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Abstract—Biological motor control is capable of learning
complex movements containing contact transitions and unknown
force requirements while adapting the impedance of the system.
In this work, we seek to achieve robotic mimicry of this
compliance, employing stiffness only when it is necessary for
task completion. We use path integral reinforcement learning
which has been successfully applied on torque-driven systems to
learn episodic tasks without using explicit models. Applying this
method to tendon-driven systems is challenging because of the
increase in dimensionality, the intrinsic nonlinearities of such
systems, and the increased effect of external dynamics on the
lighter tendon-driven end effectors.

We demonstrate the simultaneous learning of feedback gains
and desired tendon trajectories in a dynamically complex sliding-
switch task with a tendon-driven robotic hand. The learned
controls look noisy but nonetheless result in smooth and expert
task performance. We show discovery of dynamic strategies not
explored in a demonstration, and that the learned strategy is
useful for understanding difficult-to-model plant characteristics.

I. INTRODUCTION

Though significant progress has been made toward control-
ling tendon-driven robotic systems, learning control of such
systems remains a challenging task. Most of the difficulties
arise from the existence of strong nonlinearities imposed
by the tendon-hood structure, model uncertainty, and task
complexity due to the need for simultaneous movement and
force control.

Additionally, fine object manipulation using tendon-driven
systems may require sudden changes in gains and/or tendon
excursions. Smooth controls can be used when the mass of a
manipulated object is small compared to that of the manipu-
lator, but as the dynamics of the external object become sig-
nificant, dextrous contact with the object requires more abrupt
changes in control. Tendon-driven systems allow lightweight
manipulators which accentuate this problem. Previous work
has learned manipulation tasks by learning parameters of
smooth trajectory basis functions [19] [3], but the imposed
control smoothness limits the dynamic interaction that can
occur with the manipulated object.

Optimal control provides a principled approach to determin-
ing control policies that are compliant and dynamic [2], and
can also handle contact dynamics [27], but requires identified
models of the robot and task. Instead, we use state-of-the-art
model-free reinforcement learning to directly learn policies for
movement control without having to explicitly model uncertain
robot and task dynamics. The challenges that come with
manipulators using tendon actuation constitute an important
and previously unmet challenge for model-free reinforcement
learning.

Fig. 1: The ACT hand is a tendon-driven robot designed to
mimic the tendons and joints of the human hand.

In this work we use Policy Improvement with Path Integrals
(Section IV) [24, 22] for learning complex manipulation tasks
with a tendon-driven biomimetic robotic hand (Section II).
PI2 concentrates sampling of the state space around a rough
initial demonstration or previously learned strategy, making
it effective in high dimensional problems. We introduce a
structure by which PI2 can learn a discontinuous variable
impedance control policy that enables tasks requiring contact,
motion, and force control during object interaction. With
respect to previous results on variable stiffness control with
reinforcement learning [3], here we are not using any policy
parameterizations that are based on function approximation.
Instead, we represent trajectories and control gains as markov
diffusion processes. This choice expands the dimensionality of
the controllable space and allows for better exploration of the
nonlinear dynamics of the ACT hand and the task.

The learned strategies can yield insight into subtleties of
the plant, showing how biomimetic robotics can not only
use inspiration from nature to achieve robotic goals, but can
provide insights into the systems which they mimic (Section
VII-D).

Videos of the experiments can be found at
http://tendondriven.pbworks.com/.

II. TENDON-DRIVEN BIOMIMETIC HAND

The robotic hand mimics the interaction among muscle
excursions and joint movements produced by the bone and
tendon geometries of the human hand, as in [6]. The index
finger has the full 4 degree-of-freedom joint mobility and
is controlled by six motor-driven tendons acting through a

http://tendondriven.pbworks.com/


crocheted tendon-hood. Two tendons, the FDS and FDP act
as flexors; the EI, RI, and PI act as extensors and ab/aductors;
the LUM is an abductor but switches from extensor to flexor
depending on finger posture. By sharing the redundancies and
nonlinearities of human hands [5], the system constitutes a
challenging testbed for model identification, control, and task
learning, while also providing a unique perspective for the
study of biomechanics and human motor control.

