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Abstract—This paper provides a closed-form analytical solu- decoupling vector field analysis developed by Bullo and lync
tion_to the motion planning proble_m for the Snakeboa_rc_i. Given a [IZ]_ In fact Bullo and LeWiS|_[-¥ﬂ] addressed the motion plamnin
_deswed planar trajectory |n'the fiber space, an explicit solution problem by solving the nonlinear inversion problem via an
is computed for the gaits in the base space that locomote the - . .
Snakeboard along the desired trajectory. This is achieved by ad hoc concat(f;natlon C?f alloyvable trajec.tones -betW(.a.en the
introducing a new momentum-like variable that simplifies the  Start and end fiber configuration. These kinematic trajeegor
Snakeboard’s equations of motion to allow for such an explicit ensured that the Snakeboard had zero initial and final \gloci
gait generation technique. at the start and end configurations.

Where as Bullo and Lewis [[1] limited themselves to kine-
matic trajectories, no such limitation is used in this paper

The Snakeboard was first analyzed as a simple nonholMereover, the start and end configurations were the input to
nomic mechanical system in Ostrowski et al. [5]. Since theahe motion planning problem in Bullo and Lewid [1], in this
the Snakeboard has been used as an excellent platfornpaper the input is an entire trajectory from a start to an end
demonstrate important results that range from the motidiber configuration.
planning of underactuated systems to the controllability o In this paper, we build upon the prior body of work
nonholonomic systems. The Snakeboard is in fact a sim@ed present an analytical closed-form solution to the motio
yet nontrivial system to experiment with motion planninglanning problem for the Snakeboard. In other words, we
and controllability without being overwhelmed by complexompute the gaits that locomote the Snakeboard along a
expressions. Nevertheless, its non-trivial dynamics hswe desired trajectory between two configurations. This sufitty/
far defied efforts to provide a closed-form analytical gagmooth desired trajectory can be generated by other tasisiq
generation techniques to solve its motion planning probleto achieve important tasks such as obstacle avoidance or to
The main contribution of the present paper is a solution i® thoptimize an interesting metric. In this paper, we analjtjca
problem. solve for the gaits that drive the Snakeboasdctlyalong a

The early motion planning work for the Snakeboard in Oslesired trajectory.
trowski et al. I[__‘ﬁ] used sinusoidal steering techniques first
developed in Murray and Sastdﬂ [4]. This technique iderifie ~@f
the frequencies of the sinusoidal inputs to locomote th&&na \K
board along three primitive directions: forward motion;gke!
parking, and rotation. In this method, the amplitudes of the
input sinusoids were empirically computed. Later Ostrawsk
et al. B] extended this approach to perform optimal gait
analysis.

The motion planning problem for the Snakeboard was also ¢K

b

I. INTRODUCTION

attempted by Shammas et @[10]. Their technique intuitive

analyzed the geometric and dynamic phase shifts in order to

propose gaits that locomote the Snakeboard along the desire

direction. However, the analysis of the phase shifts was not Fig. 1.

automated and did not address the motion planning problem of

driving the Snakeboard from an initial to a goal configunatio This paper is organized as follows. In Sectloh Il we for-
An analytical solution to the motion planning problem fomulate the standard and reduced equations of motion for

the Snakeboard was presented in Bullo and Lewis [1] whettee Snakeboard. Then in Sectibnl Ill a new momentum-like

the problem of driving the Snakeboard from an initial to &ariable is introduced to simplify the equations of motian s

goal state was addressed. Their body of work built upon tlieat they can be used to explicitly generate gaits that lmtem

Configuration variables of the Snakeboard.



the Snakeboard to traverse a desired trajectory. In SeBfijon torque input,7. Note that, the motor input vector could be
several examples are worked out to generate gaits for speaiépresented as = (0, 0,0,TT7Tw)T.

