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Abstract—Our goal is to build robots that can robustly
interact with humans using natural language. This problem is
challenging because human language is filled with ambiguity,
and furthermore, due to limitations in sensing, the robot’s
perception of its environment might be much more limited than
that of its human partner. To enable a robot to recover from a
failure to understand a natural language utterance, this paper
describes an information-theoretic strategy for asking targeted
clarifying questions and using information from the answer to
disambiguate the language. To identify good questions, we derive
an estimate of the robot’s uncertainty about the mapping between
specific phrases in the language and aspects of the external
world. This metric enables the robot to ask a targeted question
about the parts of the language for which it is most uncertain.
After receiving an answer, the robot fuses information from the
command, the question, and the answer in a joint probabilistic
graphical model in the G3 framework. When using answers to
questions, we show the robot is able to infer mappings between
parts of the language and concrete object groundings in the
external world with higher accuracy than by using information
from the command alone. Furthermore, we demonstrate that by
effectively selecting which questions to ask, the robot is able to
achieve significant performance gains while asking many fewer
questions than baseline metrics.

I. INTRODUCTION

Our aim is to make robots that can naturally and flexibly

interact with a human partner via natural language. An espe-

cially challenging aspect of natural language communication is

the use of ambiguous referring expressions that do not map to

a unique object in the external world. For instance, Figure 1

shows a robotic forklift in a real-world environment paired

with instructions created by untrained users to manipulate

one of the objects in the scene. These instructions contain

ambiguous phrases such as “the pallet” which could refer

equally well to multiple objects in the environment. Even

if the person gives a command that would be unambiguous

to another person, they might refer to aspects of the world

that are not directly accessible to the robot’s perceptions. For

example, one of the commands in Figure 1 refers to “the

metal crate.” If a robot does not have access to perceptual

features corresponding to the words “metal” or “crate,” it

cannot disambiguate which object is being referenced.

In this paper, we present an approach for enabling robots to

recover from failures like these by asking a clarifying question,

the same strategy that humans use when faced with ambiguous

1The first two authors contributed equally to this paper.

(a)

Move the pallet from the truck.

Remove the pallet from the back of the truck.

Offload the metal crate from the truck.

(b)

Fig. 1: Sample natural language commands collected from

untrained users, commanding the forklift to pick up a pallet

in (a).

language. The robot first identifies the most ambiguous parts

of a command, then asks a targeted question to try to reduce

its uncertainty about which aspects of the external world

correspond to the language. For example, when faced with

a command such as “Pick up the pallet on the truck” in the

situation shown in Figure 1, the robot can infer that because

there is only one truck in the scene, but two pallets, the

phrase “the pallets” is the most ambiguous and ask a question

like, “What do you mean by ‘the pallet’?” Then it can use

information from the answer to disambiguate which object is

being referenced in order to infer better actions in response to

the natural language command.

Previous approaches to robotic question-asking do not

directly map between natural language and perceptually-

grounded aspects of the external world or incorporate addi-

tional information from free-form natural language answers in

order to disambiguate the command. [3, 11, 1]. As a result, the

robot cannot take advantage of its model of the environment

to determine the most ambiguous parts of an arbitrary natural

language command and identify a question to ask.



In order to derive an expression for the robot’s uncertainty

about groundings in the external world, our approach builds on

the Generalized Grounding Graph (G3) framework [18, 17].

The G3 framework defines a probabilistic model that maps

between parts of the language and groundings in the external

world, which can be objects, places, paths, or events. The

model factors according to the linguistic structure of the nat-

ural language input, enabling efficient training from a parallel

corpus of language paired with corresponding groundings.

However, this factorization requires introducing a new corre-

spondence variable which leads to difficulties when estimating

the entropy over grounding variables. In this paper we derive

a metric based on entropy using the G3 framework. The

robot uses this metric to identify the most uncertain random

variables in the model in order to select a question to ask. Once

the robot has asked a question, we show that it can exploit

information from an answer produced by an untrained user by

merging variables in the grounding graph based on linguistic

coreference. By performing inference in the merged model,

the robot infers the best set of groundings corresponding to

the command, the question, and the answer.