The experiments presented here use only the index finger,
with a silicon rubber skin on the palmar surface of the distal
segment. The brushless DC motors that actuate the 6 tendons
are torque-controlled at 200 Hz and measure tendon displace-
ments at a resolution 2.30 µm; the tendon lengths alone are
used for feedback control as there is no direct measurement of
joint kinematics. Successfully performing manipulation tasks
thus requires a control policy that can handle the nonlinear
dynamics and high dimensionality of the robot as well as the
dynamics of the task itself.

III. SLIDING SWITCH TASK

The kinematically simple task of sliding a switch is difficult
to perform expertly with a tendon-driven finger; contact and
task dynamics constitute a large part of the force required from
the controlling tendons. An important research topic in neuro-
muscular control is how humans achieve such hybrid control,
transitioning from motion to force control, as in tapping a
finger on a rigid surface [29]. Even for isometric tasks it is
nontrivial to decode the recorded activations of muscles and
understand how these act through tendons to the end effector
[28]. In this paper we examine the task of contacting a sliding
switch and pushing it down (see Figure 3). The switch in
our apparatus is coupled to a belt and motor which allow the
imposition of synthetic dynamics. The position of the switch
x is measured with a linear potentiometer. Importantly, the
finger loses contact with the switch at xreach before reaching
the bottom of the possible range, denoted xmin.

We begin with a single demonstration of the desired task
in which a human holds the finger and moves it through a
motion of pushing the switch down. The tendon excursions
produced by this externally-powered example grossly resemble
those required for the robot to complete the task, but simply
replaying them using a general-purpose PID controller would
not result in successful task completion for two main reasons.
Firstly, during demonstration the tendons are not loaded, which
changes the configuration of the tendon network in comparison
to when it is actively moving. Secondly, and more importantly,
the tendon trajectories encountered during a demonstration do
not impart any information about the necessary forces required
to accommodate the dynamics of the task. For instance, at the
beginning of the task, the finger must transition from moving
through air freely, to contacting and pushing the switch. A
feedback controller following a reference trajectory has no way
of anticipating this contact transition, and therefore will fail
to initially strike the switch with enough force to produce the
desired motion.
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Fig. 2: Playback of the demonstration trajectories using a
constant-gain proportional controller fails to achieve task-
performing tendon trajectories, and does not exhibit compli-
ance for task-irrelevant time periods. Acronyms are anatomical
tendon names, eg Flexor Digitorum Profundis (FDP).
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Fig. 3: Hybrid Switch Task. During the third experiment,
spring dynamics are added to the natural switch dynamics,
in the form of a virtual spring force F . Xmin is the physical
extent of the sliding switch, but the finger loses contact before
reaching it, at a point Xreach which is dependent on finger
movement.

Without any prior system identification of the robot or
sliding switch, PI2 can directly learn a control policy that
minimizes a cost associated with the position of the switch,
feedback gain, and tendon travel.

IV. POLICY IMPROVEMENT WITH PATH INTEGRALS: PI2

In this section we review the framework of reinforcement
learning based on path integrals. The stochastic optimal control
is a constrained optimization problem formulated as follows:

V (x) = min
u(x,t)

J(x,u) = min
u

∫ tN

t

L(x,u, t)dt (1)



subject to the nonlinear stochastic dynamics:

dx = α(x)dt+ C(x)udt+ B(x)δω (2)

with x ∈ <n×1 denoting the state of the system, u ∈ <p×1 the
control vector and δω ∈ <p×1 brownian noise. The function
α(x) ∈ <n×1 is the drift, which can be a nonlinear function of
the state x. The matrix C(x) ∈ <n×p is the control transition
matrix and B(x) ∈ <n×p is the diffusion matrix.

TABLE I: Policy Improvements with path integrals PI2.

• Given:
– An immediate state dependent cost function q(xt)
– The control weight R ∝ Σ−1

• Repeat until convergence of the trajectory cost:
– Create K roll-outs of the system from the same start state x0

using stochastic parameters u + δus at every time step
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(
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Under the optimal controls u∗ the cost function is equal
to the value function V (x). L(x,u,t), the immediate cost, is
expressed as:

L(x,u, t) = q(x, t) +
1

2
uTRu (3)

The running cost L(x,u, t) has two terms: the first q0(xt, t)
is an arbitrary state-dependent cost, and the second is the
control cost with weight R > 0. The optimal controls u∗(x, t)
as a function of the cost to go: V (x, t) as follows.

u∗(x, t) = −R−1C(x)T∇xV (x, t) (4)

