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Abstract—This paper uses simulations to identify what types
of human influence are afforded by the flocking and swarming
structures that emerge from Couzin’s bio-inspired model [4]. The
goal is to allow a human to influence a decentralized agent col-
lective without resorting to centralized human control. Evidence is
provided that, when nominal agents use switching-based control
to respond to human-guided predators and leaders, the resulting
behavior is responsive to human input but is obtained at the
cost of causing the dynamic structure of the collective to follow a
single flocking structure. Leaders are more effective in influencing
coherent flocks, but predators can be used to divide the flock
into sub-flocks, yielding higher performance on some problems.
Introducing a so-called “stakeholder” leadership style makes it
possible for a human to guide the agents while maintaining
several different types of structures; doing so requires more
than one human-controlled agent. We then demonstrate that it is
possible to produce potentially useful emergent dynamics without
centralized human control, and identify an important type of
emergent dynamics: automatic switches between structure types.

I. INTRODUCTION

Steinberg identified human-robot interaction (HRI) with bio-
inspired robot teams (BIRT) as an important research area for
producing responsive, robust systems for complex surveillance
and reconnaissance problems [18]. This paper emphasizes
that subset of HRI which helps humans manage multiple
remote robots [10, 6]. Similarly, this paper emphasizes that
subset of BIRT work which encodes principles of biological
societies [20] in robots [16] to produce bio-inspired collective
phenomena in the robot teams.

Appropriately combining elements of HRI with BIRT
should yield robot teams that can be efficiently managed by
humans but that retain robust qualities in the presence of
unreliability. Such teams should help break through fan-out
barriers imposed by a conventional methods of supervisory
control, and help open up the possibilities of large-scale
robotic teams being used in surveillance, reconnaissance, fire
suppression, and emergency response.

Many bio-inspired teams exhibit robust spatio-temporal
structures as attractors induced by decentralized control [21].
When adding human influence to bio-inspired teams, it is
imperative that decentralized implementations and distributed
communication be preserved. Most existing approaches to
human interaction with BIRT use centralized modes of in-

fluence such a broadcasting parameter changes to all agents
or implementing design-time consensus algorithms to support
very specific collective behavior. The work presented in this
paper is novel because it allows for decentralized human
influence, which may yield systems that are more robust to
natural variations or communication dropouts than centralized
approaches. Thus, we contribute to a decentralized implemen-
tation that allows (a) the human to interact with only a subset
of agents, (b) all robots to be responsive to human influence
through this subset, and (c) the collective to be robust. In
other words, we want the human to be able to influence which
collective behavior emerges and then shape how that collective
behavior evolves.

This paper does not present a novel robot or user interface
design. Rather, the paper evaluates what types of human
influences are afforded by bio-inspired robot swarms and
flocks. This evaluation uses case studies with low numbers of
humans augmented by so-called “Oz of Wizard” studies that
simulate the worst-case performance of a human [19]. Since
we are measuring what properties of bio-inspired teams afford
human interaction rather than human performance per se, it
is sufficient to use small numbers of real humans plus some
simple simulated human inputs to help identify the impact of
various human influence on the behavior of the collective.

The example tasks used in this paper are abstract and simple,
but they are sufficient to provide insight into how humans
can influence bio-inspired teams. More specifically, the tasks
represent a large set of tasks that require coordinated robot
movement to a desired location while maintaining a robust
collective structure.

II. RELATED LITERATURE

Miller et al. advocate the use of playbook-style interac-
tions between a human and a team of multiple robots [13],
wherein a human calls plays that trigger predictable patterns
of behavior. Simple plays, like grouping and searching, have
been used to manage several large, simulated teams (50-
200 robots) [8]. More complicated plays, like coordinated
rendezvous or formation-following, have been applied to
smaller teams [11], with some work potentially scaling to
large numbers of agents using torus-like behaviors encoded
as cyclic pursuit attractors [17]. One simple play is for a



human to control a leader agent who then influences other
agents through conventional or bio-inspired means [7].