We evaluate the system by collecting answers to questions

created by the robot using crowdsourcing. We demonstrate that

the system is able to incorporate information from the answer

in order to more accurately ground concrete noun phrases in

the language to objects in the external world. Furthermore, we

show that our metric for identifying uncertain variables to ask

questions about significantly reduces the number of questions

the robot needs to ask in order to resolve its uncertainty. This

work expands on previous work presented in [14].

II. BACKGROUND

We briefly review grounding graphs, which were intro-

duced by [18], giving special attention to the motivation for

the correspondence variable, Φ. The correspondence variable

makes it possible to efficiently train the model using local

normalization at each factor but complicates the calculation

of entropy described in Section III-A.

In order for a robot to understand natural language, it

must be able to map between words in the language and

corresponding groundings in the external world. The aim is

to find the most probable groundings γ1 . . . γN given the

language Λ and the robot’s model of the environment m:

argmax
γ1...γN

p(γ1 . . . γN |Λ,m) (1)

For brevity, we omit m from future equations. Groundings

are the specific physical concept that is meant by the language

and can be objects (e.g., a truck or a door), places (e.g.,

a particular location in the world), paths (e.g., a trajectory

through the environment), or events (e.g., a sequence of robot

actions).

To learn this distribution, one standard approach is to

factor it based on certain independence assumptions, then

train models for each factor. Natural language has a well-

known compositional, hierarchical argument structure [6], and

a promising approach is to exploit this structure in order to

factor the model. However, if we define a directed model over

these variables, we must assume a possibly arbitrary order to

the conditional γi factors. For example, for a phrase such as

“the tire pallet near the other skid,” we could factorize in either

of the following ways:

p(γtires, γskid|Λ) = p(γskid|γtires,Λ)× p(γtires|Λ) (2)

p(γtires, γskid|Λ) = p(γtires|γskid,Λ)× p(γskid|Λ) (3)

Depending on the order of factorization, we will need different

conditional probability tables that correspond to the meanings

of words in the language. To resolve this issue, another

approach is to use Bayes’ Rule to estimate the p(Λ|γ1 . . . γN ),
but this distribution would require normalizing over all possi-

ble words in the language Λ. Another alternative is to use an

undirected model, but this would require normalizing over all

possible values of all γi variables in the model.

To address these problems, the G3 framework introduces a

correspondence vector Φ to capture the dependency between

γ1 . . . γN and Λ. Each entry in φi ∈ Φ corresponds to whether

linguistic constituent λi ∈ Λ corresponds to grounding γi. We

assume that γ1 . . . γN are independent of Λ unless Φ is known.

Introducing Φ enables factorization according to the structure

of language with local normalization at each factor over a

space of just the two possible values for φi.

1) Inference: In order to use the G3 framework for infer-

ence, we want to infer the groundings γ1 . . . γN that maximize

the distribution

argmax
γ1...γN

p(γ1 . . . γN |Φ,Λ), (4)

which is equivalent to maximizing the joint distribution of all

groundings γ1 . . . γN , Φ and Λ,

argmax
γ1...γN

p(γ1 . . . γN ,Φ,Λ). (5)

We assume that Λ and γ1 . . . γN are independent when Φ
is not known, yielding:

argmax
γ1...γN

p(Φ|Λ, γ1 . . . γN )p(Λ)p(γ1 . . . γN ) (6)

This independence assumption may seem unintuitive, but

it is justified because the correspondence variable Φ breaks

the dependency between Λ and γ1 . . . γN . If we do not

know whether γ1 . . . γN correspond to Λ, we assume that the

language does not tell us anything about the groundings.

Finally, we assume a constant prior on γ1 . . . γN and ignore

p(Λ) since it does not depend on γ1 . . . γN , leading to:

argmax
γ1...γN

p(Φ|Λ, γ1 . . . γN ) (7)

The G3 framework described by [18] trains the model in

a discriminative fashion. However, it is not a conventional

conditional random field in that the correspondence vector

Φ = True is observed, and the conditioning variables γi are
hidden, preventing the use of standard inference techniques.

To compute the maximum value of the objective in Equation 7,

the system performs beam search over γ1 . . . γN , computing



λr
1

“Pick up”

Command

γ1 =

φ1

λf
2

“the pallet.”

φ2

γ2 =

λr
3

“Which one?”

Question

γ3 =

φ3

Answer

λf
5

“The one”

φ5

γ5 =

λr
6

“near”

φ6

λf
7

“the truck.”

