
Failure anticipation in pursuit-evasion
Cyril Robin∗† and Simon Lacroix∗†

∗CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
†Univ de Toulouse, LAAS, F-31400 Toulouse, France

cyril.robin@laas.fr, simon.lacroix@laas.fr

Abstract—This paper presents a new approach for the pursuit
of targets by a team of aerial and ground robots under realistic
conditions. Mobile target pursuit is often a sub-task of more
general scenarios, that call for environment exploration or
monitoring activities. Since most of the time a single robot
is sufficient to ensure the pursuit of a target, our approach
aims at minimizing the team resources devoted to the pursuit:
while ensuring the pursuit, a single pursuer evaluates its own
potential failures on the basis of the situation defined by the target
evolution and the environment structure. It thus assesses its need
for team support. When support is necessary to keep the target
in view, one or more additional robots are involved, according
to a task allocation scheme. We provide mathematical bounds
of the complexity of the approach, that ensure that the system
has real-time performance. Simulations in a variety of realistic
situations illustrate the efficiency of the proposed solution.

I. INTRODUCTION – CONTEXT

Numerous mobile robotics applications are related to “tar-
gets”, be the target adversaries to detect and chase, flocks of
animals to monitor, other robots to follow or assist... Detecting,
localizing or tracking targets raises a large variety of problems,
to which the research community has devoted a lot of work.
Figure 1 summarizes the primary problems encountered in
target related applications. One may first distinguish two
different missions: detecting one or more targets, and tracking
them.

The first mission aims to control an area, and ends with the
detection or the capture of the targets inside this area, using
several agents, robots or fixed sensors. The historical problem
is known as the art gallery problem [16] which considers fixed
sensors. More recent variations are the patrolling problem [14]
and the surveillance problem which consider either mobile
sensors only or a combination of mobile and fixed sensors.
Besides, most problems known as pursuit-evasion or search
problems are actually “capture” problems, where the aim
is to surround a target, avoiding both the contamination of
previously cleared areas and the evasion of the targets. It
is assumed that the number of robots is sufficient for such
purpose. Chung et al. [5] propose a good survey of existing
mathematical and robotics oriented work in this area.

Discovering or detecting a target is one thing, but in real
applications this is often only a part of the whole scenario,
either because the robots cannot neutralize the targets or
because it is not desired or expected. Once the targets are
designated, the robots often have to track them. This is the
second kind of mission, which starts upon target detection.
One may then want to localize the targets [10] or to monitor

them. Localization may use different sensors and vantage
points [19] or some targets specificities like group coherence
[17], while monitoring is achieved through a direct view to
the targets. With several targets, the problem often comes to
trade the targets between the observers, depending on their
relative positions [7, 8]. When there is only one target, a single
robot may perform the tracking task alone – which we call
“following”, but it often referred to as “pursuit-evasion”. This
latest problem often assumes that a single robot is enough to
perform the target monitoring task.
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Fig. 1. Overview of the target management problems.

For all these problems, whatever the application context and
the target type considered, multi-robot teams naturally extend
the capacity of a single robot to manage the targets. Heteroge-
neous team provides even more solutions and opportunities to
perform a mission, e.g. by multiplying the vantage points, as in
cooperating aerial and ground teams. Also, while a single kind
of robots can perform well on specific cases, a heterogeneous
team can achieve multi-objective missions, some robots being
more adapted to target tracking, others being better fitted to
target detection for instance.

We hereby consider a multi-objective scenario where an
heterogeneous team of robots is in charge of controlling a
predefined known area. They are not numerous enough to stat-
ically cover the entire area (this is not an art gallery problem),
and several targets can be present in the environment. The
robots are initially engaged in an exploration phase, according
to a pre-planned strategy. Once a mobile target is discovered,
the team must ensure that the target remains visible, while



pursuing the environment exploration. The scenario naturally
imposes the satisfaction of real-time constraints.

The paper focuses on the target pursuit phase, under the
realistic constraints raised by this multi-objective scenario.
The only hypothesis on the target is that it is not harmful for
the robots: besides this it may either be adversarial, evasive,
or move according to any other strategy. The success of the
tracking task is defined according to some visibility criteria (in
terms of distance and continuity, from a 100% target visibility
constraint to a more relaxed one).

