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Abstract—Sequence optimization, where the items in a list are
ordered to maximize some reward has many applications such
as web advertisement placement, search, and control libraries
in robotics. Previous work in sequence optimization produces a
static ordering that does not take any features of the item or
context of the problem into account. In this work, we propose a
general approach to order the items within the sequence based
on the context (e.g., perceptual information, environment descrip-
tion, and goals). We take a simple, efficient, reduction-based
approach where the choice and order of the items is established
by repeatedly learning simple classifiers or regressors for each
“slot” in the sequence. Our approach leverages recent work on
submodular function maximization to provide a formal regret
reduction from submodular sequence optimization to simple cost-
sensitive prediction. We apply our contextual sequence prediction
algorithm to optimize control libraries and demonstrate results
on two robotics problems: manipulator trajectory prediction and
mobile robot path planning.

I. INTRODUCTION

Optimizing the order of a set of choices is fundamental to
many problems such as web search, advertisement placements
as well as in robotics and control. Relevance and diversity are
important properties of an optimal ordering or sequence. In
web search, for instance, if the search term admits many differ-
ent interpretations then the results should be interleaved with
items from each interpretation [17]. Similarly in advertisement
placement on web pages, advertisements should be chosen
such that within the limited screen real estate they are diverse
yet relevant to the page content. In robotics, control libraries
have the same requirements for relevance and diversity in the
ordering of member actions. In this paper, we apply sequence
optimization to develop near-optimal control libraries. In the
context of control libraries, a sequence refers to a ranked
list of control action choices rather than a series of actions
to be taken. Examples of control actions include grasps for
manipulation, trajectories for mobile robot navigation or seed
trajectories for initializing a local trajectory optimizer.

Control libraries are a collection of control actions obtained
by sampling a useful set of often high dimensional control
trajectories or policies. Examples of control libraries include a
collection of feasible grasps for manipulation [5], a collection
of feasible trajectories for mobile robot navigation [10], and
a collection of expert-demonstrated trajectories for a walking
robot (Stolle et. al. [21]). Similarly, recording demonstrated
trajectories of experts aggressively flying unmanned aerial
vehicles (UAVs) has enabled dynamically feasible trajectories

to be quickly generated by concatenating a suitable subset of
stored trajectories in the control library [9].

Such libraries are an effective means of spanning the space
of all feasible control actions while at the same time dealing
with computational constraints. The performance of control
libraries on the specified task can be significantly improved by
careful consideration of the content and order of actions in the
library. To make this clear let us consider specific examples:

Mobile robot navigation. In mobile robot navigation the
task is to find a collision-free, low cost of traversal path
which leads to the specified goal on a map. Since sensor
horizons are finite and robots usually have constrained motion
models and non-trivial dynamics, a library of trajectories
respecting the dynamic and kinematic constraints of the robot
are precomputed and stored in memory. This constitutes the
control library. It is desired to sample a subset of trajectories
at every time step so that the overall cost of traversal of the
robot from start to goal is minimized.

Trajectory optimization. Local trajectory optimization
techniques are sensitive to initial trajectory seeds. Bad ini-
tializations may lead to slow optimization, suboptimal per-
formance, or even remain in collision. Here the control ac-
tions are end-to-end trajectory seeds that act as input to the
optimization. Zucker [29], Jetchev et al. [12] and Dragan et
al. [7] proposed methods for predicting trajectories from a
precomputed library using features of the environment, yet
these methods do not provide recovery methods when the
prediction fails. Having a sequence of initial trajectory seeds
provides fallbacks should earlier ones fail.

Grasp libraries. During selection of grasps for an object,
a library of feasible grasps can be evaluated one at a time
until a collision-free, reachable grasp is found. While a naive
ordering of grasps can be based on force closure and stability
criteria [2], if a grasp fails, then grasps similar to it are also
likely to fail. A more principled ordering approach which takes
into account features of the environment can reduce depth of
the sequence that needs to be searched by having diversity in
higher ranked grasps.

Current state-of-the-art methods in the problems we address
either predict only a single control action in the library that
has the highest score for the current environment, or use an
ad-hoc ordering of actions such as random order or by past
rate of success. If the predicted action fails then systems
(e.g. manipulators and autonomous vehicles) are unable to



recover or have to fall back on some heuristic/hard-coded
contingency plan. Predicting a sequence of options to evaluate
is necessary for having intelligent, robust behavior. Choosing
the order of evaluation of the actions based on the context of
the environment leads to more efficient performance.

