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Abstract—This paper provides a closed-form analytical solu-
tion to the motion planning problem for the Snakeboard. Given a
desired planar trajectory in the fiber space, an explicit solution
is computed for the gaits in the base space that locomote the
Snakeboard along the desired trajectory. This is achieved by
introducing a new momentum-like variable that simplifies the
Snakeboard’s equations of motion to allow for such an explicit
gait generation technique.

I. I NTRODUCTION

The Snakeboard was first analyzed as a simple nonholo-
nomic mechanical system in Ostrowski et al. [5]. Since then
the Snakeboard has been used as an excellent platform to
demonstrate important results that range from the motion
planning of underactuated systems to the controllability of
nonholonomic systems. The Snakeboard is in fact a simple
yet nontrivial system to experiment with motion planning
and controllability without being overwhelmed by complex
expressions. Nevertheless, its non-trivial dynamics haveso
far defied efforts to provide a closed-form analytical gait
generation techniques to solve its motion planning problem.
The main contribution of the present paper is a solution to this
problem.

The early motion planning work for the Snakeboard in Os-
trowski et al. [5] used sinusoidal steering techniques first
developed in Murray and Sastry [4]. This technique identified
the frequencies of the sinusoidal inputs to locomote the Snake-
board along three primitive directions: forward motion, parallel
parking, and rotation. In this method, the amplitudes of the
input sinusoids were empirically computed. Later Ostrowski
et al. [6] extended this approach to perform optimal gait
analysis.

The motion planning problem for the Snakeboard was also
attempted by Shammas et al. [10]. Their technique intuitively
analyzed the geometric and dynamic phase shifts in order to
propose gaits that locomote the Snakeboard along the desired
direction. However, the analysis of the phase shifts was not
automated and did not address the motion planning problem of
driving the Snakeboard from an initial to a goal configuration.

An analytical solution to the motion planning problem for
the Snakeboard was presented in Bullo and Lewis [1] where
the problem of driving the Snakeboard from an initial to a
goal state was addressed. Their body of work built upon the

decoupling vector field analysis developed by Bullo and Lynch
[2]. In fact Bullo and Lewis [1] addressed the motion planning
problem by solving the nonlinear inversion problem via an
ad hoc concatenation of allowable trajectories between the
start and end fiber configuration. These kinematic trajectories
ensured that the Snakeboard had zero initial and final velocity
at the start and end configurations.

Where as Bullo and Lewis [1] limited themselves to kine-
matic trajectories, no such limitation is used in this paper.
Moreover, the start and end configurations were the input to
the motion planning problem in Bullo and Lewis [1], in this
paper the input is an entire trajectory from a start to an end
fiber configuration.

In this paper, we build upon the prior body of work
and present an analytical closed-form solution to the motion
planning problem for the Snakeboard. In other words, we
compute the gaits that locomote the Snakeboard along a
desired trajectory between two configurations. This sufficiently
smooth desired trajectory can be generated by other techniques
to achieve important tasks such as obstacle avoidance or to
optimize an interesting metric. In this paper, we analytically
solve for the gaits that drive the Snakeboardexactlyalong a
desired trajectory.
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Fig. 1. Configuration variables of the Snakeboard.

This paper is organized as follows. In Section II we for-
mulate the standard and reduced equations of motion for
the Snakeboard. Then in Section III a new momentum-like
variable is introduced to simplify the equations of motion so
that they can be used to explicitly generate gaits that locomote



the Snakeboard to traverse a desired trajectory. In SectionIV,
several examples are worked out to generate gaits for specific
trajectories. Finally, we discuss some of the findings of this
paper in Section V and conclude in Section VI.

II. EQUATIONS OFMOTION

The Snakeboard is a multi-bodied mechanical system with
two nonholonomic constraints acting on its wheel sets. We
use the Lagrangian approach to compute the Snakeboard’s
equations of motion. The configuration of the Snakeboard
can be represented byq = {x, y, θ, φf , ψ, φb} where x, y,
and θ denote the position and orientation of a body attached
coordinate frame whileφf , ψ, φb denote the front wheel angle,
the rotor angle, and the back wheel angle, respectively. Note
that these angles are measured with respect to the middle link
of the Snakeboard as shown in Figure 1.