Other recent work explores centralized methods for influ-
encing patterns of collective behavior so that a human can
guide the team [9, 7, 12]. More decentralized approaches
include methods to modify potential fields in response to
directions from a human operator [2] or virtual agent [15].

Shifting from conventional robot teams to swarm-like teams,
Bashyal and Venayagamoorthy [3] presented a “human-swarm
interaction” (HSI) approach that provided a human with a
partial plan and global information, and then allowed the
human to adjust the autonomy of a small subset of swarm
members to influence swarm behavior. The GUARDIANS
project seeks to use swarm robotic technology to support
firefighters [1, 14].

HSI builds on the many formal analyses of bio-inspired and
interacting particle systems. Of particular relevance is work
that analyzes the emergence of collective structures, including
“translating states” and “rotating states” that are very similar
to the flocks and toroids used in Couzin’s and other work [21].
Others have analyzed how various forms of external influence
can shape the way a collective moves through space [15].

III. HOW CAN A HUMAN INFLUENCE?

Consider the following general discrete-time model for
allowing humans to influence BIRT agents:

xit+1 = f i(xit,x
¬i
t ) + gi(xit, u

op
t ). (1)

In the model, xit represents agent i’s state at time t, x¬it
represents the states of every other agent in the collective
except for agent i, f i is the switching controller (defined
below) that encodes how the states of other agents affect
agent i, and gi encodes how the operator input, uop

t , influences
agent i. A switching controller is a nonlinear controller in
which the type of response can change depending on the
relative values of xit and x¬it ; for example, if a predator is
close to an agent, then the agent ignores all other agents and
flees, but if no predator is close then the agent switches to a
controller that causes the agent to try to align to its neighbors.

We assume that gi depends only on the state of the agent,
meaning that agent i does not consider the state of other agents
when it computes the influence from the human. Furthermore,
we assume that local communication between agents is perfect.
Future work should address these simplifying assumptions.

In bio-inspired robot teams, two leadership models have
been studied by others: lead-by-attraction and lead-by-repul-
sion [15]. Lead-by-repulsion is more commonly referred to as
predation where the leader is a predator and agents are prey,
so the leader influences the behavior of the agents by pursuing
them. By contrast, lead-by-attraction is often associated with
the colloquial use of the word leadership, meaning that a leader
is one that gets ahead of a group and the group follows. For
simplicity, we will call lead-by-repulsion models predator-
style and lead-by-attraction models leader-style.

Under the predator and leader styles, the human influences
leader agents via git(x

i
t, u

op
t ), and then these agents influence

other agents via f . In these models, agents are influenced
either by the human or by other agents but not by both. Thus,
agents will either be leader/predator agents or they will be
nominal agents. For leader/predator agents, f = 0 and g 6= 0;
for nominal agents, f 6= 0 and g = 0.

In 2005, Couzin performed an empirical study that explored
how informed individuals can guide the behavior of “animal
groups on the move” [5]. This analysis evaluated only the
influence of informed individuals on what we identify below
as parallel groups. We refer to this type of informed individual
as a stakeholder because the individual is influenced both by
knowledge about the location of a goal and by the behavior of
the group; the individual has a stake in reaching the goal and
in staying with the collective. Unlike Couzin, we evaluate how
stakeholders affect the behavior of more than parallel groups.

A stakeholder tries to sustain influence by remaining in
close proximity to the collective, allowing itself to be influ-
enced by the collective as well as to influence it. As before, for
nominal agents f i 6= 0 and gi = 0. By contrast to the leader-
and predator-style, the stakeholder is influenced both by the
human and by the other agents (both f i 6= 0 and gi 6= 0). We
discuss the precise implementation of the stakeholder model
when we present results for this leadership style.

In the next section, we will show how Couzin’s specific
model fits the general model from this section, but discussing
the general model gives some confidence that the results of
this paper may generalize to other systems. Moreover, the
distinction between switching and non-switching controllers
that are evident from the general model are probably useful
for other implementations that use some or all of the zones
described in the next section.

