSRs (TPSRs) [15] are a generalization ofEq. (2b) tells us that the rank d?; y is no more than
PSRs: TPSRs maintain a small number of sufPcient statistjcy, since its factork andS each have rank at mogp|. At
which arelinear combinationsof a (potentially very large this point we can debnesufbcienset of indicative events as
and non-minimal) set of test probabilities. Accordingly, TPSRsromised: it is a set of indicative events for which the rank of
can be thought of abnear transformationsof regular PSRs. Py |, is equalto |Q|.
Therefore, TPSRs include PSRs as a special case, since thihe pnal observable matrices d&¢ oo 1 # RIT#H | one
transformation can be the Identlty The main benebt of TPSFI)‘%'[HX for each action-observation pair_ Entries W’ao’ H
is that, given a core set of tests, the parameter learnigge probabilities oftriples of an indicative event, the next

problem can be solved and a large step toward solving thetion-observation pair, and a subsequent test, if we intervene
discovery problem can be achieved in closed form, as we W executea and!A:

see below. In this respect, TPSRs are closely related to the o A

transformed representations of LDSs and HMMs found by [Pt.aonlij %Pr(li”, 0 Hj[la ]

subspace identiPcatidi25, 22, 6]. E[PI!°,0|h|la ]| Hj]1Pr[H;]

A. Observable Representations E[Pr[!° |h,o]la,!A]Pr[o|h|la] | H;]Pr[H;]
Qur learning algor_|thm is based on ahservable represen- E[r!Ti Q(hao) Pr{o| h || a] | H;1PI[H]

tation of a PSR, that is, one where each parameter corresponds T

directly to observable quantities. This representation depends = El't,MaoQ(h) [ Hj1Pr{H;] Dby Eq. (1)

on a core set of test§ (not necessarily minimal). It also = r.T MaoSh; Pr[Hj]

depends on a sétl of indicative eventsthat is, a mutually =& Pt a1 = RM4SD (2¢)
exclusive and exhaustive partition of the set of all possible

histories. We will assumel is sufpcientdebPned below). Just like Pt y, the matricesPt 50 4 have rank at mos|Q|

For purposes of gathering data, we assume that we Gfife to their factorfk andS.
sample from some distributiah over histories; our observable e can also relate the fact& to the parameters), and

representation depends @nhas well. E.g..# might be the m.: for m, , we start from the facn] S =17 (since each

steady-state distribution of some exploration policy. Note thagjumn of S is a vector of core-test predlct|ons), repeatedly
this assumption means that wennot estimatem,, since muitiply by S andS , and use the facsS = |.

we donOt have samples of trajectories starting fmom So,

instead, we will estimaten- , an arbitrary feasible state, which M S=1f =& m[ SS =1{S =& m| =1(S (3a)

is enough information to enable prediction. If we make the =& m/ S=1]SS =& 1/ =1]S S (3b)

stronger assumption that we can repeatedly reset our PSR to

its starting distribution, a straightforward modibcation of ourHere,k = |H| and 1x denotes the ones-vector of length

algorithm will allow us to estimaten; as well. For m-, we note that each column & is a feasible state,
We debne several observable matrices in ternis,¢i, and and so we can take- to be any convex combination of the

#. After each debnition we show how these matrices relatelumns ofS. In particular, we will takem- = SPr[H].

to the parameters of the underlying PSR. These relationships\le now debPne a TPSR in terms of the matriBgs Pt 4,

will allow us to debne an equivalent TPSR, and will also be; ., 1y and an additional matri # RIT# QI such thatUTR

key tools in designing our learning algorithm and showing invertible. A natural choice fou is the left singular vectors

its consistency. The prst observable matrixPig # R, of P; |, although a randomly-generatédi will work with

containing the probabilities of every evert # H when we probability 1. We can think of the columns bf as specifying

sample a histor)h according to#: a core seQ?® of linear combinationsof tests which debne a

[Pyli %Pr[H;] =& Py =Pr[H] (2a) sta}te vector.for our TPSR. Finally we simplify the expressions
using Equations 2(abc) to show that our parameters are only a

Here we have debnéd@[H;] to meanPr[h # H;], andPr[H]  similarity transform away from the original PSR parameters:
to mean the vector whose elements BrgH;] for H; # H .