The actuated variables are the rotor rotation as well as the
directions of the wheels; Moreover, we assume that the wheel
directions are coupled such thatφf = −φb = φ. Note that
the wheels themselves are passive and are used to provide
the nonholonomic constraints that permit motion only alonga
direction perpendicular to the wheel axes. The center of mass
of the Snakeboard is at the center of the middle link where
we have attached the body-coordinate frame. The location of
the center of mass remains constant with respect to the body
attached coordinate frame irrespective of the configuration of
the Snakeboard. The mass and inertia of Snakeboard is denoted
respectively byM andJ , whereasJw andJr denote the wheel
and rotor inertias. The length of the middle line is assumed
to be 2L. Finally for simplifying the expressions appearing
in the equations of motions, we assumeML2 = J + Jr +
2Jw. We will show how to remove these assumptions later in
Section V-A.

A. Euler-Lagrange equations of motion

Utilizing standard Lagrangian dynamics formulation, the
equations of motion for the Snakeboard can be computed by

d

dt

(

∂L(q, q̇)

q̇i

)

− ∂L(q, q̇)

qi
+

l
∑

j=1

λjω
j
i (q) = τi, (1)

whereL(q, q̇) is the Snakeboard Lagrangian,ωj
i (q) is a matrix

representing the nonholonomic constraints, andλj are the
Lagrange multipliers for thel nonholonomic constraints. Typ-
ically, the nonholonomic constraints are expressed asω(q)q̇ =
0. For the Snakeboard, the Lagrangian and the two nonholo-
nomic constraints are respectively given by

L(q, q̇) := Jrψ̇(θ̇ +
ψ̇

2
) + Jwφ̇

2 +
M

2
(L2θ̇2 + ẋ2 + ẏ2),

and

ω :=

(

− sin (θ + φ) cos (θ + φ) L cos (φ) 0 0
− sin (θ − φ) − cos (θ − φ) L cos (φ) 0 0

)

.

Using the above expressions for the Lagrangian and the
nonholonomic constraints, the equations of motion in (1) can
be computed and simulated numerically for any given motor

torque input,τ . Note that, the motor input vector could be
represented asτ = (0, 0, 0, τr, τw)

T .

B. Reduced equations of motion

The configuration space of the Snakeboard is a principal
fiber bundle, where the fiber space is the Special Euclidean
group, g = (x, y, θ) ∈ G = SE(2), and the base space is
composed of two rotation groups,r = (φ, ψ) ∈M = S

1×S
1,

such that,q = (g, r) ∈ Q = (G,M). The above equations
of motion can be recomputed using the symmetry laws and
the nonholonomic connection as defined in Ostrowski [7]. A
new reduced set of equations that govern the dynamics of
locomotion are given by

ξ = −A (r) ṙ + Γ(r) p, and (2)

ṗ =
1

2
(p, ṙ)σ(r) (p, ṙ)

T
, (3)

where in (2) we haveξ = TgLg−1 ġ is the body velocity
andA(r) is the local form of the mixed-nonholonomic con-
nection and (3) is the momentum evolution equation.

In Shammas et al. [8] the above equations of motion
were further simplified by introducing the scaled momentum
variableρ(t) := f(r)p(t), wheref(r) is the integrating factor
of (3), obtaining

ξ = −A (r) ṙ +
1

f(r)
Γ(r) ρ, and (4)

ρ̇ =
1

2
ṙΣ(r) ṙT , (5)

where (5) is the scaled momentum evolution equation. Note
that the right hand side of (5) is independent of any momentum
variables. For the snakeboard, the reduced equation of motion
in terms of the scaled momentum are computed as follows

ξx = −Jr sin (2φ)
2ML

φ̇+
cos (φ)

ML
ρ, (6)

ξy = 0, (7)

ξθ = −Jr sin (φ)
2

ML2
φ̇+

sin (φ)

ML2
ρ, and (8)

ρ̇ = Jr cos (φ) φ̇ψ̇. (9)

The definition of the scaled momentum,ρ, and the above
reduced equations of motion are at the core of the motion
planning techniques developed in Shammas et al. [10]. In
fact, the local form of the connection in (4) was used to
define height functions under which the volume was related
to the geometric phase shift and theΓ functions along with
the reduced momentum equation in (4) and (5) simplified the
analysis of the dynamic phase shift. The intuitive analysisof
both the geometric phase shift in [9] and the dynamic phase
shift in [10] allowed to propose gaits that guarantee motion
along one fiber direction. In this paper we build upon the above
formulation and present an explicit analytic gait generation
technique for the Snakeboard.