trajectories. Finally, we discuss some of the findings o$ thi

paper in SectiofivV and conclude in Sectiod VI. B. Reduced equations of motion

II. EQUATIONS OF MOTION The configuration space of the Snakeboard is a principal

The Snakeboard is a multi-bodied mechanical system wiiher bundle, where the fiber space is the Special Euclidean
two nonholonomic constraints acting on its wheel sets. V@oup, g = (z,y,0) € G = SE(2), and the base space is
use the Lagrangian approach to compute the Snakeboag@sposed of two rotation groups= (¢,1) € M =S' x S,
equations of motion. The configuration of the Snakeboaggich thatg = (g9,7) € Q = (G, M). The above equations
can be represented by = {z,y,0,¢;,v,¢,} wherez, y, of motion can be recomputed using the symmetry laws and
and 6 denote the position and orientation of a body attach&@e nonholonomic connection as defined in Ostrowski [71. A
coordinate frame while, v, ¢, denote the front wheel angle,new reduced set of equations that govern the dynamics of
the rotor angle, and the back wheel angle, respectivelye Ndé@comotion are given by
that these angles are measured with respect to the midéle lin

of the Snakeboard as shown in Figlie 1. {=—-A(r)r+I(r)p, and ()
The actuated variables are the rotor rotation as well as the 1 (p,7) o (r) (p, )" 3)
directions of the wheels; Moreover, we assume that the wheel P=5\ BTy

directions are coupled such thay = —¢, = ¢. Note that : _ . .
the wheels themselves are passive and are used to pro\\/}/gere in [2) we haveg = TyL,-1g is the body velocity

. . : . 4hd A(r) is the local form of the mixed-nonholonomic con-
the nonholonomic constraints that permit motion only alangnection and[B) is the momentum evolution equation

direction perpendicular to the wheel axes. The center obmas In Sh ¢ alllig] the ab i f i
of the Snakeboard is at the center of the middle link where " ammas €t al. [ ]. € above equations ol motion
re further simplified by introducing the scaled momentum

we have attached the body-coordinate frame. The location ‘0f " blep(t) ) wh is the int ting fact
the center of mass remains constant with respect to the bé’(?yré) e/k))<t ) = f(r)p(t), wheref(r) is the integrating factor
attached coordinate frame irrespective of the configunabio 0 , obtaining

the Snakeboard. The mass and inertia of Snakeboard is denote 1

respectively by and.J, whereas/,, and.J,. denote the wheel §=—A(r)r+ ml’(r) p, and 4
and rotor inertias. The length of the middle line is assumed 1

to be 2L. Finally for simplifying the expressions appearing p=3" S(r) T, (5)

in the equations of motions, we assumérL? = J + J, +
2.J,,. We will show how to remove these assumptions later Mihere [b) is the scaled momentum evolution equation. Note
Section V-A. that the right hand side dfl(5) is independent of any momentum
] ) variables. For the snakeboard, the reduced equation obmoti
A. Euler-Lagrange equations of motion in terms of the scaled momentum are computed as follows
Utilizing standard Lagrangian dynamics formulation, the

equations of motion for the Snakeboard can be computed by £ = — Jrsin (2615)(;'”_ cos (¢)p ©)
, , l : ML ML P
d (9L(q, L(g,d | - .
Jj=1 59 _ JT Sl (¢) ¢+ Sin (¢) p and (8)

. 2 2 ™
whereL(q, ¢) is the Snakeboard Lagrangiaw,(q) is a matrix g ML= ML )
representing the nonholonomic constraints, andare the p=Jrcos(¢) Py

Lagrange multipliers for thé nonholonomic constraints. Typ- The definition of the scaled momentum, and the above

ically, the nonholonomi nstraints are expr ] = . . .
cally, the nonholonomic constraints are expressed (@jq educed equations of motion are at the core of the motion