The role of optimal control is to drive the system towards
parts of the state space with small values of V (x, t). The
value function V (x, t) satisfies the Hamilton Jacobi Bellman
equation partial differential equation [7, 20]. Recent work on
path integral work in [24, 11] and logarithmic transformations
of the value function V (x, t) = − 1

λ log Ψ(x, t) are exploited
to transform the HJB into a linear PDEs for which their solu-
tion [8, 13] is represented via forward sampling of diffusions
processes. The outcome is the expression that follows:

V (x, ti) = − 1

λ
log

∫
Ppath e

−(φtN +
∑N−1
j=i

qtj
dt)

λ dxN (5)

where the probability Ppath = P (xN , tN |xi, ti) has the
form of path integral starting from the initial state xi and
ending in state xN under uncontrolled u = 0 stochastic
dynamics in (2). In [24], [12] it has been shown that under the

solution of the value function in (5) the path integral optimal
control takes the form:

uPI(xti)dt = lim
dt→0

∫
P (τ i) δωti (6)

where τ i is a trajectory in state space starting from xti and
ending in xtN , so τ i = (xti , ...,xtN ). The probability P (τ i)
is defined as

P (τ i) =
e−

1
λ S̃(τ i)∫

e−
1
λ S̃(τ i)dτ i

(7)

The term S̃(τ i) is defined as:

S̃(τ i) ∝ φ(xtN ) +

∫ tN

ti

q(xtj )δt (8)

+

∫ tN

ti

wwwwxc(tj + δt)− xc(tj)

δt
−αc(x(tj))

wwww2

Σ−1

tj

δt

Which in discrete time is approximated by:

S(τ i) ∝ φ(xtN ) +

N−1∑
j=i

(
q(xtj )dt+

1

2
δωTtjMδωtj

)
(9)

with M = B(x)T
(
C(x)R−1C(x)T

)−1
B(x). Essentially the

optimal control is an average of variations δω weighted by
their probabilities. This probability is inversely proportional
to the path cost according to (7) and (9). Low-cost paths have
high probability and vice versa. Table I illustrates the path
integral control in iterative form as applied to the ACT Hand.
Alternative iterative formulations based on Girsanov’s theorem
[13] resulting in small differences in biasing terms of the path
cost S̃ are available in [23].

V. PI2 LEARNING VARIABLE TENDON IMPEDANCE

A. Variable Impedance

If interaction forces with the environment were neglible, a
standard approach would be to apply negative feedback control
with as aggressive gains as possible while still maintaining sta-
bilty. High feedback gains, however, are dangerous for robots
interacting with humans and are potentially wasteful when
perturbations are not task-relevant. The idea of impedance
control is to control the dynamic behavior of the manipulator
in addition to commanding a reference state trajectory [10] [3]
[4]. Variable stiffness impedance control specifies a schedule
of gains emphasizing uncertain or unforgiving components of
the task, while allowing compliance elsewhere.

For complex tasks and unknown environmental dynamics,
a suitable target impedance schedule is difficult to specify a
priori. For biological and some biomimetic systems, stiffness
is achieved by coactivation of antagonist muscles, introducing
futher challenge for impedance scheduling due to complex
actuator dynamics [9] [16]. Here we define the basic structure
of our controller, then describe how learning is applied.



Consider motor commands τ calculated via a proportional
controller:

τi = −ki(li − l̂i) (10)

where ki is the proportional gain and l̂i is the desired reference
length for tendon i. By varying k in time according to a
gain schedule, we may achieve variable impedance specific
to each tendon. The reference trajectories may differ from the
demonstration to anticipate task dynamics.

B. Learning Variable Impedance Using PI2

We apply PI2 to learning controls with no time-averaging
of the learned parameter vector. We use a time-varying
impedance controller with a differential equation on the gains
and reference lengths:

dk(t) = (−αk(t) + uk(t)) dt+ σkδuk (11)

dl̂(t) =
(
−αl̂(t) + ul̂(t)

)
dt+ σl̂δul̂ (12)

where uk and ul̂ are the change in gains and reference tra-
jectories. δuk and δul̂ are sampled from a zero-mean Normal
distribution as in the PI2 algorithm, Table I.