C. Alternative derivation of the reduced equations of motion

In the previous section, the symmetry of the Lagrangian
and nonholonomic constraints with respect to rigid body
transformation in the fiber space were exploited to recompute
the equations of motion in their reduced form as shown in (2)
and (3); however, in the case of the Snakeboard, this reduction
step is not necessary to obtain these equations.

In fact, the equations in (2) can be computed in the inertial
frame as follows. First, express the nonholonomic equations

ωξ(q) ġ + ωr(q) ṙ = 0,

whereωξ(q) andωr(q) are sub-matrices ofω(q). Then define
momentum variables from the derivative of the Lagrangian
with respect to the fiber velocities which are then projected
along the allowable directions to arrive at

pi =
∑

j

∂L(q, q̇)

∂ġi
Ωj

i (q),

whereΩ(q) is a basis of the null space ofωξ(q) representing
the allowable direction of motion orthogonal to the nonholo-
nomic constraints. Solving the above equations for the fiber
velocities,ġ, will yield the reconstruction equations which are
expressed in the inertial frame. The fiber velocity can then be
mapped to the body frame using the lifted action of the fiber
space,q̇ = TeLgξ, to arrive at the equations (6) through (8).

As for the momentum evolution equations given in (3),
they can be computed by using the reconstrunction equations
and their derivatives to substitute for the fiber velocities, ġ,
and acceleration,̈g, in the original equations of motion (1)
associated with the fiber variables. In turn, these equationcan
be solved for the derivative of the momentum variables as well
as for the Lagrange multipliers. For the Snakeboard, we have
two nonholonomic constraints and the fiber space,SE(2),
is three-dimensional; hence, only one momentum variable is
required as shown in (9).

III. E XPLICIT GAIT GENERATION

In this section, we solve for the exact gait that will locomote
the Snakeboard along a desired trajectory in the fiber space.

First introduce the new variable

δ = ρ− Jr sin(φ)ψ̇ (10)

so that

δ̇ = −Jr sin(φ) ψ̈ (11)

where we have used (9) to arrive at the equivalent equations
of motion

ẋ =
cos(θ) cos(φ)

ML
δ, (12)

ẏ =
sin(θ) cos(φ)

ML
δ, (13)

θ̇ =
sin(φ)

ML2
δ, (14)

δ̇ = −Jr sin(φ) ψ̈. (15)

Note what we have reverted back the inertial frame rather
then the body frame usingTeLgξ = ġ. The main advantage of
the above formulation is that it enables one to solve forψ and
φ in order to force the trajectory of the Snakeboard to follow
a given feasible trajectory, as discussed in the next section.

A. Solution in terms of a given trajectory

We now show how one can explicitly solve for the gait that
generates a given curve in the fiber space. In other words, given
a planar trajectoryc(t) = (x̃(t), ỹ(t)) which is sufficiently
smooth1 , we show how to solve equations (12) through (15)
for the base variables(φ(t), ψ(t)) so thatx(t) ≡ x̃(t) and
y(t) ≡ ỹ(t). Note that, in general, this may not be possible,
as we have to match four coupled differential equations (12)
through (15) with the help of only two parameters.
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Fig. 2. Relationship between the trajectory’s curvature and the wheel
direction angle,φ.

The first clue is to note that the vector(ẋ, ẏ) makes an angle
θ with the horizontal. Letϕ(t) be the angle that the tangent to
the trajectory makes with the horizontal inertial axis. Then2

ϕ := tan−1(ẏ, ẋ)

Dividing (13) by (12) we note that

ϕ = θ.

That is, the angle that the middle link of the Snakeboard
and the angle that the tangent vector(ẋ, ẏ) make with the
horizontal are exactly the same. If we are to havex(t) ≡ x̃(t)
andy(t) ≡ ỹ(t) then we must have

ϕ = θ = θ̃ := tan−1( ˙̃y, ˙̃x). (16)

1In this paper, sufficiently smooth functions are functions that are twice
differentiable and their second derivatives are continuous.

2Here tan−1 : R × R → (−π, π] denotes an extended version of the
tan−1 that uses the knowledge of the signs ofẏ, ẋ in order to map the
entire unit circle.