A naive way of predicting contextual sequences would be
to train a multi-class classifier over the label space consisting
of all possible sequences of a certain length. This space is
exponential in the number of classes and sequence length
posing information theoretic difficulties. A more reasonable
method would be to use the greedy selection technique by
Steeter et al. [22] over the hypothesis space of all predictors
which is guaranteed to yield sequences within a constant
factor of the optimal sequence. Implemented naively, this
remains expensive as it must explicitly enumerate the label
space. Our simple reduction based approach where we propose
to train multiple multi-class classifiers/regressors to mimic
greedy selection given features of the environment is both
efficient and maintains performance guarantees of the greedy
selection.

Perception modules using sensors such as cameras and li-
dars are part and parcel of modern robotic systems. Leveraging
such information in addition to the feedback of success or
failure is conceptually straightforward: instead of considering
a sequence of control actions, we consider a sequence of
classifiers which map features X to control actions A, and
attempt to find the best such classifier at each slot in the control
action sequence. By using contextual features, our method
has the benefit of closing the loop with perception while
maintaining the performance guarantees in Streeter et al.[22].
Alternate methods to produce contextual sequences include the
independent work of Yue et al. [28] which attempts to learn
submodular functions and then optimize them. Instead, our
approach directly attempts to optimize the predicted sequence.

The outlined examples present loss functions that depend
only on the “best” action in the sequence, or attempt to
minimize the prediction depth to find a satisfactory action.
Such loss functions are monotone, submodular – i.e., one
with diminishing returns.1 We define these functions in section
II and review the online submodular function maximization
approach of Streeter et al. [22]. We also describe our contex-
tual sequence optimization (CONSEQOPT) algorithm in detail.
Section III shows our algorithm’s performance improvement
over alternatives for local trajectory optimization for manipu-
lation and in path planning for mobile robots.

Our contributions in this work are:
• We propose a simple, near-optimal reduction for contex-

tual sequence optimization. Our approach moves from
predicting a single decision based on features to making
a sequence of predictions, a problem that arises in many
domains including advertisement prediction [23, 17] and
search.

• The application of this technique to the contextual opti-

1For more information on submodularity and optimization of submodular
functions we refer readers to the tutorial [4].

mization of control libraries. We demonstrate the efficacy
of the approach on two important problems: robot ma-
nipulation planning and mobile robot navigation. Using
the sequence of actions generated by our approach we
observe improvement in performance over sequences
generated by either random ordering or decreasing rate
of success of the actions.

• Our algorithm is generic and can be naturally applied
to any problem where ordered sequences (e.g., advertise-
ment placement, search, recommendation systems, etc)
need to be predicted and relevance and diversity are
important.

II. CONTEXTUAL OPTIMIZATION OF SEQUENCES

A. Background

The control library is a set V of actions. Each action is
denoted by a ∈ V . 2 Formally, a function f : S → ℜ+ is
monotone submodular for any sequence S ∈S where S is
the set of all sequences of actions if it satisfies the following
two properties:
• (Monoticity) for any sequence S1,S2 ∈S , f (S1)≤ f (S1⊕

S2) and f (S2)≤ f (S1⊕S2)
• (Submodularity) for any sequence S1,S2 ∈S , f (S1) and

any action a ∈ V , f (S1⊕S2⊕〈a〉)− f (S1⊕S2)≤ f (S1⊕
〈a〉)− f (S1)

where ⊕ denotes order dependent concatenation of sequences.
These imply that the function always increases as more actions
are added to the sequence (monotonicity) but the gain obtained
by adding an action to a larger pre-existing sequence is less
as compared to addition to a smaller pre-existing sequence
(sub-modularity).

For control library optimization, we attempt to optimize one
of two possible criteria: the cost of the best action a in a
sequence (with a budget on sequence size) or the time (depth
in sequence) to find a satisficing action. For the former, we
consider the function,

f ≡ No−min(cost(a1),cost(a2), . . . ,cost(aN))

No
, (1)

where cost is an arbitrary cost on an action (ai) given an
environment and No is a constant, positive normalizer which
is the highest cost. 3 Note that the f takes in as arguments the
sequence of actions a1,a2, . . . ,aN directly, but is also implicitly
dependent on the current environment on which the actions are
evaluated in cost(ai). Dey et al. [6] prove that this criterion is
monotone submodular in sequences of control actions and can
be maximized– within a constant factor– by greedy approaches
similar to Streeter et al. [22].