γ6 =

φ7

(a) Unmerged grounding graphs for three dialog acts. The noun phrases “the pallet,” “one” and “the one near the truck” refer to the same grounding
in the external world, but initially have separate variables in the grounding graphs.
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(b) The grounding graph after merging γ2, γ3 and γ5 based on linguistic coreference.

Fig. 2: Grounding graphs for a three-turn dialog, before and after merging based on coreference . The robot merges the three

shaded variables.

the probability of each assignment from Equation 7 to find

the maximum probability assignment. Although we are using

p(Φ|Λ, γ1 . . . γN ) as the objective function, Φ is fixed, and

the γ1 . . . γN are unknown. This approach is valid because,

given our independence assumptions, p(Φ|Λ, γ1 . . . γN ) cor-

responds to the joint distribution over all the variables given

in Equation 5.

In order to perform beam search, we factor the model

according to the hierarchical, compositional linguistic structure

of the command:

p(Φ|Λ, γ1 . . . γN ) =
∏

i

p(φi|λi, γi1 . . . γik)

This factorization can be represented graphically; we call

such a graphical model the grounding graph for a natural

language command. We can draw it as a factor graph, but

in this paper we represent it as a directed graphical model

to emphasize the role of the correspondence variable and

independence assumptions in the factorization. The directed

model for the command “Pick up the pallet” appears in

Figure 2. The λ variables correspond to language; the γ
variables correspond to groundings in the external world, and

the φ variables are True if the groundings correspond to the

language, and False otherwise.

2) Training: We learn model parameters from a corpus of

labeled examples. The G3 framework assumes a log-linear

parametrization with feature functions fj and feature weights

µj :

p(Φ|Λ, γ1 . . .γN ) =
∏

i

1

Z
exp(

∑

j

µjfj(φi, λi, γi1 . . . γik))

(8)

Features map between words in the language and correspond-

ing groundings in the external world. For example, features

include object class, whether one grounded object is physically

supported by another grounded object, or whether the robot

is approaching or moving away from a landmark object. The

training set consists of an aligned, parallel corpus of language

paired with positive and negative examples of groundings in

the external world. The alignment annotations consist of a

mapping between each natural language constituent and a

corresponding grounding in the external world. We use the

corpus and alignment annotations described in [18].

III. TECHNICAL APPROACH

When faced with a command, the system extracts grounding

graphs from the natural language input and performs inference

to find the most likely set of values for the grounding variables



Fig. 3: System diagram. Grayed out blocks show pre-existing

components; black parts show the question-asking feedback

system new to this paper.

γ1 . . . γN . Next, it identifies the most uncertain grounding

variable γj and asks a question about that variable, described

in Section III-A. After receiving an answer from a human

partner, the robot merges grounding graphs from the com-

mand, question, and answer into a single graphical model,

described in Section III-B. Finally, it performs inference in the

merged graph to find a new set of groundings that incorporates

information from the answer as well as information from the

original command. Figure 3 shows dataflow in the system.

Grayed-out blocks in the figure show pre-existing components,

not novel to this paper. Black blocks show the question-asking

feedback system that is the contribution of this work.

A. Generating a Question

Our approach to asking questions is to first identify ground-

ing variables whose values are most uncertain, then generate

a question to try to disambiguate the value of that variable.

The system iteratively asks questions about the most uncertain

grounding variable γj until it is sufficiently confident about

having inferred the correct groundings.

One intuitive estimate for the uncertainty of a grounding

variable γj is to look at the probability of the correspondence

variable φk for each factor it participates in:

argmin
γj

∏

k∈factors(γj)

p(φk|γ1 . . . γN ,Λ) (9)

If the system was unable to find a high-probability grounding

for a variable γj , then it could ask a question to collect more

information. We refer to this approach as Metric 1. 1

However, this metric will not perform well if there are

several objects in the external environment that could cor-

respond equally well to the words in the language. As an

example, a vague expression such as “the pallet” would have

high confidence for any pallet that was grounded to it. But if

there were many pallets in the environment, the robot might

be very uncertain about which one was meant.