IV. COUZIN’S MODEL

Couzin’s model is a well-studied bio-inspired model that
defines three circular zones around an agent: repulsion, ori-
entation, and attraction, with radii of Rrep, Rori, and Ratt,
respectively [4]. If there are any other agents in the zone of
repulsion, than those agents induce repulsion forces and any
agents outside of the zone of repulsion are ignored. If there
are no other agents in the zone of repulsion, then any agent
within the zone of attraction and/or the zone of orientation
induces attraction and/or alignment forces. Couzin’s model is
thus a nonlinear controller where agents make zone-dependent
switches between control laws.

In addition to the radii of the three zones, Couzin’s model
has four other critical parameters: noise, blindspot angle (φ),
speed (s), and maximum turning rate (ω). In the interest of
space, we only summarize the model as follows: an agent
computes a desired direction by being repelled from all agents
within the zone of repulsion (or aligned to and attracted to
all agents within the zones or orientation/attraction) and then
moves toward that desired direction by turning no more than
ω radians per second.

We analyze Couzin’s model for three reasons. First, it
exhibits four qualitatively different behaviors, two of which



have been shown to be attractors in other decentralized sys-
tems [21]. The presence of attraction, repulsion, and orien-
tation zones is either typical or is a superset of influences
often found in other decentralized systems. Second, the model
is compatible with many modern robot systems. The model
assumes a constant speed with the only control coming in
the form of changes in direction. This closely mimics the
qualitative dynamics of unmanned aerial vehicles and is also
compatible with four-wheeled robots that must maintain a con-
stant speed. Moreover, sensing and communication between
robots is restricted to a constrained communication distance,
avoiding power, bandwidth and sensing limitations. Third,
Couzin’s model is fully decentralized and behaves robustly
in the presence of noise. This robustness to noise is essential
because the actual dynamics of real robots will naturally have
individual variations and will also naturally have different
dynamics from Couzin’s system.

Simulations in this paper use a sampling rate of ∆t =
0.2 Hz; a noise value sampled uniformly from [−0.2, 0.2]
radians is added to angular velocity each second. Following
Couzin’s example, all spatial units are defined with respect to
Rrep which is set to unity. Speed is defined with respect to
this unit as well, that is, s = 1 means that an agent moves
one repulsion radius per second. In Couzin’s model, forward
speed is constant for all agents.

The blindspot needs further explanation. An agent traveling
in direction θ can only sense agents that are within ±φ radians
from the direction of travel. The blindspot is any area outside
of ±φ radians from the direction of travel. The blindspot opens
the possibility of using visual sensing for real robots, but
clearly does not go far enough toward modeling real robots
by including inevitable things like occlusion.

A. Relating Couzin’s Model to Equation (1)

We now show how Couzin’s model relates to Equation (1).
Couzin’s model is a switching controller with dynamics
generically given by xit+1 = f i(xit,x

¬i
t ). The states are the

position vector, cit and the direction of travel, θit, yielding
xit = [cit, θ

i
i]
T . The position vector evolves over time as

cit+1 = cit + ∆t
[
s cos θit
s sin θit

]
,

where s is the speed of the agent. The direction vector evolves
by first identifying and then tracking the desired direction of
travel, θ̂it+1. The desired direction of travel is obtained using
the switching control law subject to the blindspot constraints
as follows: an agent is repelled by all agents within the radius
of repulsion; if no agents are within the radius of repulsion,
then the agent is attracted to all agents within the radius of
attraction and tries to align with all agents within the radius
of alignment. Tracking is then performed using

θit+1 =
{
θ̂it+1 if |θit − θ̂it+1| > ω∆t
sign(θit − θ̂it+1)(θit − ω∆t) otherwise

.

Naturally, this equation assumes appropriate modulo arith-
metic in angle space. Importantly, the time delayed coupling

of position and angle means that the dynamics for the angle
at time t + 1 depend both on the angle at time t and the
angle at time t− 1. This makes it feasible to believe that the
reason that Couzin’s model exhibits both a parallel group and a
torus phase is because these phases are attractors for a double
integrator dynamics model with attractors characterized by the
necessary (but not sufficient) conditions (θ̇ = 0, θ̈ = 0) and
(θ̇ = α, θ̈ = 0) for some constant α, respectively.