The next observable matrix iBr y # RIT#H | whose b %U'Pr y1 = U'RSDL = (U'R)m-  (4a)
entries argoint probabilities of testd; # T and indicative
eventsH; # H when we samplé' # and take actions/:

[Pruliy %PrO Hj [I1AT%Er] Q(h) | Hj1PI[H;] B %P} (UTPr ) =17S SDUTPr )
%r! s, PrH; ] =178 (UTR)*™(UTR)SD(UTPr )
=& Py = RSD (2b) =1]S (UTR)*! = m] (UTR)*! (4b)



Bao YU Pt a0 1 (UTPT ) B.o converge to the true parameters up to a linear transformN
UTRM 20SD(UTPr 1) that is, our I_earning a_llgorith_m igonsistent AIthqugh pa-
UTRM 1 (UTR)*L(UTR)SD(UTPr 1) rameters estlma't(.ad Wltr_] Pnite data can sometimes !ea}d to
ao T.H negative probability estimates when bltering or predicting,
(UTR)M g (UTR)** (4c) this problem can be avoided in practice by thresholding the
%edicted probabilities by some small positive probability.
Note that the learning algorithm presented here is distinct
from the TPSR learning algorithm presented in Rosencrantz et
al. [15]. In addition to the differences mentioned above, a key
ifference between the two algorithms is that here we estimate
the joint probability of a past event, a current observation,
and a future event in the matrir a0 H, Whereas in [15],
the authors instead estimate the probability of a future event,
. 2 conditionedon a past event and a current observation. To
Pr{os/lav]= m{ (U'R)*UTR)Mao, (UTR)* U'R)M1  compensate, Rosencrantz et al. later multiply this estimate by
= b Bao,, b1 (5) an approximation of the probability of the current observation,
conditioned on the past event. Rosencrantz et al. also derive the
approximate probability of the current observation differently:
as the result of a regression instead of directly from empirical
B = _Bao (6) counts. Finally, Rosencrantz et al. do not make any attempt
bl Bao, bt to multiply by the marginal probability of the past event,

It is straightforward to show recursively thit can be used although this term cancels in the current work. In the absence
to compute conditional observation probabilities. (If we onl9f estimation errors, both algorithms would arrive at the same
haveb. instead oft, then initial probability estimates will be answer, but taking errors into account, they will typically
approximate, but the difference in predictions will disappe&pake different predictions. The difbculty of extending the

over time as our process mixes.) The linear transform froffPsencrantz et al. algorithm to handle real-valued features
a TPSR internal Stath to a PSR internal statq = Q(ht) stems from the difference between jOint and conditional prOb'

is given byq = (UTR)%!h. If we choseU by SVD, then abilities: the observable matrices in Rosencrantz et al. are
the prediction of test®r[T° |h||TA] at timet is given by conditional expectations, so their algorithm depends on being
Uh = UUTRq = Rq (since by the debnition of SVDJ is able to condition on discrete indicative events or observations.
orthonormal and the row spaces dfandR are the same). In contrast, the next section shows how to extend our algorithm
to use real-valued features.
[1l. L EARNING TPSRS

Our learning algorithm works by building empirical estiA- Learning TPSRs with Features
matesPy, P11, andPr 40 1 Of the matrice®y, Pt 14, and  In data gathered from complex real-world dynamical sys-
Pt a0,n dePned above. To build these estimates, we repeate@ns, it may not be possible to Pnd a reasonably-sized core
sample a history from the distributior¥#, execute a sequenceset of discrete tesf§ or sufpcient set of indicative everits.
of actions, and record the resulting observations. When this is the case, we can generalize the TPSR learning
Once we have CompUteﬁH , Py +H,and Pr ,a0,H, We can algorithm and work withfeaturesof tests and histories, which
generatd) by singular value decomposition &% H - We can we call characteristic featuregnd indicative featuresespec-
then learn the TPSR parameters by pluggéhgPy IbT,H, tively. In particular letT andH be large sets of tests and