A more principled approach is to formally derive an ex-

pression for the entropy of the distribution over grounding

1We use confidence instead of Hp(Φ|γ1...γN ,Λ)(Φ), since entropy is low

when p(φk|γ1 . . . γN ,Λ) is either very high or very low probability.

variables, then ask a question about the variable with max-

imum entropy. We begin by defining a family of marginal

distributions for each grounding variable γj conditioned on Φ
and Λ:

p(γj |Φ,Λ) (10)

To find the most uncertain grounding variable γj , we find the

distribution in this family with the highest entropy:

argmax
j

Hp(γj |Φ,Λ)(γj) (11)

The system can collect more information from the human

partner in order to disambiguate the command by asking a

question about the most uncertain variable, For example, if a

command like “bring the pallet on the truck to receiving” were

issued in a context with two trucks and one pallet, the entropy

would be higher for the phrase “the truck”and the system could

ask a question such as “Which truck?” On the other hand, if

there were two pallets and one truck, the entropy would be

higher for the phrase “the pallet” and the system would ask a

question such as “Which pallet?”

We can expand the entropy function as:

Hp(γj |Φ,Λ)(γj) = −
∑

γj

p(γj |Φ,Λ) log p(γj |Φ,Λ) (12)

Unfortunately, p(γj |Φ,Λ) cannot be directly computed in

the G3 framework, because we only have p(Φ|Λ, γ1 . . . γN ),
which the system maximizes with respect to the unknown

grounding variables γ1 . . . γN . Instead, we rewrite it as a

marginalization over the joint:

p(γj |Φ,Λ) =
∑

γ1...γj−1,γj+1...γN

p(γ1 . . . γN |Φ,Λ) (13)

We use Bayes’ rule to rewrite it:

p(γj |Φ,Λ) =
∑

γ1...γj−1,γj+1...γN

p(Φ|γ1 . . . γN ,Λ)p(γ1 . . . γN |Λ)

p(Φ|Λ)

(14)

Next, we assume that γ1 . . . γN are independent of Λ when

we do not know Φ, as we did in Equation 6, yielding:

p(γj |Φ,Λ) =
∑

γ1...γj−1,γj+1...γN

p(Φ|γ1 . . . γN ,Λ)p(γ1 . . . γN )

p(Φ|Λ)

(15)

Finally, we assume a constant prior p(γ1 . . . γN ) = C and

define a constant K = C/p(Φ|Λ):

p(γj |Φ,Λ) = K
∑

γ1...γj−1,γj+1...γN

p(Φ|γ1 . . . γN ,Λ) (16)

We can efficiently approximate this summation based on

the results of the inference process. After running inference,

the system saves all M sets of values that it considered for

grounding variables in the model; we call each sample sm.

Each sample consists of bindings for grounding variable γj



in the grounding graph, and we denote the value of variable

γj in sm as sm[γj ]. When performing inference using beam

search, we set the beam width to be large so that the samples

are diverse enough to enable accurate estimate of entropy. We

approximate 16 with:

p̂(γj = g|Φ,Λ) =
c(γj = g,Φ,Λ)∑
x c(γj = x,Φ,Λ)

(17)

where c is

c(γj = g|Φ,Λ) =

K
∑

{ sm|sm[γj ]=g }

p(Φ|sm[γ1] . . . sm[γN ],Λ)×

p(sm[γ1] . . . sm[γN ]) (18)

We can substitute this equation into Equation 12 to obtain

an estimate for the entropy. We refer to this approximation as

Metric 2.

After identifying a variable to ask about, the robot asks a

question using a template-based algorithm. It finds text asso-

ciated with the grounding variable and generates a question of

the form “What do the words X refer to?” Once a question has

been generated, the system asks it and collects an answer from

the human partner. In general, answers could take many forms.

For example, Figure 5 shows commands, questions generated

using the template-based algorithm, along with corresponding

answers collected from untrained users.

B. Merging Graphs

Once a question has been chosen and an answer obtained,

the robot incorporates information from the answer into its

inference process. It begins by computing separate grounding

graphs for the command, the question and the answer ac-

cording to the parse structure of the language. Next, variables

in separate grounding graphs are merged based on linguistic

coreference. Finally, the system performs inference in the

merged graph to incorporate information from the command,

question, and answer.