0. F(_)r the Sna_lkeboard, the ngrang_lan and the two nonhoi)?énning techniques developed in Shammas etlal. [10]. In
nomic constraints are respectively given by

fact, the local form of the connection ifl(4) was used to
DY ) o Mo s define height functions under which the volume was related
L{g,q) = Jr(0 + 5) +Jud” + ?(L 0"+ 3" +97), to the geometric phase shift and thefunctions along with
and the reduced momentum equation [ (4) aid (5) simplified the
i analysis of the dynamic phase shift. The intuitive analypfis
W= <_ St (z +¢)  cos (99+ %) éCOS () 8 8) ) both the geometric phase shift in [9] and the dynamic phase
—sin(0—¢) —cos(f—¢) Leos(¢) shift in [10] allowed to propose gaits that guarantee motion
Using the above expressions for the Lagrangian and talng one fiber direction. In this paper we build upon the abov
nonholonomic constraints, the equations of motiorin (¥) cdormulation and present an explicit analytic gait generati
be computed and simulated numerically for any given mottechnique for the Snakeboard.



C. Alternative derivation of the reduced equations of motio Note what we have reverted back the inertial frame rather
In the previous section, the symmetry of the LagrangidRen the body frame usirif. L,¢ = . The main advantage of
and nonholonomic constraints with respect to rigid boc?€ above formulation is that it enables one to solve/f@nd
transformation in the fiber space were exploited to recomput In order to force the trajectory of the Snakeboard to follow
the equations of motion in their reduced form as showiiin ()9iven feasible trajectory, as discussed in the next sectio

and [3); however, in the case of the Snakeboard, this remuctiy  go|ution in terms of a given trajectory
step is not necessary to obtain these equations.

In fact, the equations ifl2) can be computed in the inertia{a\rl]\fr;tzvg ;h?\x:g\gﬂ?:?niﬁg ;;s:lgltgcseom eo](t%retrhv?/o%l[nths/t
frame as follows. First, express the nonholonomic equza\tiong 9 ne iber space. n vorasng
a planar trajectorye(t) = (Z(t),4(t)) which is sufficiently
we(q) g+ wrlq) =0, smootf] , we show how to solve equatiorfS112) throughl (15)
) . for the base variableéy(t), v (t)) so thatz(t) = z(t) and
wherewe (¢) andw,(¢) are sub-matrices ab(g). Then define

. e _y(t) = g(t). Note that, in general, this may not be possible,
momentum variables from the derivative of the Lagrangialy \ve have to match four coupled differential equatiéns (12)

with respect to the fiber velocities which are then projectqﬂrough [I%) with the help of only two parameters.
along the allowable directions to arrive at

J

where()(q) is a basis of the null space of(g) representing
the allowable direction of motion orthogonal to the nonholo
nomic constraints. Solving the above equations for the fiber
velocities, g, will yield the reconstruction equations which are
expressed in the inertial frame. The fiber velocity can then b
mapped to the body frame using the lifted action of the fiber
spaceg = T.L,¢, to arrive at the equationBl(6) throudh (8). \
As for the momentum evolution equations given (3), R

they can be computed by using the reconstrunction equations ‘
and their derivatives to substitute for the fiber velocitiés \
and accelerationg, in the original equations of motiorh](1)
associated with the fiber variables. In turn, these equation NI
be solved for the derivative of the momentum variables a$ wel RRW
as for the Lagrange multipliers. For the Snakeboard, we have
two nonholonomic constraints and the fiber spafé;(2),

is three-dimensional; hence, only one momentum variable is
required as shown in}9). Fig. 2.

Relationship between the trajectory’s curvaturel @ne wheel
direction angle .

IIl. EXPLICIT GAIT GENERATION

In thi . ve for th  ait that will | ¢ The first clue is to note that the vectgr, ) makes an angle
n this section, we solve for the exact gait that wil IoCOROLy i the horizontal. Leto(t) be the angle that the tangent to
the Snakeboard along a desired trajectory in the fiber spa

= . SFie trajectory makes with the horizontal inertial axis. ithe
First introduce the new variable
. = tan~* ], &
5= p— Jysin(g) (10) 7 . 4)
Dividing (I3) by [12) we note that

so that

. .. p==0.

