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Abstract—Pose graphs have become an attractive representa-
tion for solving Simultaneous Localization and Mapping (SLAM)
problems. In this paper, we analyze the structure of the nonlinear-
ities in the 2D SLAM problem formulated as the optimizing of a
pose graph. First, we prove that finding the optimal configuration
of a very basic pose graph with 3 nodes (poses) and 3 edges
(relative pose constraints) with spherical covariance matrices,
which can be formulated as a six dimensional least squares
optimization problem, is equivalent to solving a one dimensional
optimization problem. Then we show that the same result can
be extended to the optimizing of a pose graph with “two anchor
nodes” where every edge is connecting to one of the two anchor
nodes. Furthermore, we prove that the global minimum of the
resulting one dimensional optimization problem must belong to a
certain interval and there are at most 3 minima in that interval.
Thus the globally optimal pose configuration of the pose graph
can be obtained very easily through the bisection method and
closed-form formulas.

I. INTRODUCTION

Recently, SLAM techniques based on pose graphs are
becoming very popular because of their robustness and com-
putational efficiency. Solving the SLAM problem using pose
graph representation typically includes two stages. In the first
stage (SLAM front-end), relative pose constraints are obtained
(e.g. from odometry and/or scan matching) to construct a pose
graph where each node is a robot pose and each edge is a
relative pose constraint. In the second stage (SLAM back-
end), an optimization technique is applied to find the optimal
pose configuration.

The concept of pose graph SLAM formulation has been
introduced in [1]. Recent insights into the sparse structure of
the SLAM problem have boosted the research in this direction.
The work includes multi-level relaxation [2], stochastic gra-
dient descent (SGD) [3], sparse Pose Adjustment (SPA) [4],
preconditioned conjugate gradient and subgraph strategy [5].
A number of 3D pose graph SLAM algorithms have also been
developed that can be applied to visual SLAM and SLAM with
3D laser data (http://openslam.org/).

The optimization problem involved in pose graph SLAM
has a very high dimension because all the poses involved are
variables. It is expected that such a high dimensional nonlinear
optimization problem could have a very large number of local
minima and general iteration based optimization algorithms
could frequently be trapped into one of these local minima

unless very good initial value is available. However, the results
in [3][4][5] demonstrate that sometimes the algorithms can
converge to good solution with poor or even zero initial values.
In particular, Tree-based network optimizer (TORO)[6], which
applies incremental pose parametrization and a tree structure
on top of SGD, has been reported to be extremely robust to
poor initial values, especially when the covariance matrix of
the relative pose is close to spherical.

These phenomena show that the nonlinear optimization
problem involved in pose graph SLAM appears to have a
very special underling structure that requires further investi-
gation. Since loop closing is an important feature in SLAM
optimization problems, we start from analyzing the “minimal
pose graph SLAM problem with loop closure”, namely, the
pose graph with 3 poses and 3 constraints. Analyzing minimal
problems (e.g. http://cmp.felk.cvut.cz/minimal/ and [7]) can
provide us some insights into the fundamental structure and
properties of the large problems.

In this paper, based on our initial work on the analysis of
the number of minima for point feature based SLAM problems
[8], we prove that solving the basic 3-pose 3-constraint pose
graph as a least squares problem is equivalent to solving a one
dimensional optimization problem. Furthermore, we extend
the result to pose graph with “two anchor nodes” and show
how to obtain the global minimum of the one dimensional
optimization problem1.

The paper is organized as follows. Section II presents
the least squares formulation of the 3-pose 3-constraint pose
graph SLAM problem and shows its equivalence to a one
dimensional optimization problem. In Section III, the result
is extended to the pose graph with only two anchor nodes.
Section IV presents some properties of the one dimensional
optimization problem. Section V discusses the related work
and potential applications of the results. Finally Section VI
concludes the paper. The proofs of the two main results in
this paper are given in the Appendix.