Resolving linguistic coreferences involves identifying lin-

guistic constituents that refer to the same entity in the external

world. For example, in the command, “Pick up the tire pallet

and put it on the truck,” the noun phrases “the tire pallet”

and “it” refer to the same physical object in the external

world, or corefer. Coreference resolution is a well-studied

problem in computational linguistics [7]. Although there are

several existing software packages to address this problem,

most are developed for large corpora of newspaper articles

and generalize poorly to language in our corpus. Instead, we

created a coreference system which is trained on language

from our corpus. Following typical approaches to coreference

resolution [16], our system consists of a classifier to predict

coreference between all pairs of noun phrases in the language

combined with a clustering algorithm that enforces transitivity

and finds antecedents for all pronouns. For the pair-wise

classifier we used a log-linear model which uses bag-of-words

features. The model is trained using an annotated corpus

Fig. 4: Precision vs. recall at predicting whether an inferred

grounding is incorrect.

of positive and negative pairs of coreferences. We set the

classification threshold of the model to 0.5 so that it choses

the result with the most probability mass. Once coreferring

variables have been identified, a merging algorithm creates

a single unified grounding graph. The coreference resolution

algorithm identifies pairs of γ variables in the grounding graph

that corefer; the merging algorithm combines all pairs of

coreferring variables. Figure 2 shows a merged graph created

from a command, a question, and an answer.

C. Deciding When to Ask a Question

Section III-A described how to generate a question in

response to a natural language command. However, at a higher

level, the robot needs to decide whether to ask a question or

take an action. For example, if the robot is very confident

about all grounding variables, it would be better to ask no

questions at all. If it is uncertain about just one variable, a

single question might suffice to disambiguate the command.

Or it might ask a question, get an answer that it cannot

understand, then choose to ask an additional question about the

same grounding variable to receive further clarification. Our

approach to this problem is to ask questions until the entropy

of the most uncertain variable is below a certain threshold. To

avoid going into an infinite loop, we prohibit the robot from

asking a question about the same variable more than two times.

IV. RESULTS

To evaluate the system, we use a corpus of 21 manually

created commands given to a simulated robotic forklift. The

commands were designed to be deliberately ambiguous in

order to provide an opportunity for clarifying questions and

answers. In Section IV-A, we assess the performance of the

Metric 1 (Confidence) and Metric 2 (Entropy) at identifying in-

correct grounding variables after inference has been performed

for commands in the dataset. Second, we assess the end-to-end

performance of the question-asking framework at increasing

the number of correctly grounded concrete noun phrases.

A. Predicting Incorrect Examples

To directly assess the performance of the metrics defined

in Section III-A, we measure their performance at identifying



grounding variables in the corpus that are incorrect. Figure 4

shows the effect of this process on the commands from the

corpus as a precision vs. recall curve. Here, a true positive

is an incorrect grounding variable that was predicted to be

incorrect; a false positive is a correct grounding variable that

was predicted to be incorrect. Metric 1 (Confidence) performs

quite poorly, even having positive slope. This is not due to a

bug; instead, there is a group of low-confidence grounding

variables which are in fact correct. For example, for the

command “Lift it from the truck,” the factor for “the truck” has

high confidence, but “from the truck” has lower confidence.

Metric 1 multiplies the two values together, yielding an overall

low estimate for confidence. Metric 2, in contrast, gives this

variable much lower entropy compared to other commands,

since the “from the truck.”

B. Asking Questions

Next, we assess the performance of the system at using

answers to questions to disambiguate ambiguous phrases in

the corpus. To collect a corpus of questions and answers,

we first generated questions for each concrete noun phrase

in the corpus, then collected answers to those questions using

crowdsourcing. For example, for a command like “Take the

pallet and place it on the trailer to the left,” the question-

generation algorithm could ask about “the pallet,” “it,” or “the

trailer to the left.” By asking answers for all concrete noun

phrases in the dataset in advance, we can compare different

question selection strategies offline, without collecting new

data.

To collect an answer to a question, we showed annotators a

natural language command directing the robot to perform an

action in the environment, such as “Pick up the pallet,” paired

with a question such as “What do you mean by ‘the pallet’?”

In addition, annotators saw a video of the simulated robot

performing the action sequence, such as picking up a specific

tire pallet in the environment. We instructed them to provide

an answer to the question in their own words, assuming that

what they saw happening in the video represented the intended

meaning of the command. We collected two answers from

different annotators for each question. Example commands,

questions, and answers from the corpus appear in Table 5.