0 = —J.sin(o) ¢ (11)

. . _That is, the angle that the middle link of the Snakeboard
where we have used](9) to arrive at the equivalent equatiof)sy the angle that the tangent vectdr,;j) make with the
of motion horizontal are exactly the same. If we are to hayg = 7(t)

cos(f) cos(¢) 5 (12) andy(t) = y(t) then we must have
ML ’ I S D
sin(0) cos(¢) 5 (13) p=0=0:=tan" (y,7). (16)
Y= ——"7
. ML 1in this paper, sufficiently smooth functions are functionat tare twice
6 — SIH(¢) 5 (14) differentiable and their second derivatives are contiisuou
T ML2?2 ’Heretan—! : R x R — (—m, ] denotes an extended version of the
o . v tan—! that uses the knowledge of the signsgfi in order to map the
6 = —Jpsin(¢) Y. (15) entire unit circle.



The above equation completely determir¢s). Finally, we can solve for the second time derivative of the

Now think of the momentumd as a free variable for the rotor angle using[(15). After some more algebraic manipula-
time being. Withz(t) = Z(t), y(¢t) = y(t), andé(t) = 6(t), tions we arrive at the second order differential equation
consider now the question of whether it is possible to deter- I2ME 2LiMab  MiE

mine (¢, ) such that )= =7 3] = (24)
il cos(f) cos(g) 5 (17) The solution of the above differential equation, which we
ML ’ shall denotey), can be computed explicitly. Thus, usirig](21)

- sin(f) cos(¢) 5 (18) and [23) one can compute an explicit parametrization for the
y= ML ’ wheel rotationg and the rotor rotation) with respect to time

< sin(g) in terms of the desired trajectory.

0 VL2 0 (29)

B. Rotor initial conditions

To solve foriy), we need to integraté_(4), hence, we need

T - - [0 | = the initial conditions fory, namely,;»(0) ands(0). The initial
— _ — 2 2
Y=y 2, vi=yYTE Ay 20 (20) orientation of the rotor can be arbitrary and we can set it to

Having solved ford we can compute its time derivative az€"® Without any loss of generality, that is(0) = 0. As for

In order to answer this question defia@) ando(t) as follows

well as its sine and cosine the initial angular velocity of the rotor, we need to conside
R o o two cases.
0= —a/v?, cos(0) = /0, sin(6) = /0. 1) Case 1:¢(0) = 0: In this case, the wheel axes are

perpendicular to the middle line of the Snakeboard. Henoe, a
initial velocity of the rotor is valid since it does not coibtite
to any motion. Thus, the initial velocity of the rotor can be
set arbitrarily. In fact, the different initial rotor velitg will
affect the momentum and scaled momentum variable and of
course the rotor angle; however, it will not affect the tcagpey
b=¢:=—tan' (Lﬂ/f]g) ] (21) traversed nor it will affect thé momentum variable that was

) ) introduced in [(ID). This will be demonstrated later in the

Otherwise, ifz = 0 andy # 0, one can now solve fo» examples and can be seen in Figre 9. So without any loss of

by dividing (I9) by [I8). Remarkably, one reaches the exagénerality for the case af(0) = 0, we can use the following
same expression fap. Indeed, this result can be interpreteghitial conditions

again by referring to Figurel 2, where the tangent to the curve :

is turning clockwise as it passes through the pdmtin this $(0) =0, $(0) = 0. (25)
case the curvature of the curve is negative; 0, and we can 2 Case 2:¢(0) # 0: In this case, the rotor initial velocity
conclude that the radius of curvature is given By= —1/x. needs to be solved for using{10). Note that if we are starting

The above relationships are graphically illustrated inuFeg2.