As the team performs both exploration and one or more
tracking tasks, we want to minimize the resources required by
the management of one target: the objective is to satisfy visi-
bility constraints on the target, while minimizing the number
of required robots for this purpose. As a single pursuer is most
of the time sufficient to perform the tracking task, this is the
favored tracking configuration. However a single pursuer can
sometimes fail, in which case it is asks for support by other
robots. The two main issues raised here and tackled in this
paper are (i) how to predict the single pursuer failures and (ii)
how to anticipate and prevent them with support robots.

The next section reviews the main results of the literature
on target following, formalizes the problem, and presents our
approach and the used models. Section III is the heart of the
paper: it depicts how the pursuer can assess future tracking
failures while the target is being tracked. Results in various
realistic situation are presented and analyzed. Section IV
exploits these potential tracking failures to define cooperative
support tasks, using a task allocation scheme, and a discussion
concludes the paper.

II. THE PURSUIT PROBLEM

Much work on the target following problem can be found
in the literature. Eaton and Zadeh [18] first exposed the
search for an optimal strategy as an optimization problem
in discrete probabilistic systems, working with huge search
space size. More recently, contributions by Hutchinson et
al. [13, 3, 11, 2] thoroughly analyze the problem and some
of its variations: the following problem is fully decidable,
but its complexity hinders the definition of optimal solutions
under real time constraints. Besides, some single robot local
following strategies however exhibit great results in both
simulations and actual experiments (e.g. [12, 1]). Note that
these approaches exploit poor environment models, usually
2D binary free/obstacle models in which the obstacle areas
coincide with visibility masks.

To minimize the resources allocated to the target pursuit,
our approach is to mainly rely on one robot (the pursuer) to
perform the pursuit task: the state of the art shows that this
should be sufficient most of the time. But due to its capacities,
the target capacities and the environment configuration, the
purser may fail to ensure the visibility constraint, be its strate-
gy optimal or not. The pursuer therefore constantly evaluates
the potential upcoming failures and their associated risk, and
asks for support from others robots only when required. For
instance “the target is rather far and about to enter a maze”

or “the target is about to cross an area the pursuer can not
cross” are situations that do call for support from other robots,
whereas the situation “the target is moving behind a small
building located in a wide open area” does not if temporary
occlusions are allowed (figure 2).

(a) Pursuit with AAV

!

(b) Risks evaluation

(c) Ask for support (d) Pursuit with AGV

Fig. 2. Illustration of our approach. In (a) the helicopter is the pursuer. In
(b), the target is about to enter a building in which the helicopter can not
proceed: the pursuer asks for support (c), and the ground robot becomes the
pursuer (d).

A. Problem statement

According to an economy of means principle, we want to
minimize the number of robots requisitioned for the tracking
task.

Let R the set of robots. The problem is formally defined as
follows:

∀τ,minimize
∑
r∈R

a(r, τ) (1)

where

a(r, τ) =

 1 if the robot r is active at time τ
for tracking or support in pursuit

0 else
(2)

while satisfying the visibility criteria :∫ τ

τ−Tmax

h({r, a(r) = 1}, target, θ)dθ ≤ Tmax (3)

with

h(S, target, θ) =


1 if target is hidden

from the set of robots S
at time θ

0 else

(4)

More specifically, the target is hidden if none of the active
robots sees it (i.e. it is occluded by the environment or beyond
the sensor maximal range). Tmax is a criteria specified by the
operator, which allows relaxing the visibility conditions: the
target may be out of sight, but no longer than Tmax seconds
( Tmax can also be set to 0).



B. Realistic Models

To be able to deal with a whole variety of realistic environ-
ments, different types of target and heterogeneous robots, we
use environment models that explicit traversability properties
for both the ground robots and the target and on which
visibility constraints can be assessed.

A layered model of the environment allows to recover
inter-visibility and traversability information (namely, a 2.5D
elevation map and a symbolic layer that expresses the terrain
type, e.g. roads, grass, obstacles, buildings, rivers...). Motion
models are associated to each vehicle (robots and targets),
they define their movement capacities in terms of attainable
speeds.1 The robot sensors are modeled as omnidirectional
cameras, to which a maximal range of detection is associated.