The derivation of Eg. 4b makes use of Egs. 3a and 3b.
geth; = (UTR)m; instead ofb in Eq. 4a, replac®s y 1,
the vector of expected probabilities of tests fot #, with
the vector of probabilities of tests for= ".

Given these parameters, we can calculate the probabi
of observationso;.¢, given that we start from state; and
intervene with actions;.;. Here we write the product of a
sequence of transitions &8.,,., = Ma,0,Ma,0, ---Ma,o, -

In addition to the initial TPSR stats , we debPne normalized
conditionalinternal statesh, by a recursive update:

and Py a1 INto Equation 4: indicative events (possibly too large to work with directly)
- UTh and let$” and$" be shorter vectors of characteristic and

b = UTPy L indicative features. The matric€,, Pt n, andPr a0 1 Will

h =(P{ ) Py no longer contain probabilities but rathexpected valuesf

B = UTp (L!Jle ) features_ or.products of features. For the ;pec_ial case of features
ao T.aoH TH that areindicator functionsof tests and histories, we recover

As we include more data in our averages, the law of largee probability matrices from Section II-A.

numbers guarantees that our estimétgs Pr H, andPr a0, H Here we prove theonsistencyf our estimation algorithm

converge to the true matric&, , Pt , andPt 5 4 (dePned using these more general matrices as inputs. In the following

in Equation 2). So by continuity of the formulas above, if ouequations! T and ! H are matrices of characteristic and

system is truly a PSR of bnite rank, our estimdieh , and indicative features respectively, with brst dimension equal to

the number of characteristic or indicative features and second

1The learning strategy employed here may be seen as a generalizatiogyphension equa| t¢T | and |H| respectively. An entry of H
Hsu et al.Os spectral algorithm for learning HMMs [6] to PSRs. Note that since

HMMs and POMDPs are a proper subset of PSRs, we can use the algoriﬂﬁmthe expectation of one Qf t_he '_ndlcat“/e features given the
in this paper to learn back both HMMs and POMDPs in PSR form. occurrence of one of the indicative events. An entry! df



is the weight of one of our tests in calculating one of ousach point The KDE of the observation PDF is a convex
characteristic features. With these features we generalize tdombination of these kernels; since each kernel integrates to
matricesPy , Pt n, andPt a0 1 : 1, this estimator also integrates 10 KDE theory [19] tells
o H " | H us that, with the correct kernel weights, as the number of
[Puli E(ST (h) = pen PIHI kernel centers and the number of samples go to inPnity and

=& Py =! " Pr[H] (7a) the kernel bandwidth goes to zero (at appropriate rates), the
Prulij % E($iT (19 é$J.H (h)[I'™) KDE estimator converges to the observation PDIEimorm.
= er wen PHICHIIIAT T F* The ke.rnel density estimator is c_ompletely determllned by the
" " : normalized vector of kernel weights; therefore, if we can
= er MM pen Sn PITHILE, by Eq. (2b)  estimate this vector accurately, our estimate of the observation
=& Pru=! TRSDIH' (70) PDF will converge to the observation PDF as well. Hence
T,H : :

our goal is to predict the correct expected value of this

- T (1 Oy 4¢H 4 A
[Pra0mlij %ES (17) a%;" (h) &%o0) |la.!™) normalized kernel vector given all past observations. In the