Assume now tha® > 0. Then eitherz or ¢ or both are
not zero. For instance, assume thiag 0. Then we can solve
for the wheel angley by dividing (I9) by [17). After some
algebra one obtains

In other words from rest, the initial scaled momentum can be set to zero
L i i —o. o ;
tang = L — _Li— B tan . 22) p(0) = 0. After substituting fors from (23) we arrive at
R o3 . L*Ma ~ Mv*
where we have used that fact that for a planar curve we have »(0) =0, $(0) = }1_{% 2. + at, (26)
__Ty—yr _a C. Solution wherv = 0
(#2 +g2)%% 03 The solution computed above assumes thét) # 0.

However, ifo(t) = 0 at some or all points of the trajectories, a
gait can still be computed. Indeed, when bath) = 6=0a
; i . o solution isd :hO with ) arbzit[aryr,] and when # 0 asolution ij |
sin(¢) = ———————, c08(¢) = ——/m———. = +7/2 with § = £M L=¢. The trajectory can be amende
K VLa? +v° ¢ VL2a? + 0 \(/?/ith the/solution to these qipecial caJ\ses h}lnecessary.
It is interesting to note that for the Snakeboard traversing Intuitively, the gait generated for a trajectory where= 0
a planar trajectory, the tangent of angle that the wheelsemakquires either that the Snakeboard is not moving or that the

with the middle link is exactly the half the length of the mield Snakeboard is turning in place around its center of mass.
link multiplied by the trajectories curvature.

Using the assumption that> 0 we solve foré using [19)

We shall also compute the sine and cosineafhich will
be used later

IV. EXAMPLES

where we have already computécandsin(¢) to arrive at In this section, we work out some examples and compute
the gaits that generate the desired trajectories. We use the
5 5. MLVe® + L?a? (23) following Snakeboard parameters] = 4, J, = 2, J,, = L
' 02 ’ J =1, andL = 1 in all examples. In each case we specify the



desired trajectory along which the Snakeboard is suppased t 30 ‘ ‘ ,,,,,,
locomote. Then we solve for the respective closed-fornsgait - o)
o 25 S\ -
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<
§ 15
205 et
[ P 810
- ) . i e e )
@15 = O e
2 G 0= =
§ 10 . 0 1 2 3 4 5 6
@ Time
1] L
(U 5 o 0 ,x"' N Pl S
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//‘-.\ trajectory depicted ir((30).
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Fig. 3. The Snakeboard gait that was generated to travees&ehpenoid -1.0 “‘-“»“A Y
trajectory depicted if{27). 0 2 4 6 8
X(t)

The Serpenoid curve was first introduced by Hirdse [3] to
describe snake locomotion. It can be defined as follows  Fig. 6. The Snakeboard snapshots from the numerical simalafithe gaits
in (1) and [(3R) matches the parametric plot of the desireddtaiy in [30).

& = cos (asin (bt)), y = —sin (asin (bt)), 27)

where a and b are parameters of the Serpenoid curve. E Sinusoidal trajectory witkp(0) # 0

parametric plot of the desired Serponoid curve is depicteel a N this example, we want the Snakeboard to follow the
dashed line in FigurEl 4. Using equatidnl(21) we solve for tHellowing sinusoidal trajectory,

wheel direction angle as shown in[{28). Then after verifying v =1, y = cos(t). (30)
that$(0) # 0 we use[(Z4) and(26) to solve for the rotor angle

as shown[(29). The base variables and the first derivative ofA parametric plot of the trajectory is depicted in Figlie 5.

the rotor angle are depicted in Figure 3. Again we use equatio_(21) to solve for the wheel direction
angle ¢. Then after verifying thatp(0) # 0 we use [(2K)
1.0 and [26) to solve for the rotor angle to arrive at
0.5
S 00 e, LeiRe e A b= —tant | L@ (31)
-0.5 %‘?‘ %.’"‘J% 3 . 2 A
10 (sm )" + 1)
' 0 2 4 6 M (8 o, .
X(t) Y= A <3 + L?tan (sm(t)))
" . . (32)
Fig. 4. The Snakeboard snapshots from the numerical simalafithe gaits % (sm(?)t) _ 7 sm(t)> .
in (28) and [ZD) match the parametric plot of the desired ttajgdn (22). Jr 36 4

The base variables and the first derivative of the rotor angle
are depicted in Figuld 5. In this example, numerical sinmat
. of the generated gait locomotes the Snakebord along the
¢ = —tan™" (abL cos (bt)) (28)  desired trajectory are shown in Figlire 6.