The above equation completely determinesθ(t).
Now think of the momentumδ as a free variable for the

time being. Withx(t) ≡ x̃(t), y(t) ≡ ỹ(t), andθ(t) ≡ θ̃(t),
consider now the question of whether it is possible to deter-
mine (φ, δ) such that

˙̃x =
cos(θ̃) cos(φ)

ML
δ, (17)

˙̃y =
sin(θ̃) cos(φ)

ML
δ, (18)

˙̃
θ =

sin(φ)

ML2
δ. (19)

In order to answer this question defineũ(t) andṽ(t) as follows

ũ := ˙̃x¨̃y − ¨̃x ˙̃y, ṽ :=

√

˙̃x2 + ˙̃y2 ≥ 0. (20)

Having solved forθ̃ we can compute its time derivative as
well as its sine and cosine

˙̃
θ = −ũ/ṽ2, cos(θ̃) = ˙̃x/ṽ, sin(θ̃) = ˙̃y/ṽ.

The above relationships are graphically illustrated in Figure 2.
Assume now that̃v > 0. Then either ˙̃x or ˙̃y or both are

not zero. For instance, assume that˙̃x 6= 0. Then we can solve
for the wheel angleφ by dividing (19) by (17). After some
algebra one obtains

φ = φ̃ := − tan−1
(

Lũ/ṽ3
)

. (21)

Otherwise, if ˙̃x = 0 and ˙̃y 6= 0, one can now solve forφ
by dividing (19) by (18). Remarkably, one reaches the exact
same expression forφ. Indeed, this result can be interpreted
again by referring to Figure 2, where the tangent to the curve
is turning clockwise as it passes through the pointP . In this
case the curvature of the curve is negative,κ < 0, and we can
conclude that the radius of curvature is given byR = −1/κ.
In other words

tanφ =
L

R
= −Lκ = −L ũ

ṽ3
= tan φ̃, (22)

where we have used that fact that for a planar curve we have

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3/2

=
ũ

ṽ3
.

We shall also compute the sine and cosine ofφ̃ which will
be used later

sin(φ̃) = − Lũ√
L2ũ2 + ṽ6

, cos(φ̃) =
ṽ3√

L2ũ2 + ṽ6
.

It is interesting to note that for the Snakeboard traversing
a planar trajectory, the tangent of angle that the wheels make
with the middle link is exactly the half the length of the middle
link multiplied by the trajectories curvature.

Using the assumption that̃v > 0 we solve forδ using (19)
where we have already computed˙̃θ and sin(φ̃) to arrive at

δ = δ̃ :=
ML

√
ṽ6 + L2ũ2

ṽ2
. (23)

Finally, we can solve for the second time derivative of the
rotor angle using (15). After some more algebraic manipula-
tions we arrive at the second order differential equation

ψ̈ =
L2M ˙̃u

ṽ2Jr
− 2L2Mũ ˙̃v

ṽ3Jr
+
Mṽ3 ˙̃v

ũJr
. (24)

The solution of the above differential equation, which we
shall denoteψ̃, can be computed explicitly. Thus, using (21)
and (24) one can compute an explicit parametrization for the
wheel rotationφ̃ and the rotor rotatioñψ with respect to time
in terms of the desired trajectory.

B. Rotor initial conditions

To solve forψ, we need to integrate (24), hence, we need
the initial conditions forψ, namely,ψ(0) andψ̇(0). The initial
orientation of the rotor can be arbitrary and we can set it to
zero without any loss of generality, that is,ψ(0) = 0. As for
the initial angular velocity of the rotor, we need to consider
two cases.

1) Case 1:φ(0) = 0: In this case, the wheel axes are
perpendicular to the middle line of the Snakeboard. Hence, any
initial velocity of the rotor is valid since it does not contribute
to any motion. Thus, the initial velocity of the rotor can be
set arbitrarily. In fact, the different initial rotor velocity will
affect the momentum and scaled momentum variable and of
course the rotor angle; however, it will not affect the trajectory
traversed nor it will affect theδ momentum variable that was
introduced in (10). This will be demonstrated later in the
examples and can be seen in Figure 9. So without any loss of
generality for the case ofφ(0) = 0, we can use the following
initial conditions

ψ(0) = 0, ψ̇(0) = 0. (25)

2) Case 2:φ(0) 6= 0: In this case, the rotor initial velocity
needs to be solved for using (10). Note that if we are starting
from rest, the initial scaled momentum can be set to zero
ρ(0) = 0. After substituting forδ from (23) we arrive at