By convolving the vehicle motion models with the terrain
type layer, we end up with a multi-layered map for traversabil-
ity, used for target motion prediction and robot planning. A
priori target visibility information are also computed for each
robot (e.g. an AAV will never be able to view a target in a
building), and the 2.5D elevation map is exploited to assess
visibilities (see figure 3). All these layers are represented by
Cartesian grids, and are exploited online to compute the mo-
tion and sensing possibilities using the available information
on the current state (such as target speed and position). Each
robot embeds the models of its motion and sensing capacities,
and the various target motion models.

III. ASSESSING THE NEED FOR TEAM SUPPORT

Our approach relies on the fact that the robot which tracks
the target, called the pursuer, is able to predict tracking
failures, that is loss of target visibility for a duration longer
than Tmax. For this purpose, we evaluate all the possible
pursuer / target situations over a temporal horizon h to isolate
the tracking failures that can occur between the current time
τ and the time τ + h. We hereby depict how this can be
achieved in real-time – the predicted failures generate support
task requests, whose processing is depicted in section IV.

A. Failure evaluation

As failures mainly depend on the environment and on the
relative positions of the target and the pursuer, there is no
real general shortcut for their assessment, and so one has to
compute all the possible future states over the time horizon h.
A future state is a failure state if constraint (3) is not satisfied,
which for the pursuer is equivalent to:

∀θ, θ ∈ [τ ; τ + Tmax], h({pursuer}, target, θ) = 1 (5)

i.e. if the target is hidden from the pursuer sensors for Tmax
seconds or more.

To compute all the possible states, we exploit the discrete
structure of the traversability models, and define a tree using

1 We assume that once detected, a target is identified – hence its capacities
are known to the pursuer

(a) Orthoimage (b) Elevation map

(c) Traversability map for AGV (d) Visibility map for AGV

Fig. 3. Environment models used. (a) Satellite view of the area (orthoimage);
(b) elevation model (derived from an airborne lidar survey); (c) 2.5D multi-
channel traversability map: different colors correspond to different attainable
speeds, along a green/red fast/slow scale; (d) 2.5D multi-channel visibility
map.

the pursuer and target motion models2. At every time step,
the tree grows with a branching factor of mt ∗ mr, where
mt and mr are respectively the number of possible motions
for the target and the robot. With a temporal horizon h, the
complexity of the tree building is O((mt ∗mr)

h).
Usual values for the parameters are mt = mr = 9 (9-

connexity in 2D-grid), and h = 20 at least. h must be large
enough so that the other robots of the team can address the
requests for support, without a priori constraining them too
much to remain in the vicinity of the pursuer: indeed the
smallest h is, the quicker and closer the supporting robots
must be. Using a value of h of 20 and considering 9-connexity,
the tree complexity is O(81h), i.e. near 1038, which is by no
means tractable.

B. Introducing the tracking strategy

Besides the combinatorial problem of the failures eval-
uation, the pursuer tracking strategy has to be efficient to
minimize the needs for team support. Efficient stands here for
“keep the target in sight”, while being predictable and fast to
compute. Indeed we seek to evaluate all the possible outcomes
with unpredictable target motions, hence numerous strategies

2For the sake of simplicity, we consider throughout this section that the
purser and the target evolve at the same speeds. This does not cause any
loss of genericity, but only slightly influences the overall complexity – see
appendix.



must be evaluated within the time horizon h to cope with this
unpredictability.

As computing an optimal tracking strategy raises a com-
binatorial problem, we use a local greedy strategy. One may
want to use a pre-computed optimal strategy but this would
not be robust to differences between the a priori environment
model and the actual environment. Real-time state-of-the-art
local strategies are efficient, but still require much computing
resources and often make strong assumption about the target
motions. Our local strategy applies the two following rules:
(1) if the target is visible, try to get closer to the target
while maintaining visibility; (2) else, find the shortest path
to the closest position which satisfies the target visibility
criteria. While clearly sub-optimal, this simple local strategy
shows acceptable tracking performances, is extremely quickly
computed, and can be applied to either an AAV or an AGV.