The smoothing effect of these differential equations pro-
vides a means for using anything from unsmoothed (α→∞)
to highly smoothed (α = 0) controls. In either case, no time
averaging acts on the level of the learning algorithm [19]. The
experiments presented here use α = 0.9

dt = 180, providing a
very slight smoothing effect to the control outputs. Section
VII presents learned controls which, although quite noisy,
produce smooth tendon trajectories with contact-produced
discontinuities, as illustrated in Figure 5.

The controls vector u = u(t) + δu(t) optimized by the
learning algorithm (see Table I) corresponds to a concatenation
of gain and reference length controls: u =

(
uk(t) ul̂(t)

)T
.

PI2 learns the optimal gain and reference length for each
tendon at each timestep, a considerable number of param-
eters. To combat this high-dimensionality without adversely
effecting the learning, we subsample the injected noise δu to
change each 50 timesteps during a rollout. Such windowing
is especially important for systems like ours whose high-order
dynamics filter out much of the injected noise.

Learning proceeds through iterative revision of the policy
parameters. Each of these revisions we refer to as a trial.
A sample trajectory is queried from the system by sampling
δu, and actually performing a switch-slide using the resulting
u + δu. We refer to one of these exploratory executions of
the task as a rollout. To revise u at the end of a trial, each
sampled control strategy is weighted according to the cost
encountered by the corresponding rollout (Table I). The results
reported here use σk = 50 for sampling gains and σl̂ = .05 for
sampling reference trajectories. The smaller this exploration
variance is, the more similar rollouts are, so the magnitute of σ
should depend on the natural stochasticity of the plant, though
here it is set by hand. Convergence is qualitatively insensitive

to the exact value of σ, and high variance results in low control
cost (Section IV) and therefore increased control authority.
Each trial consists of ten rollouts, and after every third trial
performance is evaluated by executing three exploration-free
rollouts (σ = 0).

The controls learned for each tendon are linked to the others
only through their shared effect on the system reflected in
the rollout costs. In this way, each tendon-specific PI2 can be
considered a parallel agent operating on its own.

VI. COST FUNCTION AND EXPERIMENTS

A. Cost Function

We conduct three experiments using the same setup and
demonstration. For all experiments, the cost-to-go function for
a rollout having duration T may be expressed as :

Ct = qterminal(xT ) +

T∑
t

q(xt) + ut
TRut (13)

Here xt corresponds to the position of the switch at time
t. q(xt) is the cost weighting on the switch state, with
qterminal(xT ) the terminal cost at the end of the rollout. R
is the cost weighting for controls. The experiments presented
here use q(xt) = 20000xt, qterminal(xt) = 300q(xt), mean-
ing the terminal state cost is as costly as 300 time steps.

B. Gain Scheduling: Experiment One

For the first experiment PI2 learns only the gains K. There-
fore the sampling noise σl̂ = 0. This means that the learned
strategy will always kinematically resemble the demonstration,
but will optimize compliant control of the dynamics.

C. Gains and Reference Lengths: Experiment Two

The second experiment is to learn both gains and reference
lengths simultaneously. The learned strategy may take advan-
tage of kinematic poses not experienced in the demonstration.

D. Stabilizing Spring Dynamics: Experiment Three

In the third experiment PI2 learns both gains and reference
lengths, and we also introduce spring behavior to the switch
dynamics, requiring a qualitatively different learned optimal
strategy. The intrinsic switch dynamics are retained, but the
motor coupled to the switch also resists the finger with a
stiffness force fspring = k(xmax − x). This force springs
the switch back up toward its home position if the finger
pushes too far and loses contact. For the first two experiments,
the optimal strategy could include pushing past the point of
losing contact with the switch, but for the third the finger must
proceed quickly to the edge of losing contact but go no further.

VII. RESULTS

The task is successfully learned for each experiment. Figure
6 depicts the sum cost-to-go results as learning proceeds for
100 trials (revisions of control) for two separate executions of
each experiment. Every third trial, three unexploratory rollouts
are performed, and their means and standard deviation are
denoted by the solid line and shaded width in the figure. Cost
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Fig. 4: Final posture attained for early, middle, and late learning (rows) for each experiment (columns). In pane (f) we observe
the switch being thrown past the last point of finger contact to its physical limit. Pane (h) depicts a strategy which has pushed
the finger too far, and the switch has bounced upward due to the added spring force (experiment three, Section V). In pane (i)
we see the very tip of the finger just preventing the switch from returning.
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Fig. 5: Results after learning (trial 100) for all three experiments. The first row depicts the torque commands learned for all
tendons. Dynamic requirements of the tasks are apparent in the learned strategies. For instance, Experiment 2 appears to require
two bursts of torque to achieve vigourous flexion, but Experiment 3 requires another in order to arrest finger motion before
losing contact. The middle row depicts the resulting tendon trajectories, and the third row depicts the position of the switch.