B. The Collective Structures from Couzin’s Model

Figure 1 illustrates the four phases identified by Couzin;
the figures were generated using the parameters shown in
Table I. The figures illustrate agents as circles with a line
emanating from them in their direction of travel. Each subfig-
ure in Figure 1 is a snapshot at one time instant. The swarm

(a) Swarm (b) Torus

(c) Dynamic Parallel (d) Highly Parallel

Fig. 1. Snapshots of various phases from Couzin’s model: (a) Swarm.
(b) Torus. (c) Dynamic parallel group. (d) Highly parallel group.

phase is a highly dynamic collective structure that tends to
stay stationary and exhibits short bursts of agent alignment
interspersed with apparently random milling about the swarms
center. The toroid phase has agents that circle in the same
direction around a relatively stationary “hole” in the middle
of the structure. The dynamic and highly parallel structures
both exhibit collective movement in a unified direction, with
the highly parallel structure exhibiting greater alignment and
greater group velocity.

The title of this paper uses the terms “swarms” and “flocks”
as colloquial terms that represent these four types of collec-
tive structures. These colloquial terms indicate that collective
structure exhibits a high degree of spatio-temporal correlation
between agents, in contrast to hive and colony-like behaviors
where agents may work collectively but over an apparently
decoherent spatio-temporal horizon.



Phase Rori ∆Ratt s ω (◦/s) φ (◦)
Swarm 1 10 3 100 150
Torus 3 12 5 100 150

Dynamic Par. 7 10 3 100 150
Highly Par. 11 15 5 70 120

TABLE I
PARAMETER VALUES USED TO IDENTIFY COUZIN’S PHASES FOR 50

AGENTS. Ratt = Rori + ∆Ratt .

Couzin used group polarization and group angular momen-
tum as a useful way to understand and detect the collective
phases. Toroids spin and stay in place, so they have high
angular momentum and low polarization; individual parallel
groups tend to align and travel in a straight line together, so
they have low angular momentum and high polarization.

V. SWITCHING CONTROLLERS

Couzin’s model requires agents to switch controllers de-
pending on whether there are other agents within Rrep, Rori,
or Ratt. In this section, we add another controller to which
the nominal agents switch depending on whether they are
near a predator or leader. We included the phrase “switching
controllers” in the title of this section to emphasize that agents
change their behavior whenever they are near a leader (within
Rlead) or predator (within Rpred). In the next two sections,
we explore an alternative approach.

The experiments presented in this section only consider
how parallel groups with parameters (Rrep, Rori, Ratt, φ) =
(1, 14, 14, 45◦) can be augmented with the new switching
controller to respond to leaders and predators. This restriction
is natural because the switching behaviors in the presence of
a leader or a predator cause swarms and toroids to act as if
they were parallel phases. Simply put, adding a new switching
controller and human influence causes all phases to act like
parallel phases, at least while human input is present.

The human influences the collective using either a leader
or a predator. As described above, adding human influence to
Couzin’s model sets gi = 0 for nominal agents and f i = 0 for
leaders/predators. The state of nominal agents is augmented
to include the type of agent (nominal or leader/predator), and
the switching control law for nominal agents is augmented as
described in the following sections.

Using a predator or leader allows a human to have central-
ized1 locus of human influence, namely the predator or leader,
while allowing collective behavior to emerge in a decentralized
fashion as a leader influences a handful of nominal agents,
those nominal agents affect a handful of others, and so on.

A. Predator Management

Predator-style influence is created from the original model
by causing agents (illustrated as fish) to be repelled by a
predator if within Rpred = 30. The predator moves slightly
faster than the fish and can turn much more sharply.

1We assume that the human can see all agents. This limits results because,
in practice, a human may only know the locations of a small subset of agents.

If a predator nears a nominal agent then that nominal agent
is repelled by the predator. When the radius of attraction is
greater than the predator’s radius, the fish tend to stay close
together even when the predator starts to “chase” them. This is
illustrated in Figure 2 which shows a predator (shark) steering
a group of fish.