This local strategy also brings an important advantage:
the branching factor of the tree is directly reduced to mt,
the number of available positions for the target, because the
strategy associates a single robot position for a given target
position. The tree complexity becomes O(mh

t ) (see figure 4),
that is near 1019 with mt = 9 and h = 20. Note that mt could
be reduced by making assumptions on the target motions, but
this is not desired, and this does not drastically reduces the
problem the exponential complexity.

Target

Robot

Target

Local Strategy

Fig. 4. Reducing the complexity: the impact of a local strategy

C. From a tree to a cyclic pursuit graph

The previous complexity gain is not enough to allow the
satisfaction of real-time constraints: the complexity needs to
be further reduced, while still ensuring the detection of all the
potential failures. Various structure transformations of the tree
allow to find and exploit states redundancies, that are brought
by the fact that the tree is built upon a grid structure.

First, note that several positions pt of the target may be
handled by only one robot position pr. The former state-nodes
(τ, pt, pr) become new nodes of type (τ, {pt}, pr), with τ the
considered time. This lets the tree structure unchanged (figure
5).

Second, for a same stage in the tree, there are several
similar nodes which only differ by their parents. However the
evaluation of a node only depends on spatial (and sometimes
temporal) considerations, not on the past positions of the target
or the robot. So similar nodes can be gathered, even if they
have different parents. The tree structure can be changed into
a graph structure, but the information carried by the nodes are
the same (figure 6).
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Fig. 5. Reducing the complexity: merging spatial redundancies
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Fig. 6. Reducing the complexity: using a graph structure to exploit spatial
redundancies

For a 9-connexity grid, these two structure transformations
drastically reduce the complexity, down to O(h5) in the
worst case (see appendix for details). Temporal redundan-
cies allow to further reduce the complexity, by introducing
temporal loops in the graph: some situations are indeed
encountered several times, e.g. when none of the vehicle
move, or after one loop around a building (figure 7). The
nodes are embedded the following data: (τ̂ , {pt}, pr) where
τ̂ = minτ{τ/(τ, {pt}, pr)}, i.e. τ̂ is the first temporal occur-
rence of the considered spatial state. The resulting structure is
referred to as the pursuit graph.

Last, we introduce an iterative algorithm to build the graph,
which allows to only consider the real new nodes at each next
temporal step, which are referred to as the front nodes. This
shrinks the complexity down to O(h3), still without any loss
of information nor precision in the prediction (see appendix
for details).
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Fig. 7. Reducing the complexity: introducing temporal loops

The resulting complexity is polynomial of low degree,
which allows to assess the potential failures, and hence the
needs for team support in real time. Each potential failure
generates a task, which has the form (τ, p) where τ is the date



of the failure and p its position. In other words the support
task is defined as watch the position p at date τ . The result is
a small set of tasks, which is empty most of the time (when
the target is fully under the control of the pursuer), and which
constitute the seeds for multirobot cooperation.

D. Results

The bounded tractable complexity and the fact that the elab-
orated solution guarantees the assessment of all the potential
failures are satisfying, but in practice, how does the pursuer
perform and are the complexity bounds low enough for real-
time applications?

Three examples are hereby presented to appreciate the
performance of the solution: one takes place in a Manhattan-
like environment, one is a “river-crossing” situation, and one
exploits models from an actual experimental field.

(a) Robot traversability

Phase IIPhase I

Hidden Fail

(b) Target traversability

(c) Robot visibility

Fig. 8. Pursuit in a Manhattan environment: (a) traversability for the pursuer
(AAV); (b) traversability for the target (ground target); (c) Visibility map:
elevations of the buildings, and presence of a covered area in the bottom
center of the map (in black). The vehicle trajectories are displayed (dark grey
= target; light grey = pursuer), and the yellowish areas indicates places where
the target is temporary hidden. The target escapes in the covered area (which
is a definite failure, denoted as fail). In phase I the target is under control,
while in phase II the target is too close to the covered area (danger).

1) Manhattan situation: Figure 8 shows the traversability
and visibility maps, and the trajectories of both the target
and the robot pursuer. The situation is a typical pursuit in a
Manhattan-like town center, with a ground target and an AAV
pursuer. There are buildings and, in the middle, a covered area
where the AAV can not enter in nor see through (it can only fly
above). The buildings do not constraint the pursuer movement,
but its visibility. The motions of both the target and pursuer
are holonomic.