II. POSE GRAPH WITH 3 POSES AND 3 CONSTRAINTS

Suppose there are three 2D robot poses r0, r1, r2 and three
constraints Z0

1 , Z0
2 , Z1

2 where Zi
j is the relative pose constraint

1The MATLAB source code for solving this kind of pose graph SLAM
problems is available at http://services.eng.uts.edu.au/˜sdhuang/research.htm.



Fig. 1. Pose graph with 3 poses and 3 constraints.

from pose ri to pose rj (i = 0, 1, j = 1, 2). The corresponding
pose graph is shown in Fig. 1 with 3 nodes (poses) and 3 edges
(relative pose constraints).

A. Least Squares Problem Formulation

We choose pose r0 as the origin of the global coordinate
frame. That is, r0 = (xr0 , yr0 , φr0)

T = (0, 0, 0)T . The least
squares problem is to minimize

F (X) =
∑

i,j

(Zi
j −HZi

j (X))T P−1
Zi

j
(Zi

j −HZi
j (X)) (1)

where Zi
j is the relative pose constraint from pose ri to

pose rj , and PZi
j

is the corresponding covariance matrix. The

function HZ0
j (X) is given by

HZ0
j (X) =

[
xrj

yrj
φrj

]T
(2)

and the function HZ1
j (X) is given by 2

HZ1
j (X) =




cφr1
(xrj − xr1) + sφr1

(yrj − yr1)
−sφr1

(xrj
− xr1) + cφr1

(yrj
− yr1)

φrj
− φr1


 . (3)

For the 3-pose 3-constraint problem, the state vector X is

X =
[
xr2 yr2 φr2 xr1 yr1 φr1

]T
.

Suppose the relative pose constraints are

Z0
1 = (zxr1

, zyr1
, zφr1

)T

Z0
2 = (zxr2

, zyr2
, zφr2

)T

Z1
2 = (zx

r1
r2

, zy
r1
r2

, zφ
r1
r2

)T .
(4)

Assume the covariance matrices PZi
j

are spherical 3

PZ0
1

= diag(γ−1
r1

, γ−1
r1

, γ−1
φr1

)
PZ0

2
= diag(γ−1

r2
, γ−1

r2
, γ−1

φr2
)

PZ1
2

= diag(γ−1
r2r1

, γ−1
r2r1

, γ−1
φ

r1
r2

),
(5)

2In this paper, we use cφr1
, sφr1

, czφr1
, szφr1

to denote cos(φr1 ),
sin(φr1 ), cos(zφr1

), sin(zφr1
) respectively.

3Here spherical means diagonal with the first two elements (corresponding
to x and y) being the same. Most of the publicly available datasets (e.g. [9])
have the covariance matrices in this format.

then the objective function is

F (X)

= γr1 [(zxr1
− xr1)

2 + (zyr1
− yr1)

2] + γφr1
(zφr1

− φr1)
2

+ γr2 [(zxr2
− xr2)

2 + (zyr2
− yr2)

2] + γφr2
(zφr2

− φr2)
2

+ γr2r1 [zx
r1
r2
− cφr1

(xr2 − xr1)− sφr1
(yr2 − yr1)]

2

+ γr2r1 [zy
r1
r2

+ sφr1
(xr2 − xr1)− cφr1

(yr2 − yr1)]
2

+ γφ
r1
r2

(zφ
r1
r2
− φr2 + φr1)

2. (6)

Note that F (X) can also be written in a new form

F (X)

= γr1 [(zxr1
− xr1)

2 + (zyr1
− yr1)

2] + γφr1
(zφr1

− φr1)
2

+ γr2 [(zxr2
− xr2)

2 + (zyr2
− yr2)

2] + γφr2
(zφr2

− φr2)
2

+ γr2r1 [A(φr1)− (xr2 − xr1)]
2

+ γr2r1 [B(φr1)− (yr2 − yr1)]
2

+ γφ
r1
r2

(zφ
r1
r2
− φr2 + φr1)

2 (7)

where 4

A(φr1) = zx
r1
r2

cφr1
− zy

r1
r2

sφr1
,

B(φr1) = zx
r1
r2

sφr1
+ zy

r1
r2

cφr1
.