2In this work we assume that each action choice takes the same time to
execute although the proposed approach can be readily extended to handle
different execution times.

3For mobile robot path planning, for instance, cost(ai) is typically a
simple measure of mobility penalty based on terrain for traversing a trajectory
ai sampled from a set of trajectories and terminating in a heuristic cost-to-go
estimate, compute by, e.g. A*.



For the latter optimization criteria, which arises in grasping
and trajectory seed selectin, we define the monotone, sub-
modular loss function f : S → [0,1] as f ≡ P(S) where
P(S) is the probability of successfully grasping an object in
a given scenario using the sequence of grasps provided. It
is easy to check [6] that this function is also monotone and
submodular, as the probability of success always increases as
we consider additional elements. Minimizing the depth in the
control library to be evaluated becomes our goal. In the rest of
the paper all objective functions are assumed to be monotone
submodular unless noted otherwise.

While optimizing these over library actions is effective, the
ordering of actions does not take into account the current
context. People do not attempt to grasp objects based only
on previous performance of grasps: they take into account
the position, orientation of the object, the proximity and
arrangement of clutter around the object and also their own
position relative to the object in the current environment.

B. Our Approach

We consider functions that are submodular over sequences
of either control actions themselves or, crucially, over clas-
sifiers that take as input environment features X and map
to control actions V . Additionally, by considering many
environments, the expectation of f in equation (1) over these
environments also maintains these properties. In our work, we
always consider the expected loss averaged over a (typically
empirical) distribution of environments.

In Algorithm 1, we present a simple approach for learning
such a near-optimal contextual control library.

C. Algorithm for Contextual Submodular Sequence Optimiza-
tion

Figure 1 shows the schematic diagram for algorithm 1 which
trains a classifier for each slot of the sequence. Define matrix
X to be the set of features from a distribution of example
environments (one feature vector per row) and matrix Y to
be the corresponding target action identifier for each example.
Let each feature vector contains L attributes. Let D be the
set of example environments containing |D| examples. The
size of X is |D|×L and size of Y is |D|× 1. We denote the
ith classifier by πi. Define MLi to be the matrix of marginal
losses for each environment for the ith slot of the sequence.
In the parlance of cost-sensitive learning MLi is the example-
dependent cost matrix. MLi is of dimension |D|× |V |. Each
row of MLi contains, for the corresponding environment, the
loss suffered by the classifier for selecting a particular action
a ∈ V . The most beneficial action has 0 loss while others
have non-zero losses. These losses are normalized to be within
[0,1]. We detail how to calculate the entries of MLi below.
Classifier inputs are the set of feature vectors X for the dataset
of environments and the marginal loss matrix MLi .

For ease of understanding let us walk through the training
of the first two classifiers π1 and π2.

Consider the first classifier training in Figure 1 and its inputs
X and ML1 . Consider the first row of ML1 . Each element of
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Fig. 1: Schematic of training a sequence of classifiers for
regret reduction of contextual sequence optimization to multi-
class, cost-sensitive, classification. Each slot has a dedicated
classifier which is responsible for predicting the action with
the maximum marginal benefit for that slot.

this row corresponds to the loss incurred if the corresponding
action in V were taken on the corresponding environment
whose features are in the first row of X. The best action has 0
loss while all the others have relative losses in the range [0,1]
depending on how much worse they are compared to the best
action. This way the rest of the rows in ML1 are filled out.
The cost sensitive classifier π1 is trained. The set of features X
from each environment in the training set are again presented
to it to classify. The output is matrix Yπ1 which contains the
selected action for the 1st slot for each environment. As no
element of the hypothesis class performs perfectly this results
in Yπ1 , where not every environment had the 0 loss action
picked.