0 (t + a®bL?sin (bt)) (29) c. Sinusoidal trajectory withp(0) = 0
Now, we test our gait generation technique for a desired

Finally, we numerically simulate the generated gaits dgajectory where the initial wheel angle starts at zero. To

picted in [28) and[(29). Snapshots of the Snakeboard logfemonstrate this, another sinusoidal trajectory is pregos
motion are plotted on top of the parametric plot of the dekirgych that

trajectory in Figurd ¥. The simulation shows an exact match )
between the Snakeboard locomotion and the desired trajecto r=t, y = sin(t). (33)

- abJ,
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Fig_. 7. The _Snakt_eboard gait that was generated to traveessitiusoidal Fig. 9. A plot of the momentum variable for the two initial rotor
trajectory depicted in(33). velocity conditions. (po(t), po(t), d(t)) correspond toy(0) = 0 while
(p1(¢), p1(2), 61(¢)) correspond ta)(0) = 1.

1.0 g EU‘* = D o
0.5 Ea "“ﬁ X A
4 O.S W {i"" the origin with the middle link horizontal and to end at the
:25 B ts” point (1,y;) with the middle link having a slope:. Such a
' 0 5 7 =2 5 8 trajectory can be computed as follows
X(t) x=t, y=at® +bt3, where (36)

Fig. 8. The Snakeboard snapshots from the numerical simnlafithe gaits a=3yy —m, andb=m — 2y;. (37)

in (34) and [3b) matches the parametric plot of the desireddtaiy in [33).

57
Indeed for this desired trajectory, after solving for wheel
direction anglep using _e_quatmnl@l) we arrive at0) = 0. s )/,_ -
Hence, we use the initial conditions given [n¥25), that is, s O R B
) : g O T
1(0) = 0. Solving for the rotor angle we get =TT
b N I I b
Isi I R R S
¢ = — tan_l L(t)m , (34) % 5 _ ¢(t) _________
(cos(t)* +1) @ S0
M (nLl? 1 = ()
P = - (7T4 - §6 — L?tan* (cos(t))) -10 | ‘
" 35 | —
M [cos(3t)  Tcos(t) (35) 00 02 04 06 08 10
J,. 36 4 ‘ Time

For such trajectories, the initial velocity can be arbitrar rig. 10. The Snakeboard gait that was generated to traveeseubic spline
In fact, if a different initial rotor velocity was used, thetrajectory depicted in(36).
Snakeboard would still traverse the desired trajectoryotieg
in Figure[8. However, the momentum and scaled momentumThe above trajectory is depicted in Figlrd 10. Using equa-
variables would change between the two different initiat-co tion (21) we solve for the wheel direction angle Then after
ditions. Moreover, thé momentum variable is not affected byverifying that¢(0) # 0 we use[(2#) and (26) to solve for the
the initial rotor velocity condition. To demonstrate thesult, rotor angle to arrive at
gaits were generated for the initial conditigri0) = 1 rather
than ¢)(0) = 0. The momentum variable time evolution for
both cases are shown in Figlre 9.