To measure the performance of the system, we report the

fraction of correctly grounded concrete noun phrases in the

original command, not including the question and answer. A

concrete noun phrase is one which refers to a specific single

object in the external world, such as “the skid of tires.” An

example of a non-concrete noun phrase is “your far left-hand

side.” A noun phrase such as “the skid of tires” is considered

to be correct if the inference maps it to the same tire pallet

that the human user referenced. It is considered to be incorrect

if the inference maps it to some other object, such as a trailer.

We evaluate our system in several different conditions, using

both automatic coreference resolution and oracle coreference

resolution. As baselines, we present the performance using

only information from the commands, without asking any

questions, as well as performance when asking a question

about each concrete noun phrase. The baseline results in

Table I show that the system realizes a large improvement

in performance when using information from commands,

questions, and answers compared to information from the

commands alone.

Next, we assess the performance of the two metrics at

selecting questions to ask. We report performance for three

conditions: selecting just one question to ask about a com-

mand, selecting two questions, and selecting questions until

uncertainty is below a specified, hand-tuned threshold. We also

compare to selecting a question at random. The system may

ask up to two questions about each concrete noun phrase.

When asking about a noun phrase for a second time, it

generates the same question but receives a different answer.

The system could ask a total of 76 possible questions over the

21 commands in the corpus; for each approach we also report

the fraction of questions from this space that were actually

asked. Table I shows the performance of the system in these

conditions.

When asking one question and using automatic coreference

resolution, Metric 2 (Entropy) slightly outperforms Metric 1

(Confidence), but does no better than randomly choosing a

question to ask. When asking a second question, Metric 2

achieves better accuracy than Metric 1 or random question

selection, nearly matching the 71% correct achieved by asking

all possible questions. This is despite the fact that it only

asks 55% of the available questions. These results show clear

improvement from the additional information in the questions

and answers, and some advantage from Metric 2 over Metric 1

and random selection of questions. Note when asking a second

question, the system may choose to ask again about the

previously encountered phrase; it may also choose to ask about

another phrase. This mechanism means that if the answer to

the first question was ambiguous, the system can recover by

asking again to collect more information.

In order to focus on the results of the question-selection

process, we repeat the analysis of the two metrics using oracle

coreference, which determines linguistic coreference directly

from the mapping between constituents in the language and

groundings in the real world. This eliminates automatic coref-

erence as a source of error in these results. We see a significant

improvement using oracle coreference compared to automatic

coreference; this is due to errors in which the automatic

resolver merges variables that do not actually refer to the same

object.

When using oracle coreference, asking all possible questions

shows a dramatic improvement over asking no questions (92%

from 58%). With one and two questions being asked, Met-

ric 2 (Entropy) again outperforms Metric 1 (Confidence) and

random selection. Notably, question selection with Metric 2

(Entropy) is able to achieve the same 92% accuracy as

asking all questions, despite only asking 55% of the ques-

tions available to it. Improved coreference resolution could

be achieved by training on a larger corpus of examples, as

well as adding additional features to the coreference resolver,

especially including information from groundings.



Next, we assess the system’s performance using the algo-

rithm described in Section III-C in order to decide when to

ask a question, in addition to deciding what question to ask.

Table II shows the performance of Metric 1 and Metric 2.

Metric 2 significantly outperforms Metric 2 while asking only

a few more questions. Although it asks less than half of

the possible questions, it approaches the performance of the

system which asks all possible questions.

As an example of the system’s operation, for a command

such as “Move the pallet over to it,” the entropy according to

Metric 2 for the phrase “it” is (1.82) and “the pallet” (1.00).
The system identifies “it” as the most uncertain variable, then

asks “What does the word ‘it’ refer to?” The answer was

“It refers to the empty trailer to the left of the two pallets.”

After incorporating the answer into the model and performing

inference, the system correctly grounds the phrase “it” to the

trailer and computes a new estimate for the entropy. The

entropy for “it” has now been reduced, and the robot next

asks “What do the words the pallet refer to?” and receives an

answer “The pallet is the piece of wood with the orange and

grey boxes that is directly in front of the forklift.” After this

process, the robot has inferred correct values for all grounding

variables in the grounding graph for this command.