Consider the second classifier training in Figure 1. Consider
the first row of ML2 . Suppose control action id 13 was
selected by classifier π1 in the classification step for the first
environment, which provides a gain of 0.6 to the objective
function f i.e. f [13] = 0.6. For each of the control actions a



Algorithm 1 Algorithm for training CONSEQOPT using classifiers

Input: sequence length N, multi-class cost sensitive classifier routine π, dataset D of
|D| number of environments and associated features X, library of control actions V

Output: sequence of classifiers π1,π2, . . . ,πN
1: for i = 1 to N do
2: MLi ← computeTargetActions(X,Yπ1,π2,...,πi−1 ,V )
3: πi← train(X,MLi)
4: Yπi ← classify(X)
5: end for

Algorithm 2 Algorithm for training CONSEQOPT using regressors

Input: sequence length N, regression routine ℜ, dataset D of |D| number of
environments, library of control actions V

Output: sequence of regressors ℜ1,ℜ2, . . . ,ℜN
1: for i = 1 to N do
2: Xi,MBi ← computeFeatures&Benefit(D,Yℜ1,ℜ2,...,ℜi−1 ,V )
3: ℜi← train(Xi,MBi)
4: M̃Bi ← regress(Xi,ℜi)
5: Yℜi = argmax(M̃Bi)
6: end for

present in the library V find the action which provides maxi-
mum marginal improvement i.e. amax = argmaxa( f ([13,a])−
f ([13])) = argmaxa( f ([13,a])− 0.6. Additionally convert the
marginal gains computed for each a in the library to propor-
tional losses and store in the first row of ML2 . If amax is the
action with the maximum marginal gain then the loss for each
of the other actions is f ([13,amax])− f ([13,a]). amax has 0
loss while other actions have >= 0 loss. The rest of the rows
are filled up similarly. π2 is trained, and evaluated on same
dataset to produce Yπ2 .

This procedure is repeated for all N slots producing a se-
quence of classifiers π1,π2, . . . ,πN. The idea is that a classifier
must suffer a high loss when it chooses a control action
which provides little marginal gain when a higher gain action
was available. Any cost-sensitive multi-class classifier may be
used.

During test time, for a given environment features are
extracted, and the classifiers associated with each slot of the
sequence outputs a control action to fill the slot. Repetition
of actions with respect to previous slots is prevented by using
classifiers which individually output a ranked list of actions
and filling the slot with the highest ranked action which is
not repeated in the previous slots. This sequence can then be
evaluated as usual.

The training procedure is formalized in Algorithm 1. In
computeTargetActions the previously detailed proce-
dure for calculating the entries of the marginal loss matrix
MLi for the ith slot is carried out, followed by the training step
in train and classification step in classify.

Algorithm 2 has a similar structure as algorithm 1. This
alternate formulation has the advantage of being able to add
actions to the control library without retraining the sequence
of classifiers. Instead of directly identifying a target class, we
use a linear, squared-loss regressor in each slot to produce

an estimate of the marginal benefit from each action at that
particular slot. Hence MBi is a |D|× |V | matrix of the actual
marginal benefit computed in a similiar fashion as MLi of
Algorithm 1, and M̃Bi is the estimate given by our regressor at
ith slot. In line 2 we compute the feature matrix Xi. In this case,
a feature vector is computed per action per environment, and
uses information from the previous slots’ target choice Yℜi .
For feature vectors of length L, Xi has dimensions |D||V |×L.
The features and marginal benefits at ith slot are used to train
regressor ℜi, producing the estimate M̃Bi . We then pick the
action a which produces the maximum M̃Bi to be our target
choice Yℜi , a |D| length vector of indices into V for each
environment.

D. Reduction Argument

We establish a formal regret reduction [3] between cost
sensitive multi-class classification error and the resulting er-
ror on the learned sequence of classifiers. Specifically, we
demonstrate that if we consider the control actions to be the
classes and train a series of classifiers– one for each slot of the
sequence– on the features of a distribution of environments
then we can produce a near-optimal sequence of classifiers.
This sequence of classifiers can be invoked to approximate
the greedy sequence constructed by allowing additive error in
equation (3).

Theorem 1. If each of the classifiers (πi) trained in Al-
gorithm 1 achieves multi-class cost-sensitive regret of ri,
then the resulting sequence of classifiers is within at least
(1− 1

e )maxS∈S f (S)−∑
N
i=1 ri of the optimal such sequence of

classifiers S from the same hypothesis space. 4

4When the objective is to minimize the time (depth in sequence) to find a
satisficing element then the resulting sequence of classifiers f (Ŝ〈N〉)≤ 4

∫
∞

0 1−
maxS∈S f (S〈n〉)dn+∑

N
i=1 ri.