Fig. 6: Learning as trials progress. In experiment one (left),
only the gains are learned and the reference lengths recorded
during the demonstration are used. In experiment two (middle),
both the gains and reference lengths of the tendons are learned.
In experiment three (right), additional spring dynamics resist
switch displacement from initial position. Solid line indicates
mean cost for three unexploratory rollouts every third trial;
the shaded area is standard deviation. Each of the two curves
corresponds to a repetition of the experiment beginning with
the same initial control strategy.

magnitude is different for each experiment due to different
control exploration (Equation 13), so sum cost-to-go for the
first noise-free rollout is normalized for comparison.

Figure 5 shows the commanded torques, resulting tendon
trajectories, and switch position trajectories for the final
learned control strategies for each experiment.

A. Gain Scheduling: Experiment One Results

In Experiment 1, the optimized gain schedule produces
a movement which smoothly pushes the switch to near the
position attained in the demonstration. As can be seen in
Figure 5, top left pane, the learned strategy uses the two
primary flexors very similarly. After 100 trials, the total cost
is reduced by about 15% from the initial policy.

B. Gains and Reference Lengths: Experiment Two Results

The strategy found for Experiment 2, learning both the gains
and references, differed between the two executions of the
experiment. Both learned strategies quickly move the switch
down, past the kinematic pose observed in the demonstration.
During the second execution, however, PI2 learned that the
switch could be thrown down, using the inertia of the switch
to carry it past the last point of finger contact, xreach. The
result of this highly dynamic behavior can be seen in Figure
4, pane (f). The switch is thrown to its physical limit xmin in
a single ballistic motion, as evidenced in the switch position
trajectory pictured in Figure 5, middle-bottom.

C. Stabilizing Spring Dynamics: Experiment Three Results

Experiment 3 presents the most dynamically challenging
task. In this experiment, the motor resisting switch displace-
ment implicitly imposes a task constraint: the finger must
move quickly to push the switch as before, but now it must
stop quickily to prevent overshoot. As in the other experi-
ments, Figure 5, bottom-right presents the switch trajectory
for the learned strategy. The learned strategy makes a large
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Fig. 7: Above: Switch position learned for Experiment 3, in
which additional spring dynamics resist switch displacement
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initial switch movement followed by a burst of flexion and
then co-contraction of flexors and extensors. In order to better
illustrate the effect of the additional spring dynamics, Figure
7 presents a suitably stopping (top) and failed stop (bottom)
switch trajectory. Recall that the control policy incorporates
feedback of tendon lengths only; measurement of the switch
position is used in evaluating a rollout but not within the
control loop.



D. The Role of the Lumbrical Tendon

Experiment 3 yields insight into the role of the Lumbrical
tendon. In that experiment the finger must move quickly but
then stabilize the switch at the extent of the finger’s reach,
corresponding to switch position xreach in Figure 3. This
requires more elaborate use of the extensor tendons than in the
first two experiments, in which extensors primarily stabilize
the abduction-adduction motion of the finger.

Examining the strategy learned by the controller for this
tendon serves as a novel way of illuminating the complex
role it plays. The tendon extensor mechanism matches the
human tendon network in important ways [30], including
finger lumbricals. Lumbricals are smaller tendons which attach
to other tendons, both flexors and extensors, instead of bone.
This produces a moment arm relationship to joint torques
which is complex and highly pose-dependent. Roughly, it is a
flexor of the metacarpophalangeal (MCP) joint, the ”knuckle“,
while being an extensor of the two distal joints. With the hand
outstretched, thumb up, the lumbrical would be used to push
the fingertip as far as possible from the palm, straightening
the finger while flexing the knucle. This is exactly the motion
necessary for the finger to contact the switch for the longest
amount of time during downstroke.