Finally, we assess the system’s performance at producing

better action sequences using answers to questions. For each

top-level clause in the corpus, we generated a sequence of

robot actions and manually assessed whether those actions

matched the actions in the original video. When using infor-

mation from commands only, the system correctly executes

37% of the top level actions. In many cases, for a command

such as “pick up the pallet” it does pick up a pallet, but

a different one from the original video. In contrast, after

incorporating information from the answers to questions, it

correctly executes 66% of the commands.

Our framework provides first steps toward an information-

theoretic approach for enabling the robot to ask questions

about objects in the environment. Failures occurred for a

number of reasons. Sometimes, the answer obtained from the

human user was not useful. For example, one user answered

“What do the words the pallet refer to?” with a definition of the

pallet “The wooden crate that the merchandise sits on top of”

rather than specifying which pallet was being referenced (e.g.,

something like “the pallet with tires.”) Other failures occurred

in more complex environments because the robot failed to

understand the disambiguating answer, as in “the object on

the far left,” when the system did not have a good model

of left versus right. Our entropy-based approach is limited to

types of questions that target specific phrases in the answer.

More general algorithms are needed to handle a wider array

of dialog strategies, such as asking yes/no’ questions, such as

“Do you mean this one?” or more open-ended questions such

as “Now what?”

V. RELATED WORK

Many have created systems that exploit the compositional

structure of language in order to follow natural language

Command: Move your pallet further right.
Question: What do the words your pallet refer to?
Answer: Your pallet refers to the pallet you are currently

carrying.

Command: Move closer to it.
Question: What does the word it refer to?
Answer: It refers to the empty truck trailer.

Command: Take the pallet and place it on the one to the left.
Question: What do the words the one refer to?
Answer: The one refers to the empty trailer.

Command: Place the pallet just to the right of the other pallet.
Question: What do the words the pallet refer to?
Answer: The wooden crate that the merchandise sits on

top of.

Fig. 5: Sample commands, questions, and answers from the

corpus.

TABLE I: Performance at Grounding Concrete Noun Phrases

% Correct,
automatic

coreference

% Correct,
oracle

coreference

% Questions
Asked

Baselines
No Questions 47% 58% 0%
All Questions 71% 92% 100%

Asking One Question
Random 55% 74% 28%
Metric 1 (Confidence) 53% 74% 28%
Metric 2 (Entropy) 55% 79% 28%

Asking Two Questions
Random 61% 82% 55%
Metric 1 (Confidence) 63% 82% 55%
Metric 2 (Entropy) 68% 92% 55%

commands [21, 9, 4]. Previous probabilistic approaches have

used generative and discriminative models for understanding

route instructions but did not make interactive systems that

can use dialog to resolve ambiguity [10, 19, 8, 18, 13]. Our

work instead focuses on using an induced probabilistic model

over natural language commands and groundings in order to

incorporate information from questions and answers.

Others have created robotic systems that interact using

dialog [5, 15, 2]. Bauer et al. [1] built a robot that can

find its way through an urban environment by interacting

with pedestrians using a touch screen and gesture recognition

system. Our approach differs in that it focuses on simple three-

turn dialogs but is able to understand language from untrained

users rather than a predefined, fixed vocabulary or fixed types

of answers. Furthermore, it chooses targeted questions based

on the robot’s model of the external world.

Existing work in dialog systems [3, 12, 20, 22] use MDP

and POMDP models with a fixed, predefined state space

to represent the user’s intentions. In contrast, the space of

possible groundings is defined by objects and action available

to the robot’s perception; the user’s intentions are defined by

the grounding graph and vary according to the structure of the

language.



TABLE II: Performance Deciding When to Ask a Question

% Correct, oracle
coreference

% Questions Asked

Metric 1
(Confidence)

71% 38%

Metric 2
(Entropy)

87% 40%

VI. CONCLUSION

In this paper, we presented results for a robot dialog

understanding system based on a probabilistic graphical model

that factors according to the structure of language. This system

is able to ask the human user targeted questions about parts

of a command that it failed to understand and incorporate

information from an open-ended space of answers into its

model, iteratively improving its confidence and accuracy.

Our next steps are to scale the algorithm to more complex

dialogs, expanding the repertoire of questions and answers that

the system can understand. Integrating nonverbal backchannels

and gesture into the framework as new types of factors in the

grounding graph remains an open problem. Finally, we aim to

extend the framework to support active learning, enabling the

robot to learn new word meanings based on answers it has

received to questions.
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