Proof: (Sketch) Define the loss of a multi-class,
cost-sensitive classifier π over a distribution of envi-
ronments D as l(π,D). Each example can be repre-
sented as (xn,m1

n,m
2
n,m

3
n, . . . ,m

|V |
n ) where xn is the set

of features representing the nth example environment and
m1

n,m
2
n,m

3
n, . . . ,m

|V |
n are the per class costs of misclassifying

xn. m1
n,m

2
n,m

3
n, . . . ,m

|V |
n are simply the nth row of MLi (which

corresponds to the nth environment in the dataset D). The best
class has a 0 misclassification cost and while others are greater
than equal to 0 (There might be multiple actions which will
yield equal marginal benefit). Classifiers generally minimize
the expected loss l(π,D) = E

(xn,m1
n,m2

n,m3
n,...,m

|V |
n )∼D

[Cπ(xn)] where

Cπ(xn) = mπ(xn)
n denotes the example-dependent multi-class

misclassification cost. The best classifier in the hypothesis
space Π minimizes l(π,D)

π
∗ = argmin

π∈Π
E

(xn,m1
n,m2

n,m3
n,...,m

|V |
n )∼D

[Cπ(xn)] (2)

The regret of π is defined as r = l(π,D)− l(π∗,D). Each
classifier associated with ith slot of the sequence has a regret
ri.

Streeter et al. [22] consider the case where the ith decision
made by the greedy algorithm is performed with additive error
εi. Denote by Ŝ = 〈ŝ1, ŝ2, . . . , ŝN〉 a variant of the sequence S in
which the ith argmax is evaluated with additive error εi. This
can be formalized as

f (Ŝi⊕ ŝi)− f (Ŝi)≥max
si∈V

f (Ŝi⊕ si)− f (Ŝi)− εi (3)

where Ŝ0 = 〈〉, Ŝi = 〈ŝ1, ŝ2, ŝ3, . . . , ŝi−1〉 for i≥ 1 and si is the
predicted control action by classifier πi. They demonstrate that,
for a budget or sequence length of N

f (Ŝ〈N〉)≥ (1− 1
e
)max

S∈S
f (S)−

N

∑
i=1

εi (4)

assuming each control action takes equal time to execute.
Thus the ith argmax in equation (3) is chosen with some

error εi = ri. An εi error made by classifier πi corresponds to
the classifier picking an action whose marginal gain is εi less
than the maximum possible. Hence the performance bound on
additive error greedy sequence construction stated in equation
(4) can be restated as

f (Ŝ〈N〉)≥ (1− 1
e
)max

S∈S
f (S)−

N

∑
i=1

ri (5)

Theorem 2. The sequence of squared-loss regressors (ℜi)
trained in Algorithm 2 is within at least (1− 1

e )maxS∈S f (S)−
∑

N
i=1

√
2(|V |−1)rregi of the optimal sequence of classifiers S

from the hypothesis space of multi-class cost-sensitive classi-
fiers.

Proof: (Sketch) Langford et al. [15] show that the re-
gret reduction from multi-class classification to squared-loss
regression has a regret reduction of

√
2(|k|−1)rreg where k

is the number of classes and rreg is the squared-loss regret
on the underlying regression problem. In Algorithm 2 we use
squared-loss regression to perform multi-class classification
thereby incurring for each slot of the sequence a reduction
regret of

√
2(|V |−1)rregi where |V | is the number of actions

in the control library. Theorem 1 states that the sequence of
classifiers is within at least f (Ŝ〈N〉)≥ (1− 1

e )maxS∈S f (S)−
∑

N
i=1 ri of the optimal sequence of classifiers. Plugging in

the regret reduction from [15] we get the result that the
resulting sequence of regressors in Algorithm 2 is within
at least (1− 1

e )maxS∈S f (S)−∑
N
i=1

√
2(|V |−1)rregi of the

optimal sequence of multi-class cost-sensitive classifiers.

III. CASE STUDIES

A. Robot Manipulation Planning via Contextual Control Li-
braries

We apply CONSEQOPT to manipulation planning on a 7
degree of freedom manipulator.