By examining the control strategy learned for the lumbrical
tendon in concert with the more straightforward tendons, we
observe its protean nature. As illustrated in Figure 8, it acts as
a flexor at the beginning of the motion, with a clear peak of
torque being delivered in concert with the FDP/FDS flexors
at the moment of greatest switch movement. However, after
motion has ceased we observe cocontraction of all tendons, but
the pattern of activation of Lumbrical more closely matches
the torque profile of the extensors.

VIII. RELATED WORK AND DISCUSSION

A. Optimal Control for Tendon-Driven Systems

Optimal control provides a principled approach for robots to
expertly perform tasks without relying on pre-programmed or
stereotyped motions. Recent successes in applying algorithms
like iLQG [17, 15, 18] suggest that difficult control tasks, like
dexterous manipulation, may be better achieved by formulating
models and cost functions than by laboriously hand-tuning ref-
erence trajectories or feedback gains directly. Notably, optimal
control can solve for time-varying torque and stiffness profiles
to achieve dynamic tasks compliantly[2].

In contrast however with [17, 15, 2] we do not use state
space dynamical models. PI2 is a derivative-free method in
the sense that it does not require linearization of dynamics
and quadratic approximations of cost functions on state space
trajectories. More importantly the optimal control in our ap-
proach is an average over sampled controls based on how well
they performed on the real system and thus no differentiation
of the value functions is performed. With respect to previous
work on variable stiffness control with reinforcement learning
[4, 3], our approach does not use function approximators to
represent gains or desired trajectories. This lack of policy

parameterization allows us to learn non-smooth trajectories
and control gains required for tasks that involve contact,
which is particularly important when controlling tendon-
actuated manipulators. Tendon-driven systems are particularly
advantageous in applications like dexterous hands where it
is desirable to have compact and low inertia end effectors
[14]. The associated increase in control dimensionality and
nonlinearity, as well as the relatively greater prominence of
task dynamics make system identification of the task and the
robot less tractable. Model-based control methods for systems
reflecting the biomechanical complexities of hands are very
much an open research topic due mostly to the interaction of
tendons in the network.

This paper shows that by using a model-free reinforcement
learning algorithm like PI2, we can bridge the gap between
optimal control and tendon-driven systems: we simultaneously
enjoy the benefit of choosing cost functions instead of refer-
ence trajectories or gains while also circumventing the need for
an accurate model of the robot and environment. Future work
will investigate the generalizability of learned policies and the
possibility of using this algorithm also as a data collection
mechanism for system identification.

The absence of models for the underlying hand and task
dynamics as well as the lack of policy parameterization does
not come without cost. As demonstrated in this paper, our
learning approach convergences to an optimal solution for all
experiments, nevertheless this may require the execution of
many rollouts on the real system. This is not a surprising
observation since it is related to the exploitation-exploration
trade-off in reinforcement learning literature [21] in correspon-
dence to how much information of the underlying dynamics
is initially provided to the learning algorithm. Clearly, once
a model is known, its use could speed up learning. Future
work will explore the use of Stochastic Differential Dynamic
Programming (SDDP) [25] or iLQG on contact-less models
and integrate the resulting control policies with PI2 to learn
tasks with contact and motion to force control transitions.

B. Discovery of System Phenomena

The second execution of Experiment 2 discovered that
the switch could be thrown beyond xreach, and the learned
behavior for Experiment 3 involved cocontraction of antago-
nists, as seen in biological tendon actuation, without explicit
instruction. By interacting directly with the environment, the
robotic system learned to perform dynamic behavior never en-
countered in the demonstration, exploiting subtle phenomena
without system ID. The advantages of this kind of embodied
learning have been explored in a variety of experiments, for
example learning circuit configurations [26] or robot control
and morphology [1]. Manipulators incorporating complex ac-
tuation and eventually sensory capabilities could benefit from
learning from task-relevant experience as opposed to expert
knowledge.

Similarly, analysis of the effects of varying aspects of
complex systems like tendon networks can be difficult due to
dimensionality, model mismatch, and nonlinear phenomena.



As described in Section VII-D, the learned policy produces
torques which validate the biomimetic anatomical properties of
the tendon hood extensor mechanism. The approach outlined
in these experiments is valid for a variety of complex systems
which might otherwise be difficult to measure or simulate.
By observing that the learned usage the Lumbrical tendon
produces dynamic consequences similar to those known for
humans, we now can more confidently assert the biomimicry
of that aspect of the tendon network.
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