ψ(0) = 0, ψ̇(0) = lim
t→0

L2Mũ

ṽ2Jr
+
Mṽ4

ũJr
. (26)

C. Solution wheñv = 0

The solution computed above assumes thatṽ(t) 6= 0.
However, if ṽ(t) = 0 at some or all points of the trajectories, a

gait can still be computed. Indeed, when bothṽ(t) = ˙̃
θ = 0 a

solution isδ̃ = 0 with φ̃ arbitrary, and when˙̃θ 6= 0 a solution is
φ̃ = ±π/2 with δ̃ = ±ML2 ˙̃φ. The trajectory can be amended
with the solution to these special cases if necessary.

Intuitively, the gait generated for a trajectory whereṽ = 0
requires either that the Snakeboard is not moving or that the
Snakeboard is turning in place around its center of mass.

IV. EXAMPLES

In this section, we work out some examples and compute
the gaits that generate the desired trajectories. We use the
following Snakeboard parameters,M = 4, Jr = 2, Jw = 1

2
,

J = 1, andL = 1 in all examples. In each case we specify the



desired trajectory along which the Snakeboard is supposed to
locomote. Then we solve for the respective closed-form gaits.

A. Serpenoid curve
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Fig. 3. The Snakeboard gait that was generated to traverse the Serpenoid
trajectory depicted in (27).

The Serpenoid curve was first introduced by Hirose [3] to
describe snake locomotion. It can be defined as follows

ẋ = cos (a sin (bt)) , ẏ = − sin (a sin (bt)) , (27)

where a and b are parameters of the Serpenoid curve. A
parametric plot of the desired Serponoid curve is depicted as a
dashed line in Figure 4. Using equation (21) we solve for the
wheel direction angleφ as shown in (28). Then after verifying
thatφ(0) 6= 0 we use (24) and (26) to solve for the rotor angle
as shown (29). The base variables and the first derivative of
the rotor angle are depicted in Figure 3.
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Fig. 4. The Snakeboard snapshots from the numerical simulation of the gaits
in (28) and (29) match the parametric plot of the desired trajectory in (27).

φ = − tan−1 (abL cos (bt)) (28)

ψ =
M

abJr

(

t+ a2bL2 sin (bt)
)

(29)

Finally, we numerically simulate the generated gaits de-
picted in (28) and (29). Snapshots of the Snakeboard loco-
motion are plotted on top of the parametric plot of the desired
trajectory in Figure 4. The simulation shows an exact match
between the Snakeboard locomotion and the desired trajectory.
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Fig. 5. The Snakeboard gait that was generated to traverse the sinusoidal
trajectory depicted in (30).
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Fig. 6. The Snakeboard snapshots from the numerical simulation of the gaits
in (31) and (32) matches the parametric plot of the desired trajectory in (30).

B. Sinusoidal trajectory withφ(0) 6= 0

In this example, we want the Snakeboard to follow the
following sinusoidal trajectory,

x = t, y = cos(t). (30)

A parametric plot of the trajectory is depicted in Figure 5.
Again we use equation (21) to solve for the wheel direction
angle φ. Then after verifying thatφ(0) 6= 0 we use (24)
and (26) to solve for the rotor angle to arrive at

φ = − tan−1







L cos (t)
(

sin (t)
2
+ 1
)

3

2






, (31)

ψ =
M

Jr

(

8t

3
+ L2 tan−1 (sin(t))

)

+
M

Jr

(

sin(3t)

36
− 7 sin(t)

4

)

.

(32)

The base variables and the first derivative of the rotor angle
are depicted in Figure 5. In this example, numerical simulation
of the generated gait locomotes the Snakebord along the
desired trajectory are shown in Figure 6.

C. Sinusoidal trajectory withφ(0) = 0

Now, we test our gait generation technique for a desired
trajectory where the initial wheel angle starts at zero. To
demonstrate this, another sinusoidal trajectory is proposed
such that

x = t, y = sin(t). (33)



0 1 2 3 4 5 6
-4

-3

-2

-1

0

1

Time

B
as

e
va

ria
bl

es

Ψ
 
HtL
ΨHtL
ΦHtL

Fig. 7. The Snakeboard gait that was generated to traverse the sinusoidal
trajectory depicted in (33).
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Fig. 8. The Snakeboard snapshots from the numerical simulation of the gaits
in (34) and (35) matches the parametric plot of the desired trajectory in (33).