Recent work [19, 12] has shown that by relaxing the hard
constraint of avoiding obstacles into a soft penalty term on
collision, simple local optimization techniques can quickly
lead to smooth, collision-free trajectories suitable for robot
execution. Often the default initialization trajectory seed is
a simple straight-line initialization in joint space [19]. This
heuristic is surprisingly effective in many environments, but
suffers from local convergence and may fail to find a trajectory
when one exists. In practice, this may be tackled by providing
cleverer initialization seeds using classification [12, 29] or
regression [7]. While these methods reduce the chance of
falling into local minima, they do not have any alternative
plans should the chosen initialization seed fail. A contextual
ranking of a library of initialization trajectory seeds can
provide feasible alternative seeds should earlier choices fail.
Proposed initialization trajectory seeds can be developed in
many ways including human demonstration [18] or use of a
slow but complete planner[14].

For this experiment we attempt to plan a trajectory to a pre-
grasp pose over the target object in a cluttered environment
using the local optimization planner CHOMP [19] and mini-
mize the total planning and execution time of the trajectory. A
training dataset of |D|= 310 environments and test dataset of
212 environments are generated. Each environment contains a
table surface with five obstacles and the target object randomly
placed on the table. The starting pose of the manipulator is
randomly assigned, and the robot must find a collision-free
trajectory to end pose above the target object. To populate
the control library, we consider initialization trajectories that
move first to an “exploration point” and then to the goal. The
exploration points are generated by randomly perturbing the
midpoint of the original straight line initialization in joint
space. The resulting initial trajectories are then piecewise
straight lines in joint space from the start point to the ex-
ploration point, and from the exploration point to the goal.
Half of the seed trajectories are prepended with a short path
to start from an elbow-left configuration, and half are in an



elbow-right configuration. This is because the local planner
has a difficult time switching between configurations, while
environmental context can provide a lot of information about
which configuration to use. 30 trajectories generated with the
above method form our control library. Figure 2a shows an
example set for a particular environment. Notice that in this
case the straight-line initialization of CHOMP goes through
the obstacle and therefore CHOMP has a difficult time finding
a valid trajectory using this initial seed.

In our results we use a small number (1−3) of slots in our
sequence to ensure the overhead of ordering and evaluating the
library is small. When CHOMP fails to find a collision-free
trajectory for multiple initializations seeds, one can always
fall back on slow but complete planners. Thus the contextual
control sequence’s role is to quickly evaluate a few good
options and choose the initialization trajectory that will result
in the minimum execution time. We note that in our experi-
ments, the overhead of ordering and evaluating the library is
negligible as we rely on a fast predictor and features computed
as part of the trajectory optimization, and by choosing a
small sequence length we can effectively compute a motion
plan with expected planning time under 0.5s. We can solve
most manipulation problems that arise in our manipulation
research very quickly, falling back to initializing the trajectory
optimization with a complete motion planner only in the most
difficult of circumstances.

For each initialization trajectory, we calculate 17 simple
feature values which populate a row of the feature matrix
Xi: length of trajectory in joint space; length of trajectory in
task space, the xyz values of the end effector position at the
exploration point (3 values), the distance field values used
by CHOMP at the quarter points of the trajectory (3 values),
joint values of the first 4 joints at both the exploration point
(4 values) and the target pose (4 values), and whether the
initialization seed is in the same left/right kinematic arm con-
figuration as the target pose. During training time, we evaluate
each initialization seed in our library on all environments in
the training set, and use their performance and features to train
each regressor ℜi in CONSEQOPT. At test time, we simply
run Algorithm 2 without the training step to produce Yℜ1,...,ℜN
as the sequence of initialization seeds to be evaluated. Note
that while the first regressor uses only the 17 basic features,
the subsequent regressors also include the difference in feature
values between the remaining actions and the actions chosen
by the previous regressors. These difference features improve
the algorithm’s ability to consider trajectory diversity in the
chosen actions.

We compare CONSEQOPT with two methods of ranking the
initialization library: a random ordering of the actions, and an
ordering by sorting the output of the first regressor. Sorting by
the first regressor is functionally the same as maximizing the
absolute benefit rather than the marginal benefit at each slot.
We compare the number of CHOMP failures as well as the
average execution time of the final trajectory. For execution
time, we assume the robot can be actuated at 1 rad/second for
each joint and use the shortest trajectory generated using the

(a) The default straight-line initialization of CHOMP is marked in
orange. Notice this initial seed goes straight through the obstacle and
causes CHOMP to fail to find a collision-free trajectory.