(8)

Remark 1. In (7), the term cφr1
and sφr1

are separated from
the term (xr2 − xr1) and (yr2 − yr1) which make the com-
putation of the gradient and analyzing of the stationary points
easier. It is clear from our results that spherical covariance in
the form (5) can simplify the problem significantly.

B. The Equivalence to One Dimensional Problem

The following theorem shows that the problem of minimiz-
ing the objective function (7) is equivalent to an optimization
problem with one variable.

The results in this paper hold for general spherical covari-
ance matrices as given in (5). However, in order to simplify the
formulas and make the paper more readable, in the reminder
of this paper, we assume

γr1 = γφr1
= γr2 = γφr2

= γr2r1 = γφ
r1
r2

= 1. (9)

Theorem 1: Given data zxr1
, zyr1

, zφr1
, zxr2

, zyr2
, zφr2

, and
zx

r1
r2

, zy
r1
r2

, zφ
r1
r2

, we have that minimizing the objective func-
tion (7) under assumption (9) is equivalent to minimizing the
following function of one variable φ:

f(φ) = φ2 +
1
2
(φ + ∆zφ

r1
r2

)2 − 2a cos(φ + α) + b (10)

where ∆zφ
r1
r2

, a, α, b are constants that can be computed from
the data by

∆zφ
r1
r2

= zφ
r1
r2
− zφr2

+ zφr1
∈ [−π, π),

a =
√

p2 + (d + q)2,
α = atan2(p, d + q),
b = 1

3 [z2
x

r1
r2

+ z2
y

r1
r2

+ (zxr2
− zxr1

)2 + (zyr2
− zyr1

)2]
(11)

4In the following, we will simply use A, B to denote the functions
A(φr1 ), B(φr1 ). This also applies to Ai, Bi, A2k, B2k etc.



TABLE I
EXAMPLE 1: FOUR DATA WITH DIFFERENT LEVEL OF NOISES. THE GROUND TRUTH OF THE POSES ARE r0 = (0, 0, 0), r1 = (1, 0.5, π

2
), r2 = (0, 1, 3

4
π).

noise (zxr1
, zyr1

, zφr1
) (zxr2

, zyr2
, zφr2

) (zx
r1
r2

, zy
r1
r2

, zφ
r1
r2

) ∆zφ
r1
r2

α No. φ∗ f(φ∗) F (X∗)
zero (1.0000, 0.5000, 1.5708) (0, 1.0000, 2.3562) (0.5000, 1.0000, 0.7854) 0 0 1 0 0 0
small ( 1.1022 0.3967 1.5383) ( 0.0805 0.9991 2.5293) ( 0.6335 0.9682 0.8705) -0.1204 -0.0793 1 0.0493 0.0057 0.0057
large (0.9368 0.6861 2.1437) (-0.2468 1.0940 2.3901) (0.5627 1.3630 1.1482) 0.9018 0.5132 1 -0.3623 0.3073 0.3073
huge (1.1674 6.1375 0.0755) (-6.6684 2.7509 2.4706) (-0.8100 -7.7511 -0.6429) -3.0380 1.1342 3 -0.9978 9.7355 9.7355

‘No.’ means “the number of minima in [−2π − α, 2π − α]”.

where
d = 1

3 [(zxr2
− zxr1

)2 + (zyr2
− zyr1

)2]
p = δaczφr1

+ δbszφr1

q = −δaszφr1
+ δbczφr1

δa = −∆zx
r1
r2

(− 1
3zyr1

+ 1
3zyr2

) + ∆zy
r1
r2

(− 1
3zxr1

+ 1
3zxr2

)
δb = ∆zx

r1
r2

(− 1
3zxr1

+ 1
3zxr2

) + ∆zy
r1
r2

(− 1
3zyr1

+ 1
3zyr2

)
∆zx

r1
r2

= zx
r1
r2
− (zxr2

− zxr1
)czφr1

− (zyr2
− zyr1

)szφr1

∆zy
r1
r2

= zy
r1
r2

+ (zxr2
− zxr1

)szφr1
− (zyr2

− zyr1
)czφr1

.
(12)