Fig. 2. Using a predator to steer a dynamic parallel group.

B. Leader Management

The leader model is similar to the predator-based model
above, but the fish are now attracted to the leader producing
a tendency for fish to follow the leader. We set Rlead = 30,
meaning that the predator-based and leader-based experiments
use identical parameters, with the only difference being that
predators repel and leaders attract nominal agents.

C. Case Study: Leaders vs. Predators

Differences between predator and leader styles were studied
in a scenario with 100 agents (fish) placed in a 120 × 120
area. Quantities of food, represented graphically as barrels in
the simulation, are placed around the map to represent the
information to be gathered. The “food” is depleted at 1 unit
per second per fish whenever a fish is within

√
10 units, that

is, the initial quantity of food is measured in fish-seconds. For
example, if N fish are within range of food for t seconds, then
N×t food units are depleted. In the simulations, Rrep < Rpred

and Rrep < Rlead meaning that agents follow the leader or are
repelled by the predator unless the agents are about to collide
with each other. The fish were not aware of the food unless
they were in proximity to the food, but the human could see
all food sources; thus, fish could consume food if nearby, but
could not autonomously find food without human influence.

We performed case studies using both a leader and a
predator that were (a) controlled by a single human and
(b) controlled by a simulated human that used a worst-case
zig-zag path in an “Oz of Wizard” style experiment. Using
a convenience sample of six student volunteers, we obtained
informed consent and instructed the participants to guide the
fish in such a way that the food was consumed as quickly as
possible. In the first phase of the experiment, participants were
more effective using the predator than the leader because they
used the predator to divide the 100 fish into different groups
and distribute them around the environment. Leader-style
influence didn’t allow this divide and conquer approach so
performance was lower. In the second phase of the experiment,
participants were instructed to maintain a cohesive group.



For each nominal agent, we can determine which other
nominal agents are within one of the radii of attraction2. We
can then define A as the histogram of the resulting interagent
topology over 120 time steps.

The zig-zag path simulates a type of worst-case human
behavior wherein the leader/predator ignores the fish and
instead shifts direction left and right while maintaining a
constant average bearing. This is designed to minimize how
long a human sustains influence over any particular subset
of agents because the faster leader/predator shifts from one
neighborhood of fish to another with each zig. There is a
significant discrepancy in the A histograms when agents use
autonomous zig-zag control in phase 2. Recall that the zig-
zag controller is a type of worst case operator input, because
the leader/predator moves in a zig-zag pattern that disrupts
the nominal topology as much as possible. Results, shown in

(a) Leader (b) Predator

Fig. 3. A using the zig-zag controller for (a) leader model and (b) predator
model. The values on the axes are not particularly important since the
amplitude is a function of the simulation duration, but it is important to note
that the same scale is used for both plots.

Figure 3, suggest that leader-based influence maintains cohe-
sion better than predator-based influence when the operator
behaves in a somewhat worst-case manner.

Under human influence in phase 2, A was approximately
uniform and approximately 120 units tall for both leader-based
and predator-based control. This suggests that humans are
clever enough to guide agents into a cohesive parallel group
phase; the histograms for both leader-based and predator-based
influence are very similar to the one shown in Figure 3(a).

To better understand this effect, we measured how long
the leader and predator sustained influence over other agents
for the case when a human controlled the leader/predator
in phase 2 of the experiment. Results for 15 agents are
(m = 47.9, s = 70.6) and (m = 42.2, s = 36) for leader and
predator, respectively, where the sample mean values are units
of food consumed during a fixed-time experiment. Results for
100 agents are (m = 53.8, s = 53.1) and (m = 53.7, s = 67),
respectively. No participant was able to keep the 100 agents
together using the predator, which accounts for the higher
performance (inadvertent divide and conquer). Participants
were able to keep 15 agents together with resulting higher

2We constructed the connectivity matrix assuming that an agent was
connected to any other within attraction or repulsion range regardless of
whether either agent was actually ignoring the other because of the presence
of the leader/predator.

performance for leaders. All participants were more confident
using leaders than using predators.