= ! &7 HeH Pr[! O,#q, Hila!A] ! ﬁq continuous-observation case, we can still write our latent-state
= ML T M sy Pr[H] H by update in the same form, using a mat,; however, rather
reT ao H&H =H " jH  Eq. (20) . .
T 0T than learning each of the uncountably-maBy, matrices
=& Praon =! RMgSD! (7¢) separately, we learn one base operator per kernel center, and

use convex combinations of these base operators to compute
observable operators as needed. For details on practical aspects
of learning with continuous observations, see Section IV-B.

where%o) is an indicator for observation. The parameters
of the TPSRI§-, b , andB,,) are now debned in terms of a
matrix U such thatU™! T R is invertible (we can take to be

the left singular values dPr 1), and in terms of the matricesc_ practical Computation of the TPSR Parameters
Pu, Pt u, andPr a0, 1. We also debPne a new vecters.t.

[ HT = - thi W i . . R
I 7 "e = 1i; this means that the ones vectlir must be in expectation (over histories sampled fro#) of the corre-

H gj 1 H i . N < .
the row space of ™. Smcle._ is @ matrix of f(_ae_xtures, we sponding element of the indicative feature vectorNthat is,
can always ensure that this is the case by requiring one of Qe meni is L :vl $5, wheres! is thei™ indicative feature

w = it I

features to be a constant. Finally we simplify the expressio Saluated at thet sampled history. Similarly, each element

using Equations 7(abc) to show that our parameters are on abe . is an empirical expectation of theroduct of one

similarity transform away from the original PSR paramen:"rsi:ndicative feature and one characteristic feature, if we sample

As debned above, each element & is the empirical

b %UTP; ye= UTI TRSD! H'e a history from# and then follow an appropriate sequence of
= U TRSDL = (U™ TR)m- (8a) actions. We can compute all elementskaf y from a single
- T T WT T sample of trajectories if we sample histories frém follow
b %Py (U Pry) =1,SSD!'" (U Prn) an appropriate exploratory policy, and then importance-weight
=1Ts (UTI TR)%LUTI TRY)SD! H T (UTP; 1) each sample [2]{Pr n]j is 12, &S] 8, whereg& is an
g 9 ’ i t ight. (I iments below, the i t
Z17S (UTI TR = mT (UT1 TR)% (&b) importance weight. (In our experiments below, the importance

weights are constant by design, and therefore cancel out.)
Bao % U Pr a0, (UTPT 1) Once we have constructd®t 1, we can computd) as the
=UT TRM (U™ TR)*YUT TR)SD! M T(UTPT ) matrix of left §ingu_|ar vgctors obr H - One of thg advantages
= (UTI TR)Mao(UT1 TRY™ (8¢) of subspace |dentlbcat|9n is that the complgxny of the modgl
: ao : can be tuned by selecting the number of singular vectors in

Just as in the beginning of Section I, we can estinfte v, at the risk of losing prediction quality. _
Pr 1, andPr 40 1, and then plug the matrices into Equa- Finally, since there may be many large matrléeSao,H,
tions 8(abc). Thus we see that if we work with characterisfjﬁtrher than computing them directly, we instead compute
and indicative features, and if our system is truly a TPSR & P1.aon for each paira, o. The latter matrices are much
bnite rank, our estimatds, b , andB ., again converge to smaller, and in our experlments, we saved subs_tantlally on
the true PSR parameters up to a linear transform. both memory and runtime by avoiding constr.uctlon of the
_ L _ ) larger matrices. To construét™ ®r 4, 1, we restrict to those
B. Kernel Density Estimation for Continuous Observations yaining trajectories in which the action at the middle time step
For continuous observations, we use Kernel Density Estirmig-a. Then, each element ¢t a0, H IS & weighted empirical
tion (KDE) [19] to model the observation probability densityexpectation (among the restricted set of trajectories) of the
function (PDF). Although use of kernel density estimation fgsroduct of one indicative feature, one characteristic feature,
continuous observations in PSRs is not new [28], extendiagd elemenb of the observation kernel vector. So,
our algorithm to use KDE results, for the brst time, in a statis-
tically consistent learning algorithm for PSRs with continuous “We use a general elliptical covariance matrix, chosen by PCA: that is,
. . .. . we use a spherical covariance after projecting onto the eigenvectors of the
observations. We use a fraction of the training data poi

) ) : ariance matrix of the observations, and scaling by the square roots of the
as kernel centers, placing one multivariate Gaussian kernekigenvalues.