Figure 9-a displays the number of dangers (in red) and
temporal horizon (in green) over the time. Dangers are states
that do require a request for support from other robots of the
team. One can distinguish two phases: in phase I the target
is under control (no predicted failures), even if the target
is sometimes temporary hidden (in yellow). The temporal
horizon increases at the beginning (easy environment) and
then lowers as more buildings obstruct the visibility. This is
the result of the real-time constraints and the adjustment of the

III

(a) Manhattan environment

I II III

(b) River-crossing situation

I II III

(c) Realistic Environment

Fig. 9. Evolution of the number of dangers (in red) and of the temporal
horizon (in green) as a function of time steps for the three considered cases.
The time laps during which the target is temporary hidden are highlighted in
yellow.

computation time required by the building of the pursuit graph
(see paragraph III-D4). In phase II, the target approaches the
covered area, which generates several danger states – and in
the absence of support by an other robot, the target eventually
enters the covered area.

The figures highlight that the greedy strategy, although not
optimal, behaves quite well. Furthermore, the system generates
temporally and spatially gathered tasks (remind each danger
generates one task). This is really important because on the
one hand it will avoid “goings and comings” from the support
robots, and on the other hand the support robots will probably
be able to handle several tasks at the same time, which will
help to minimize the number of robots required for the pursuit
mission (see section IV).

2) River-crossing situation: Figure 10 shows a situation
where the target and the robot do not have the same traversabil-
ity map, with an advantage for the former – imagine for
example that the target is waterproof whereas the robot is not.
While the target crosses the river, the robot has to take the
bridge instead of directly following the target (phase I), which
will probably leads to a temporary occlusion (phase II), until
the robot reaches the target again (phase III).
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Fig. 10. Pursuit in a river-crossing situation: (a) traversability for the pursuer
(AAV), the river is the at the bottom of the terrain, a bridge in on the left;
(b) traversability for the target (ground target); (c) visibility map. Difficulties
arise when the target crosses the river, as the pursuer cannot follow it.

Figure 9-b displays the number of dangers and the temporal
horizon evolution over the pursuit. One can again distinguish
three phases: at the beginning there are risks that the target
escapes (by breaking some visibility constraints); then as the
target trajectory is not optimal the risks disappear, even if the
target hides behind the building; at the end the pursuer catches
up the target again. As the surrounding environment forms
a dead-end, which is easy to handle, the temporal horizon
reaches high values (over sixty time steps).

Phase I

Phase II
Phase III

Hidden

Hidden

(a) Robot and target traversability (b) Robot visibility

Fig. 11. Pursuit in a realistic environment: (a) the pursuer (AGV) and ground
target traversability; (b) the pursuer visibility. Difficulties arise in cluttered
areas (phases I and III).

3) Experimental field situation: The third example is a re-
alistic environment for ground target and pursuer, the vehicles
evolve in both cluttered and rather clear areas (figure 11).

As figure 9-c shows, dangers exist near and within the
cluttered areas, whereas in less difficult areas the greedy
strategy performs well enough to prevent risks of failure
(no need for support). In cluttered areas, the greedy strategy
performs quite well too. It cannot prevent the target to escape
with an optimal strategy, but is able to follow quite easily a
not so adversarial target.

4) Real-Time performances: The previous sections states
that considering a 9-connexity grid, the upper bound for
the complexity in the graph construction is O(h3) in the
worst case. It actually appears that the complexity is rather
near quadratic (figure 12). This allows real-time computation,
considering a value of 1 or 2 seconds for the time steps
(figure 13), while keeping a reasonably acceptable temporal

horizon (above 15). As a matter of fact, the temporal horizon
is constantly adjusted to fit the computation time with the real-
time constraint – that is, expand at least the graph of one time
step in no longer than one time step.
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Fig. 12. Typical evolution of the computation time with the temporal horizon.
Polynomial regression gives a near quadratic complexity (here : F (h) ≈
2 ∗h2.2 with a very confident value for the coefficient of determination R2).