(b) The initialization seed for CHOMP found using CONSEQOPT is
marked in orange. Using this initial seed CHOMP is able to find a
collision free path that also has a relatively short execution time.

Fig. 2: CHOMP initialization trajectories generated as control
actions for CONSEQOPT. Blue lines trace the end effector path
of each trajectory in the library. Orange lines in each image
trace the initialization seed generated by the default straight-
line approach and by CONSEQOPT, respectively.



N seeds ranked by CONSEQOPT as the performance. If we
fail to find a collision free trajectory and need to fall back to
a complete planner (RRT [14] plus trajectory optimization),
we apply a maximum execution time penalty of 40 seconds
due to the longer computation time and resulting trajectory.

The results over 212 test environments are summarized
in Figure 3. With only simple straight line initialization,
CHOMP is unable to find a collision free trajectory in 162/212
environments, with a resulting average execution time of 33.4s.
While a single regressor (N = 1) can reduce the number of
CHOMP failures from 162 to 79 and the average execution
time from 33.4s to 18.2s, when we extend the sequence
length, CONSEQOPT is able to reduce both metrics faster
than a ranking by sorting the output of the first regressor.
This is because for N > 1, CONSEQOPT chooses a primitive
that provides the maximum marginal benefit, which results
in trajectory seeds that have very different features from the
previous slots’ choices. Ranking by the absolute benefit tends
to pick trajectory seeds that are similar to each other, and
thus are more likely to fail when the previous seeds fail. At a
sequence length of 3, CONSEQOPT has only 16 failures and an
average execution time of 8 seconds. A 90% improvement
in success rate and a 75% reduction in execution time.
Note that planning times are generally negligible compared to
execution times for manipulation hence this improvement is
significant. Figure 2b shows the initialization seed found by
CONSEQOPT for the same environment as in Figure 2a. Note
that this seed avoids collision with the obstacle between the
manipulator and the target object enabling CHOMP to produce
a successful trajectory.

B. Mobile Robot Navigation

An effective means of path planning for mobile robots is
to sample a budgeted number of trajectories from a large
library of feasible trajectories and traverse the one which has
the lowest cost of traversal for a small portion and repeat
the process again. The sub-sequence of trajectories is usually
computed offline [10, 8]. Such methods are widely used in
modern, autonomous ground robots including the two highest
placing teams for DARPA Urban Challenge and Grand Chal-
lenge [26, 16, 25, 24], LAGR [11], UPI [1], and Perceptor [13]
programs. We use CONSEQOPT to maximize this function and
generate trajectory sequences taking the current environment
features.

Figures 4a and 4b shows a section of Fort Hood, TX and
the corresponding robot cost-map respectively. We simulated
a robot traversing between various random starting and goal
locations using the maximum-discrepancy trajectory [10] se-
quence as well as sequences generated by CONSEQOPT using
Algorithm 1. A texton library [27] of 25 k-means cluster
centers was computed for the whole overhead map. At run-
time the texton histogram for the image patch around the robot
was used as features. Online linear support vector machines
(SVM) with slack re-scaling [20] were used as the cost-
sensitive classifiers for each slot. We report a 9.6% decrease
over 580 runs using N = 30 trajectories in the cost of traver-
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Fig. 3: Results of CONSEQOPT for manipulation planning in
212 test environments. The top image shows the number of
CHOMP failures for three different methods after each slot
in the sequence. CONSEQOPT not only significantly reduces
the number of CHOMP failures in the first slot, but also
further reduces the failure rate faster than both the other
methods when the sequence length is increased. The same
trend is observed in the bottom image, which shows the
average time to execute the chosen trajectory. The ‘Straight
Seed’ column refers to the straight-line heuristic used by the
original CHOMP implementation

sal as compared to offline precomputed trajectory sequences
which maximize the area between selected trajectories [10].
Our approach is able to choose which trajectories to use at each
step based on the appearance of terrain (woods, brush, roads,
etc.) As seen in Figure 4c at each time-step CONSEQOPT the
trajectories are so selected that most of them fall in the empty
space around obstacles.
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