% 1 ; .
T - arlTaT yyaH\T motion model; it only has access to samples of the 256
UTPraon = &(UTS)(S) Z K (o © pixel features, and how these features change as actions are
_ ) _ executed. Writing a correct policy for a specibc task in this
where K (3 is the kernel function andZ is the kernel ,main hy hand would be at best tediousNand in any case, as
normqhzaﬂon constant computed by summing over the Opientioned above, it is often impractical to hand-design a pol-
servation kernels for eacty. As above, in our experiments,icy for an autonomous agent, since doing so requires guessing
the importance weight&; are uniform. the particular planning problems that the agent may face in

IV. EXPERIMENTAL RESULTS the future. Furthermore, the continuous and non-linear nature

We have introduced a novel algorithm for learning TPSROsf this domain makes'learning models difbgult. For gxgmple,
directly from data, as well as a kernel-based extension farPOMDP model qf this domain wou_ld require a prohlbltlvely
modeling continuc;us observations. We judge the quality g%rge m_meer Qf hidden states, making leaming f'ind planning
. . ; next to impossible. PSRs are able to overcome this problem by

our TPSR learning algorithm by Prst learning a model of a

i : : compactlyrepresenting state in a low-dimensional real-valued
challenging non-linear, partially observable, controlled domai . . :
ace, and the algorithm presented in this work allows us to

directly from sensor inputs and then Oclosing the loopO . .
planningin the learned model. Successful planning is a mudh ciently learn the parameters of the PSR in closed form.

stronger result than standard dynamical system evaluati@sLearning a Model

such as one-step squared error or prediction log-likelihood. . i
Unlike previous attempts to learn PSRs, which either la kWe learn our model from a sample 80000short trajecto

- . - ....Ties, each containing 7 action-observation pairs. We generate
planning results [15, 28], or which compare policies within ; . .
X . each trajectory by starting from a uniformly randomly sampled
the learned system [29], we compare our resulting policytoa ... = . . . .
sition in the environment and executing a uniform random

bound on the best poss@le s_oluuon in the 9r|g|nal system aﬁ@quence of actions. We used the Brst 2000 trajectories
demonstrate that the policy is close to optimal.

to generate kernel centers, and the remaininge 8000 to
A. The Autonomous Robot Domain estimate the matriceBy, Pt 1, andPr a0 1 -

Our simulated autonomous robot domain consisted of aTo debne these matrices, we need to specify a set of
simple45) 45 unit square arena with a central obstacle ariddicative features, a set of observation kernel centers, and a
brightly colored walls (Figure 1(A-B)), containing a robot ofset of characteristic features. We use Gaussian kernels to debne
radius 2 units. The robot could move around the RBoor of thwir indicative and characteristic features, in a similar manner
arena and rotate to face in any direction. The robot hadt@the Gaussian kernels described above for observations; our
simulated16) 16 pixel color camera, with a focal plane oneanalysis allows us to use arbitrary indicative and characteristic
unit in front of the robotOs center of rotation, and with a visul@latures, but we found Gaussian kernels to be convenient
beld of45 in both azimuth and elevation, corresponding tand effective. Note that the resulting features over tests and
an angular resolution of 2.8 per pixel. The resulting 768- histories are jusfeatures unlike the kernel centers debned
element pattern of unprocessed RGB values was the only inpuer observations, there is no need to let the kernel width
to the robot (images wempot preprocessed to extract featuresygpproach zero, since we are not attempting to learn accurate
and each action produced a new set of pixel values. The ro#Fs over the histories and testsHnand T .
was able to move forward 1 or O units, and simultaneously In more detail, we dePne a set 2000 indicative kernels
rotate 15, ( 15, or O, resulting in 6 unique actions. Ineach one centered at a sequence of 3 observations from the
the real world, friction, uneven surfaces, and other factoisitial segment of one of our trajectories. We choose the kernel
confound precisely predictable movements. To simulate thievariance using PCA on these sequences of observations,
uncertainty, a small amount of Gaussian noise was added tojilt as described for single observations in Section 1lI-B.
translation (mean 0, standard deviation .1 units) and rotati@¥e then generate our indicative features for a new sequence
(mean 0, standard deviatidh ) components of the actions.of three observations by evaluating each indicative kernel
The robot was allowed to occupy any real-valugdy,') at the new sequence, and normalizing so that the vector of
pose that didnOt intersect a wall; in case of an attempt to difieatures sums to one. (The initial distributiénis, therefore,
through a wall, we interrupted the commanded motion jutte distribution obtained by initializing uniformly and taking
before contact, simulating an inelastic collision. 3 random actions.) Similarly, we depbr00 characteristic