For each agent, we created a time series of the number
of new agents the leader interacted with plus the number
of agents the leader no longer interacted with at each time
index. We then computed the power spectral densities for
these time series and averaged these together across the six
participants; see Figure 4 which shows only results for 100
agents (results for 15 agents are similar). Simply put, predators
cause agents to scramble (as evidenced by more frequent
switching), making it more difficult to sustain influence even
when the human is trying to keep the group together. Results
from the zig-zag do not add any insight so they are omitted.

(a) Leader (b) Predator

Fig. 4. Typical power spectral densities for human influence styles.

D. Summary

Results from this section indicate that for parallel group
phases, collective structure can be maintained by either leader-
or predator-style interaction but the human must be clever to
maintain the structure. Simply put, switching controllers afford
leader-based human influence when all agents must be guided
to the same point, but when it is useful to divide agents then
switching controllers afford predator-based influence.

VI. NON-SWITCHING CONTROLLERS

Switching controllers tend to preclude anything but parallel
group structures. In this section, we evaluate what forms of
human influence are afforded by non-switching controllers. We
consider two types of non-switching controllers: one based on
leadership and one that implements a stakeholder.

Under the leadership style, leader agents respond to human
input and ignore nominal agents (f i 6= 0, gi = 0); nominal
agents ignore the human and add the leaders’ influences to
the influence from every other agent (f i = 0, gi 6= 0). Under
the stakeholder style, nominal agents behave in the same way
ignoring the human and adding stakeholders’ influences to the
influence of every other agent (f i = 0, gi 6= 0); stakeholder
agents are influenced both by the human and the the nominal
agents (fi 6= 0, gi 6= 0). This is very similar to Couzin’s use
of informed individuals that were drawn to a goal but were
also governed by other inter-agent dynamics [5].

We implement the stakeholder model by determining both
the desired direction using Couzin’s equations as well as the
direction to a fixed food source placed by a human (a type
of waypoint). Couzin’s model produces a desired direction
θ̂i(t + ∆t) computed from f i(xit,x

i
t). This is then added to



θ̂food
i (t + ∆t), which is the influence caused by the human

telling the stakeholder to be attracted to a point of interest
through gi(xit, u

op
t ); in this case, uop

t is the location of the
food source. Adding f to g yields θ̃i(t + ∆t) = θ̂i(t +
∆t)+0.8θ̂food

i (t+∆t) where the 0.8 weighting is subjectively
chosen to encourage the stakeholder to stay near the group
more than going to the goal.

We conducted an experiment designed to evaluate if and
when a stakeholder could influence the different collective
phases of Couzin’s model, and to compare a stakeholder’s
influence to that of a leader. To do this, we used the parameters
given in Table I. We then use zero or more “Oz of Wizard”-
style stakeholders and zero or more leaders of various speeds
to see how the different combinations influenced the position
of the group.

A. No Leaders

As a point of reference, it is useful to show the final
positions of the centroids of each collective phase after 45 sec-
onds in the absence of any type of leader. This is shown in
Figure 5. The legend indicates which symbols correspond to

Fig. 5. Distribution of centroids for various phases with no leaders. The
mean is approximately (0, 0) and σ = (43.05, 43.31).

which phase. Ideal agent speed for the various phases differs,
so results are shown for agents traveling at speed s = 3 for
swarms and dynamic parallel groups and s = 5 for toroids
and highly parallel groups. The inner circle represents the
maximum distance that an agent could travel at speed s = 3
over the 45s simulation duration, and the outer circle is the
maximum distance that a torus could travel when agents travel
at speed s = 5. The radius of the outer circle is π

4 s, which
can be shown to be the maximum distance that a torus can
travel when agents travel at speed s.

It is useful to give a short description of the collective
movement patterns of each phase in the absence of any type
of leader of stakeholder.
• Swarms tend to stay closely coupled together and rarely

move far from the origin.
• Toroids also tend to stay closely coupled together and

rarely move far from the origin. Occasionally, a torus
will take some time before it forms, causing it to locate
far from the origin.