Note on figure 13 that at few times the computation time
exceeds the 1sec cycle criteria. This is actually because the
system currently computes the states not one by one, but one
horizon step at a time. As the prediction of the computational
cost is not very precise, sometimes the system asks for one
more horizon step and exceeds the time constraint. This
is always balanced by the next computation cycles, which
are very low. This would be solved by a slight adjustment
of the implementation to compute the states one by one,
improving both the respect of the time constraints and the
overall performance (since more states should be computed).

Fig. 13. Computation cycle at each time step for the tree previous examples.
The dashed line represents the “one second” limit.

IV. SUPPLYING TEAM SUPPORT

While a pursuer performs the following task, it predicts all
its potential failures until a temporal horizon τ + h, τ being
the current time. These predictions straightforwardly generate
a set a support tasks, defined as “watch place p at time θ”, with
p a cell of the spatial grid and τ ≤ θ ≤ τ+h. By construction,
the pursuer which issues these tasks cannot handle them. But
it manages them: it allocates them to other robots according to
their availability, capacities, priorities and the global objective
of minimizing the number of required robots. Note that com-
munication issues are currently not considered – they mainly



lead to situational awareness inconsistencies between robots,
and may also lead the pursuer to have no (or not enough)
support.

The set of support tasks is updated at each time step.
Depending on the target motions, new tasks may occur and
previous ones may become deprecated. The pursuer broadcasts
the updates to the surrounding robots, which in turn update
their current tasks list and evaluate if they could be of any
help for the non-allocated tasks: this is a classical multiple
task assignment problem.

Task allocation problems have given rise to a large amount
of work, they raise combinatorial issues and finding optimal
solution is still very difficult for non-trivial sized problem.
Nevertheless many solutions have been proposed, for example
using stochastic methods [15]. Auction-based approaches have
been largely studied (see Dias et al. [6] for a survey) and have
been shown to efficiently produce acceptable solutions. Choi
et al. [4] presents decentralized algorithms which lead to good
solution with some guaranties for optimum. The authors also
highlight the combinatorial issue raised by the construction of
the bundles of tasks (how to choose which subset of tasks will
an agent handle) and the conflicts that result from the iterative
construction of those bundles.

We have chosen to implement an auction process, as such
approaches have shown good results and can handle incon-
sistencies within the situational awareness of agents. But in
our case, costs are quite different from usual: as we aim to
minimize the number of required robots, performing one or
several support tasks has the same cost for a given robot,
whereas reward is linear with the number of handled tasks.
The auction process is one-turn, with multiple bids allowed:
after the update of the task lists, each available robot computes
several bundles of tasks it can handle together, and propose
them to the auctioneer (the pursuer robot). Then the auctioneer
combines those bundles and allocates subset of tasks (either
a bundle or sub-part of a bundle) to the robots, trying to
minimize the number of robots involved.

The support robots compute the bundles of tasks they can
handle according to their capacities, the other tasks they
already have, and their goals and priorities. As they cannot
be exhaustive (n tasks lead to

∑n
p=1

(
n
p

)
= 2n − 1 possible

bundles), they only compute the biggest bundles in an iterative
way. We also want each task to be part of at least one bundle
(if the robot is indeed able to perform the task). The results is
an overlapping partition of the task set. Reminding the results
of part III, the generated support tasks are spatially and tem-
porally gathered, which helps to keep a small number of task
bundles (usual values are 0 to 3). Tasks are also independent
from each other (except for the temporal constraints) and thus
can be handled separately.

Once these bundles are computed, the auctioneer gathers
them and allocate tasks. It optimally combines the different
bundles according to the following criteria :

(i) all the support task must be handled if possible
(ii) the number of required robots must be minimized.

This directly comes from the objective function (1). Finding

the optimal combination of bundles could be expensive: con-
sidering Nt the average number of bundle for each robot and
Nr the number of bidding robots, there are O((Nt + 1)

Nr )
possible combinations3. Typical maximum values are Nt = 3
and Nr = 4, which leads to 44 = 256 possible combinations.
This is still easy and quick to compute for the auctioneer
using Boolean representation and bit-to-bit computation. Fi-
nally, combinations are ranked with the number of handled
tasks (max) and the number of support robot involved (min),
including the previously required robots for non-deprecated
former tasks. Then the auctioneer sends the support robots the
support tasks they have been allocated.