Indeed for this desired trajectory, after solving for wheel
direction angleφ using equation (21) we arrive atφ(0) = 0.
Hence, we use the initial conditions given in (25), that is,
ψ̇(0) = 0. Solving for the rotor angle we get

φ = − tan−1

(

L sin(t)

(cos(t)2 + 1)
3/2

)

, (34)

ψ =
M

Jr

(

πL2

4
− 16

9
− L2 tan−1 (cos(t))

)

+
M

Jr

(

cos(3t)

36
+

7 cos(t)

4

)

.

(35)

For such trajectories, the initial velocity can be arbitrary.
In fact, if a different initial rotor velocity was used, the
Snakeboard would still traverse the desired trajectory depicted
in Figure 8. However, the momentum and scaled momentum
variables would change between the two different initial con-
ditions. Moreover, theδ momentum variable is not affected by
the initial rotor velocity condition. To demonstrate this result,
gaits were generated for the initial conditioṅψ(0) = 1 rather
than ψ̇(0) = 0. The momentum variable time evolution for
both cases are shown in Figure 9.

D. Cubic spline trajectory

In this last example, we want to design a gait that drives
the Snakeboard from a start to a final position. To completely
define the trajectory that connects the start and end positions,
we specify the slope of the trajectory at these position. Hence,
a cubic spline can be used to define such a trajectory. Without
any loss of generality, we specify the trajectory to start from
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Fig. 9. A plot of the momentum variable for the two initial rotor
velocity conditions.(p0(t), ρ0(t), δ0(t)) correspond toψ̇(0) = 0 while
(p1(t), ρ1(t), δ1(t)) correspond toψ̇(0) = 1.

the origin with the middle link horizontal and to end at the
point (1, yf ) with the middle link having a slopem. Such a
trajectory can be computed as follows

x = t, y = at2 + bt3, where (36)

a = 3yf −m, andb = m− 2yf . (37)
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Fig. 10. The Snakeboard gait that was generated to traverse the cubic spline
trajectory depicted in (36).

The above trajectory is depicted in Figure 10. Using equa-
tion (21) we solve for the wheel direction angleφ. Then after
verifying thatφ(0) 6= 0 we use (24) and (26) to solve for the
rotor angle to arrive at

φ = tan−1







2L(a+ 3bt)
(

(2at+ 3bt2)
2
+ 1
)3/2






, (38)

ψ = − 2a3Mt5

5Jr
− 6a2bMt6

5Jr
− 9ab2Mt7

7Jr

− L2M tan−1(t(2a+ 3bt))

Jr
− aMt3

3Jr
− Mt

2aJr

− 27b3Mt8

56Jr
− bMt4

4Jr
.

(39)
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Fig. 11. The Snakeboard snapshots from the numerical simulation of the
gaits in (38) and (39) matches the parametric plot of the desired trajectory
in (36).

After numerically simulating the generated gaits, the Snake-
board exactly traverses the desired trajectory as shown in
Figure 11.

In summary, in this section, we have generated four sets of
gaits by analytically solving for the base variablesφ andψ for
several desired trajectories. In all the examples, the generated
gaits drove the Snakeboardexactlyalong the respective desired
trajectories.

V. D ISCUSSION

Now we address some assumptions that were enforced
earlier and verify that the gait generation techniques are not
affected by these assumptions; Moreover, some intuition is
given for the new momentum-like variable introduced in this
paper.

A. Snakeboard simplification

In this paper we introduced two main simplification to
the Snakeboard, namely, coupling the front and back wheel
directions and the condition that we used on the total inertia
of the Snakeboard,ML2 = J + Jr + 2Jw. Similar to all
prior literature relating to the Snakeboard we maintain the
coupling of the wheel direction; However, removing the inertia
simplification does not affect the gait generation technique
that was presented in this paper. In fact, removing the inertia

relation and lettingJ = mL2 − Jr − 2Jw we get

θ = tan−1
˙̃y
˙̃x
, (40)

φ = − tan−1

(

Lũ

ṽ3

)

, (41)

δ = −L
√
−L2mũ2 −Mṽ6√

2ṽ2
, (42)

ψ̈ =
L2m ˙̃u

Jrṽ2
− 2L2mũ ˙̃v

Jrṽ3
+
Mṽ3 ˙̃v

Jrũ
, and (43)

ψ̇(0) = lim
t→0

L2mũ

Jrṽ2
+
Mṽ4

Jrũ
, (44)

where ũ and ṽ are still as defined in (20). Note that bothθ
andφ were not affected by the inertia simplification; However,
the expressions ofδ, and ψ̈ and its initial velocity, ψ̇(0)
have changed. Nevertheless, the method of generating gaits
presented in Section III is still valid.