• Dynamic parallel groups quickly cohere and then start
traveling in a somewhat direct line in some random di-
rection. The blue triangles clustered in a circle around the
origin suggest that these groups all travel approximately
the same straight line distance from the origin.

• Highly parallel groups quickly cohere, but rarely travel
in a straight line from the origin, causing a distribution
that is within the “maximum distance” circle.

B. Leaders and Stakeholders

Fifty agents were placed in the world and given parameters
that caused them to form one of the four phases. Agents
were initially distributed randomly around the origin with
random initial directions. One or more agents in the group
were selected to be leaders or stakeholders and then given
information about a stationary food source placed at location
(30, 30) in the world. Leader agents go directly toward the
food, but stakeholder agents try to reach the food while
maintaining their role in the group. Qualitatively, a stakeholder
tends to occupy a location in a collective structure that is
nearest the food. For example, the stakeholder joins the torus
(when the group is in the torus phase) but tends to spend most
of its time on the side of the torus nearest to the food. Similar
behavior is observed for the swarm and parallel phases.

For the purposes of discussion, we will call leaders and
stakeholders by the generic term “manager.” The speed of the
manager is determined by taking the speed of the nominal
agents from Table I and multiplying by the speed scaling
factors from the second line of Table II. For example, the
speed scaling factor of 0 means that the leaders/stakeholders
are stationary, and the speed scaling factor of 1 means that
the leaders/stakeholders are traveling at the same speed as the
other agents. The first row in Table II indicates the number
of agents who are informed of the food source, ranging from
2% to 50% of the total agents.

Number of Leaders/StakeHolders {1, 2, 3, 5, 10, 15, 25}
Speed scaling factors { 1

5
, 1
3
, 1
2
, 1, 2}

TABLE II
PARAMETERS USED TO CREATE THE SCATTERPLOTS.

The centroids for the different groups are computed as a
sum of the locations of each agent, including the locations of
the leaders and stakeholders. Since the stakeholders are part
of the collective, they contribute to the ultimate location of
the centroid and should be used in computing the centroid
of the collective at the end of the 40 second simulation. The
leaders are not technically part of the collective since they
ignore other agents, but we include their final location in the
computation of the centroid so as to make sure that there is
no unfair advantage given to the stakeholders in comparing
scatterplots of stakeholders and leaders.

For both manager styles, one and two managers had only a
modest impact on the ultimate distribution of the phase, but as
the percentage of managers grows their influence also grows.
Figure 6 shows how the error decreases much more rapidly for



stakeholders than leaders, and also that the apparent plateau
of error is smaller for stakeholders than leaders.

Fig. 6. Error as a function of the percentage of number of managers. Error
is Euclidean distance between the final centroid position and the food source.

Once the number of leaders is five or more, constituting at
least 10% of the number of agents in the collective, we start
to see a difference in influence for stakeholders over leaders,
even given the fact that centroids for leaders should be biased
more toward the food location since all leaders end up at that
location.

A sample of results is given in Figure 7 which illustrates
the final distribution of collective centroids when there are
ten managers. The scatterplots are results for all speed scaling
factors. Compared to leaders, stakeholders yield (a) centroid
locations that are closer to the food source and (b) smaller
standard deviations of centroids over all the trials. To empha-
size the differences in the means, two solid lines intersect at
the location of the food sources and two dashed lines intersect
at the location of the mean of the centroids. These results
extend Couzin’s results [5] by showing that (a) large numbers
of informed individuals have more influence over a group
than small numbers, (b) informed individuals can influence
more than just dynamic parallel groups and (c) torus and
flock attractors can be guided, causing toruses to translate and
influencing flocks to travel in a desired direction.

We conclude that non-switching controllers afford
stakeholder-style influence, at least when it is important for
the agents to maintain their collective structures. Moreover,
regardless of the management style, multiple manager agents
are required to produce satisfactory influence.