6= tan—! 2L(a + 3bt) [ ’ (38)

3/2
((2at +3bt2) + 1)
2a3 Mt° - 6a2bMt° - 9ab>Mt”

D. Cubic spline trajectory
In this last example, we want to design a gait that drives ¥ = —

) o 5J, 5J, 7J,
the Snakeboard from a start to a final position. To completely o 1 ! .
define the trajectory that connects the start and end positio _ L7 Man }t@a +30t) af] e QMJ (39)
T a K

we specify the slope of the trajectory at these position.dden s T
a cubic spline can be used to define such a trajectory. Without 210 MtS bMt .
any loss of generality, we specify the trajectory to staotrfr 56.J; 4J,




relation and letting/ = mL? — J, — 2J,, we get

2.0 ,
6 =tan' Y (40)
X
1.5 i
¢ = —tan"? <L§‘) , (41)
0 v
1.0 ;-o _ L\/ —L2mﬂ2 — MﬁG
) , (42)
= a.ﬂ, V202
> . L’mi 2L*mav M0
= - 4
0.5 ; G 75 T® T A and  (43)

n" ] L2 ~ M~4
(o) = lim = + S (44)
0.0 N t—0 J.0 01

where @ and v are still as defined inC{20). Note that both
and¢ were not affected by the inertia simplification; However,
-0.5 the expressions of, and ¢ and its initial velocity, /(0)
have changed. Nevertheless, the method of generating gaits
-05 00 0.5 1.0 15 2.0 presented in Sectidn]Il is still valid.

X(t)

B. Momentum variables

Fig. 11. The Snakeboard snapshots from the numerical sironlati the : : mh :
gaits in [38) and[[39) matches the parametric plot of the dbdiaectory This paper introduces yet another momentum-like variable

in 39). to achieve the explicit gait generation techniques. The-non
holonomic momentum variable as described in Ostrowski [71,
p(t) is computed along the allowable directions of motion and

After numerically simulating the generated gaits, the Eénakdefmed by

board exactly traverses the desired trajectory as shown in (t) = oL (&, r,7)
Figure[11. p o0&

In summary, in this section, we have generated four sets\@fere | (&,r,7) is the reduced Lagrangian ard(r) ia a
gaits by analytically solving for the base variableandy for  hasis of the nullspace of the matrix (r) which in turn is
several desired trajectories. In all the examples, thergée® 3 sub-matrix of the reduce nonholonomic constraints matrix
gaits drove the Snakeboaedactlyalong the respective desiredsaﬁsfyingwf (r)€ + w,(r)i = 0.
trajectories. The second momentum variable discussed in this paper is
the scaled momentum given () = f(r(¢))p(t) as was
defined in Shammas et &ll [8]. The scaled momentum is simply
the nonholonomic momentunp, multiplied by an integrating
factor, f(r), to simplify the momentum evolution equation.

Q(r), (45)

V. DISCUSSION

Now we address some assumptions that were enforced 20
earlier and verify that the gait generation techniques ate n 4 \ / \
affected by these assumptions; Moreover, some intuition iscié 10 W
given for the new momentum-like variable introduced in this J ST “ K 17
= ... e O I o
paper. c 0\" - . /’\ . /r"\\’\
> P Moo’ N e
3 - po
o € _10 ~ o) |
A. Snakeboard simplification = 5(t)
|
In this paper we introduced two main simplification to _200 1 2 3 4 5 6
the Snakeboard, namely, coupling the front and back wheel Time

directions and the condition that we used on the total iaerti

of the SnakeboardML2 = J + Jr + 2J,. Similar to all Fig. 12. A plot of the different momentum variables for the ®emoid
prior literature relating to the Snakeboard we maintain thejectory shown in FigurEl4.

coupling of the wheel direction; However, removing the fizer

simplification does not affect the gait generation techaiqu Finally, we introduces a third momentum related variable,
that was presented in this paper. In fact, removing theiaert, that greatly reduces the nonholonomic equations of motion



and that is crucial to the explicit gait generation techeiqguMore importantly, the existence of the new momentum-like
in this paper. Pertaining to the Snakeboard, there are twariable and the form of its evolution differential equatio
interesting facts regarding this momentum variable. Fitst should be investigated for other mechanical systems.

first derivative is a function of the base variables, and Finally, it would be interesting to parameterize the dekire
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