The autonomous robot domain was designed to be a difpdkatrnels each one centered at a sequence of 3 observations
domain comparable to the most complex domains that previdoem the end of one of our sample trajectories, choose a
PSR algorithms have attempted to model. In particular, tlkernel covariance, and debne our characteristic feature vector
domain in this paper was modeled after the autonomous rolbgt evaluating each kernel at a new observation sequence and
domains found in recent PSR work [28, 29]. The proposetrmalizing. Finally, we dePne 50fbservation kerneJsach
problem, learning a model of this domain and then plannirape centered at a single observation from the middle of one
in the learned model, is quite difpcult. The autonomous robot our sample trajectories, and replace each observation by its
hasno knowledge of any of the underlying properties of theorresponding vector of normalized kernel weights. Next, we
domain, e.g. the geometry of the environment or the robobnstruct the matriceBy , IbT,H , andPr a0, H as the empirical

t=1
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Fig. 1. Learning the Autonomous Robot Domain. Full-color bgures are available in the online proceedings: http://www.roboticsproceedings.org/rss06/p36.html
(A) The robot uses visual sensing to traverse a square domain with multi-colored walls and a central obstacle. Examples of images recorded by the robot
occupying two different positions in the environment are shown at the bottom of the bgure. (B) A to-scale 3-dimensional view of the environment. (C) The
2nd and 3rd dimension of the learned subspace (the Pbrst dimension primarily contained normalization information). Each point is the embedding of a single
history, displayed with color equal to the average RGB color in the prst image in the highest probability test. The star-shaped manifold captures the visual
space of the robot with each OpointO of the star containing concentrations of embeddings that predict images predominantly composed of a particular color.
(D) The same points in (C) projected onto the environmentOs geometric space, demonstrating that the manifold sensibly captures features of geometric space
expectations over ou8000 training trajectories according to The reward function encouraged the robot to navigate to
the equations in Section IIl. Finally we chof@® =5 as the a specibc set of points in the environment, so the planning
dimension of our TPSR, the smallest dimension that was alpeblem can be viewed as a shortest path problem. Even
to produce high quality policies (see Section IV-D below). though we donOt encode this intuition into our algorithm, we
can use it to quantitatively evaluate the performance of the

C. Qualitative Evaluation policy in the original system. First we randomly sampled 100

Having learned the parameters of the TPSR according to théial histories in the environment and asked the robot to
algorithm in Section Ill, we can use the model for predictiomlan paths for each based on its learned policy. We compared
pPltering, and planning in the autonomous robot domain. Waee number of actions taken both to a random policy and to
prst evaluated the modelalitativelyby projecting the sets of the optimistic path calculated by A* search in the robotOs
histories in the training data onto the learned TPSR state spaw#nbguration space given tlieie underlying positionNote
UTP, . We colored each datapoint according to the averagetbfit this comparison is somewhat unfair: in order to achieve
the red, green, and blue components of the highest probabititg same cost as the optimistic path, the robot would have to
observation following the projected history. The features of thaow its true underlying position, the dynamics would have to
low dimensional embedding clearly capture the topology of tHee deterministic, all rotations would have to be instantaneous,
major features of the robotOs visual environment (Figure 1@d the algorithm would need an unlimited amount of training
D)), and continuous paths in the environment translate int@ta. Nonetheless, the results (Figure 2(D)) indicate that the