C. Emergent Influence Dynamics: Structure Switching

In the previous section, the radius of attraction was low
enough that the collective structures sometimes fragmented,
leaving groups of agents that were not within each others radii
of influence. In this section, we explore what happens when
we guarantee that agents stay coherent by making the radius
of attraction infinite and by eliminating the blind spot. This
allows us to see what happens when the influence of leaders
is sufficiently high to affect the behavior of all agents to some
extent. Interestingly, potentially useful group behaviors emerge
under these conditions.

Let s` = 1 denote the speed of the leader and consider what
happens when the speed of the nominal agents is faster than
the leader. Set the parameters of Couzin’s model to Rrep = 1,

(a) Leader

(b) Stakeholder

Fig. 7. 20% of the agents try to influence the collective: (a) ten leaders
(m = 20.56, 20.79), σ = (33.03, 33.21)); (b) ten stakeholders (m =
(28.77, 30.59), σ = (23.16, 24.37)). The solid lines denote the location
of the food, and the dashed lines the location of the mean of all types.

and Rori = 3 so that a toroid structure emerges. Consider a
group of N = 80 agents, and consider groups of 30 and 50
leaders. In this set of simulations, leaders are added to the
nominal group so, for example, when a group of N = 80
has 30 leaders there are a total of 110 agents. The “Oz of
Wizard” leaders travel due east at constant speed, but travel
more slowly than the centroid of the torus. Note that leaders
are excluded from any calculations of centroid and moment.

When agent speeds are moderately higher than the speed
of the leaders (s = 10 and s = 5), the torus tends to follow
the leaders but had difficulty keeping up with it (this is true
for ω ∈ {40, 70, 100}◦/sec). When the torus got behind the
leaders, it would break from the torus formation, temporarily
form a dynamic parallel group, catch up with the leader, and
then resume the torus.

Fig. 8. When the distance of the group gets large, the group changes from
a torus to a parallel group.



Figure 8 illustrates this emergent switching behavior, where
the switching occurs at the level of the collective structure
rather than at the individual. We choose to illustrate this
switching using group angular momentum, since angular mo-
mentum is very high for a torus and very low for a parallel
group. Although the individual agents are not programmed
to switch behaviors when the leaders get too far away, the
collective structure of the agents automatically changes when
the leaders get too far away. The figure illustrates this in a
series of changes in group angular momentum that correspond
to large distances from the centroid of the toroid and the
locations of the leaders.

This natural emergence of switches in collective structure
could be very useful for the design of systems that enable
a human to influence and manage a large team of robots.
Simply put, emergent switches between collective structures
could afford a human the flexibility to naturally manage col-
lective phases without resorting to explicit centralized control.
Moreover, this switching likely indicates that it should be
possible for a human to change which attractor (torus or
dynamic parallel group) a particular group exhibits without
changing internal agent parameters; since the attractors tend to
be robust to external disturbance, switching between attractors
means that the human’s influence can persist until a sufficient
disturbance causes the agents to leave the attractor.

VII. CONCLUSIONS

Many bio-inspired models, such as Couzin’s, can produce
a variety of collective structures, but much prior work on
influencing these models require centralized forms of human
influence. We have used small case studies and “Oz of
Wizard”-style experiments to explore how a human can influ-
ence these collective structures using decentralized methods.
Augmenting the switching controllers with a new switch that
responds to the presence of a human-controlled predator or
leader allowed a human to guide the collective, but only for
one type of collective structure. Moreover, the leader style
afforded more sustainable influence over the collective and was
compatible with leading the collective to a desired location,
and the predator-style afforded divide-and-conquer approaches
to problem solving.

Non-switching controllers can be used to allow a human to
influence a broader set of collective structures, but more than
one human-influenced manager is needed. Stakeholder-style
management in which the manager both sought to influence
and to be influenced afforded more human control over the
collective phases than a management style that did not allow
the leader to be influenced by the group. Importantly, the
use of decentralized leaders can be used to induce emergent
phenomena that may afford use by humans. These emergent
phenomena include the ability to switch from one structure
to another and back without changing the parameters of the
agents. Future work should explore how decentralized human
influence can enable a team of distributed humans to manage
a bio-inspired collective.
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