Note that the heavy computational load of the auction
phase is deported on the bundles construction, sparing the
auctioneer which is also the pursuer. It can thus spend more
time computing the pursuit graph and expending the temporal
horizon, which is the heart of the system. For the same reason
we also introduce a temporal shift (of one time-step) between
the time tasks are issued and the time associated bids are
computed. Doing so allows support robots to compute bundles
while the pursuer computes the next pursuit graph, avoiding
the robots to await for the others. This shift is negligible
compared to the expected horizon size (1� h).

Work is still in progress for this part, but first results are
promising and show that a minimum number of robots are
involved, while still respecting our real-time constraints.

V. DISCUSSION

We have presented a new approach for realistic target
tracking problems. Keeping in mind that a team of robots often
have several distinct objectives, we provide a new pursuer-
centered cooperation which minimizes the number of required
robots at any time, thus satisfying an economy of means
principle. The approach is based on a single pursuer which
calls for team support only when required, by the evaluation
of future failures it can not handle alone. We exploit realistic
multi-layered 3D models, which allow to consider different
capacities (such as being waterproof or not) for both targets
and robots. Kolling et al. [9] recently introduced 2.5D visibility
in pursuit-evasion, but to the best of our knowledge it is the
first time realistic multi-layered models as ours are used for
such problems.

As our local following strategy performs quite well, only
one robot is required most of the time, but team provide
support when needed to prevent the target loss. The resulting
system shows promising results in realistic simulations, and
integration within a team composed of one AAV and two
UGVs is under way. We intend to extend the models by
considering communication constraints and failures: this is not
a trivial issue, as communication constraints threaten the whole
cooperation. Possible solutions are to extend the anticipation
from the pursuer, and to integrate communication rendez-vous
for the support robots.

3“+1” is for the empty bundle : each robot can either handle a bundle
of tasks, or none. This is important to consider as we want to minimize the
number of required robots.



Problems may also occur if the pursuer does not behave as
planned (i.e. according to its pursuing strategy). However, in
such situations the system is not totally failing, as re-planning
and re-computing the risks on-the-go remain tractable. Be-
sides, adjusting the spatial and temporal resolutions will lead
to better anticipation and to more flexibility in the execution
of the plans.

We also plan to integrate finer probabilistic motion models
and thus to handle potential failures according to both their
probability and their temporal proximity.

Finally, our longer term perspective is to merge our target
tracking system within an overall surveillance scheme, aiming
at having a whole team of robots performing under realistic
conditions several tasks and achieving different goals in par-
allel.
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APPENDIX

We develop hereby the mathematical bounds presented
section III. The mathematical proof stands for an environment
free of any obstacle and in 9-connexity (using a 2D grid).
Unexpectedly this is an upper bound for the complexity,
as obstacles, viewlength and lower-connexity lead to motion
restriction, and thus reduce the number of possible spatial
states.

Under such hypotheses, we have, for each stage s in
the graph obtained after spatial redundancies treatment, at
most ns nodes with ns ≤ |Acc (target, s)| ∗ |Acc (robot, s)|
where Acc (i, s) = Ai,s is the set of all accessible posi-
tions for i in time s. The total size N of the graph is
under

∑h
s=1 |At,s| ∗ |Ar,s|. Besides, in 9-connexity we have

Ai,s ≤ 1 +
∑s
σ=1 8σ = (2s + 1)2, therefore we have

N ≤
∑h
s=1(2s + 1)4 = O(h5). Here we consider that the

pursuer and the target have the same velocity: this does not
restrict the generality of our proof, as different velocity will
only change the resulting complexity (|At,s| 6= |Ar,s|), not the
reasoning.

Adding temporal loops and iterative construction for the
graph, one only develop the new nodes at each stage, referred
to as the front nodes. Under the same hypothesis, we now have
a number of front nodes Nf :

Nf ≤ (At,h −At,h−1) ∗Ar,h−1 + (Ar,h −Ar,h−1) ∗At,h−1
≤ (8h ∗O(h2) + 8h ∗O(h2))

Nf ≤ O(h3)
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