continuous paths in the latent space (Figure 2(B)). performance of the TPSR policy is close to this optimistic
bound. We think that this result is remarkable, especially
D. Planning in the Learned Model given that previous approaches have encountered signibcant

To test the quality of the learned model, we set up @ifPculty modeling continuous domains [10] and domains with
navigation problem where the robot was required to plagimilarly high levels of complexity [29].
to reach a goal image (looking directly at the blue wall). V. CONCLUSIONS
We specibed a large reward (1000) for this observation, aWe have presented a novebnsistentsubspace identibca-
reward of( 1 for colliding with a wall, and 0 for every other tion algorithm that simultaneously solves tdéscoveryand
observation. We learned a reward function by linear regressi@arning problems for TPSRs. In addition, we provided two
from the embedded historiés™ P, to the observed immediate extensions to the learning algorithm that are useful in practice,
rewards. We used the learned reward function to compute \while maintaining consistency: characteristic and indicative
approximate state-action value function via the PSR extensif@atures only require one to know relevant features of tests and
of the Perseus variant of PBVI [14, 24, 9, 7] with discourhistories, rather than core sets of tests and sufpbcient sets of
factor ( = .8, a prediction horizon of 10 steps, and withhistories, while kernel density estimation can be used to bnd
the 8000 embedded histories as the set of belief points. Tdigservable operators when observations are real-valued. We
learned value function is displayed in Figure 2(A). We thealso showed how point-based approximate planning techniques
computed an initial belief by starting with and tracking for can be used to solve thglanning problem in the learned
3 action-observation pairs, and executed the greedy policy fopdel. We demonstrated the representational capacity of our
our learned value function. Examples of paths planned in theodel and the effectiveness of our learning algorithm by learn-
learned model are presented in Figure 2(B); the same paihg a compact model from simulated autonomous robot vision
are shown in geometric space in Figure 2(C). (Recall that thata. Finally, we closed the loop by successfully planning with
robot only has access to image®verits own position.) the learned models. To our knowledge this is the brst instance
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Fig. 2. Planning in the learned state space. (A) The value function computed for each embedded point; lighter indicates higher value. (B) Policies executed

in the learned subspace. The red, green, magenta, and yellow paths correspond to the policy executed by a robot with starting positions facing the red, green
magenta, and yellow walls respectively. (C) The paths taken by the robot in geometric space while executing the policy. Each of the paths corresponds to the
path of the same color in (B). The darker circles indicate the starting and ending positions, and the tick-mark indicates the robotOs orientation. (D) Analysis
of planning from 100 randomly sampled start positions to the target image (facing blue wall). In the bar graph: the mean number of actions taken by the
optimistic solution found by A* search in conbguration space (left); taken by executing the policy found by Perseus in the learned model (center); and taken
by executing a random policy (right). Line graph illustrates the cumulative density of the number of actions given the optimal, learned, and random policies.

of learning a model for a simulated robot in a nonlinear, noMto] N. K. Jong and P. Stone. Towards employing psrs in a continuous
Gaussian, partially observable environment of this complexity

using a consistent algorithm and successfully planning in tﬁq
learned model. We compare the policy generated by our modeﬂ
to a bound on the best possible value, and determine that 83k A- McCallum. Reinforcement Learning with Selective Perception and

policy is close to optimal.
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domain. Technical Report UT-AI-TR-04-309, University of Texas at
Austin, 2004.
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