B. Momentum variables

This paper introduces yet another momentum-like variable
to achieve the explicit gait generation techniques. The non-
holonomic momentum variable as described in Ostrowski [7],
p(t) is computed along the allowable directions of motion and
defined by

p(t) =
∂l (ξ, r, ṙ)

∂ξ
.Ω(r), (45)

where l (ξ, r, ṙ) is the reduced Lagrangian andΩ(r) ia a
basis of the nullspace of the matrixωξ(r) which in turn is
a sub-matrix of the reduce nonholonomic constraints matrix
satisfyingωξ(r)ξ + ωr(r)ṙ = 0.

The second momentum variable discussed in this paper is
the scaled momentum given byρ(t) = f(r(t))p(t) as was
defined in Shammas et al. [8]. The scaled momentum is simply
the nonholonomic momentum,p multiplied by an integrating
factor, f(r), to simplify the momentum evolution equation.
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Fig. 12. A plot of the different momentum variables for the Seprenpoid
trajectory shown in Figure 4.

Finally, we introduces a third momentum related variable,
δ, that greatly reduces the nonholonomic equations of motion



and that is crucial to the explicit gait generation technique
in this paper. Pertaining to the Snakeboard, there are two
interesting facts regarding this momentum variable. First, its
first derivative is a function of the base variables,r, and
their second time derivatives,̈r as shown in (47); Moreover,
the right-hand-side of the momentum evolution equation is
not a quadratic-form. The second interesting fact is that the
reconstruction equation when written in term of the new
momentum variable,δ, its right-hand-side is not dependent on
the base velocities,̇r, as shown in (46). Thus we can conclude
that the reconstruction and momentum evolution equation for
the Snakeboard when expressed in terms ofδ are given by

ξ =
1

f(r)
Γ(r)δ (46)

δ̇ = h(r)r̈ (47)

whereh(r) is a function of the base variable configurations.
The difference between the three momentum variables dis-
cussed in this paper is depicted in Figure 12.

C. Allowable trajectories

In this paper we solved for gaits that locomote the Snake-
board along planar trajectories comprised of what we labeled
as “sufficiently smooth” curves. To be more precise, the
components of the parametric representation of the trajectory
must be twice differentiable with respect to time and the
second derivatives must be continuous. These conditions were
sufficient to solve for the gaits for all the example trajectories
presented in the previous section.

If a desired trajectory is represented by a cubic spline or is
composed of several curves from the families of curves from
the previous section, the gait generation methods in the paper
are still valid as long as there are no kinks in the second
derivatives of the components of the curve. In other words,
when constructing a feasible trajectory for the Snakeboard
to traverse, one should ensure that the third derivative of the
components of the desired trajectory are continuous and the
derivatives up to second order are identical at the intersection
between two adjacent trajectory section.

Finally, it is worth noting that equation (22) imposes no
limits on the radius of curvature along the desired trajectory.
Indeed, whenφ = ±π/2, the radius of curvature is zero, that
is, the wheel axes are along the middle link of the Snakeboard
and it turns in place.

VI. CONCLUSION

In this paper we presented a closed-form analytical solution
to the motion planning problem of the Snakeboard, that is,
given any sufficiently smooth curve in the plane, respective
base variables can be solved for so that the Snakeboard ex-
actly traverses the desired trajectory. This result was achieved
by introducing a momentum-like variable that simplified the
reduced nonholonomic equations of motion so that an explicit
inverse dynamics solutions is feasible.

Generalizations of this technique to asubclassof simple
mechanical systems will be investigated in the near future.

More importantly, the existence of the new momentum-like
variable and the form of its evolution differential equation
should be investigated for other mechanical systems.

Finally, it would be interesting to parameterize the desired
trajectories in terms of curvature as a function of arc-length.
Such a parametrization could significantly simplify the inverse
dynamics problem as well as provide some intuition for the
nature of the new momentum-like variable.
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