In fact, once the solution φ to the one variable optimization
problem is obtained, the solution to the problem of minimizing
F (X) in (7) can be obtained in a closed-form by the following
formulas

φr1 = φ + zφr1

φr2 = 1
2 (zφr2

+ zφ
r1
r2

+ φr1)
xr1 = 2

3zxr1
+ 1

3zxr2
− 1

3A
yr1 = 2

3zyr1
+ 1

3zyr2
− 1

3B
xr2 = 1

3zxr1
+ 2

3zxr2
+ 1

3A
yr2 = 1

3zyr1
+ 2

3zyr2
+ 1

3B.

(13)

Proof: See Appendix A.
Remark 2. The constants ∆zφ

r1
r2

, a, α, b in f(φ) summarize
some important information from the relative pose constraints
data. For example, ∆zφ

r1
r2

indicates the level of consistency
among the three angles zφ

r1
r2

, zφr2
, and zφr1

. If the three
angles are compatible with each other (e.g. when the relative
orientation estimates are accurate), then ∆zφ

r1
r2

is close to 0.
Similarly, if the relative pose data are accurate, then α is close
to 0 and a is proportional to the square of the distance between
r1 and r2. Constant b does not have any impact on the solution
to the optimization problem.
Example 1. To illustrate the results in Theorem 1, consider
the following example. Assume the ground truth of the poses
are r0 = (0, 0, 0), r1 = (1, 0.5, π

2 ), r2 = (0, 1, 3
4π) which is

similar to the configuration in Fig. 1. Four examples of relative
constraints datasets randomly generated with 4 different levels
of noise are listed in Table I. The corresponding constants
∆zφ

r1
r2

, a, α, b can then be computed for each dataset using
the formulas in (11) and the function f(φ) in (10) can be
obtained. The two key constants ∆zφ

r1
r2

and α, the number of
local minima within [−2π − α, 2π − α], the global minimum
φ∗ and f(φ∗), as well as the objective function value obtained
through solving the least squares problem using Gauss-Newton
(F (X∗)) are all listed in Table I. Fig. 2 shows the function
f(φ) for the 4 different datasets. It can be seen that more than
one minima exist only when the noise is unrealistically large.
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Fig. 2. The function f(φ) in Theorem 1 for datasets with different levels
of noise: pose graph with 3 poses and 3 constraints.

III. POSE GRAPH WITH TWO ANCHOR POSES

Now consider a more general pose graph as shown in Fig. 3.
This pose graph has a special structure. Namely, all the edges
are connecting one of the two nodes r0 and r1. Here we call
nodes r0 and r1 “anchor nodes” or “anchor poses”.

Assume there are:
• n poses that have two edges linked to both r0 and r1:

r2, · · · , rn, rn+1;
• n1 poses that only have one edge linked to r0:

r11, r12, · · · , r1n1 ;
• n2 poses that only have one edge linked to r1:

r21, r22, · · · , r2n2 .
Assume the relative pose constraints are:
• from r0 to r1: (zxr1

, zyr1
, zφr1

)T ;
• from r0 to ri: (zxri

, zyri
, zφri

)T , i = 2, . . . , n + 1;
• from r1 to ri: (zx

r1
ri

, zy
r1
ri

, zφ
r1
ri

)T , i = 2, . . . , n + 1;
• from r0 to r1j : (zxr1j

, zyr1j
, zφr1j

)T , j = 1, . . . , n1;
• from r1 to r2k: (zxr2k

, zyr2k
, zφr2k

)T , k = 1, . . . , n2.
In the example shown in Fig. 3, n = 3, n1 = 2, n2 = 4. It

is obvious that the 3-pose 3-constraint pose graph in Fig. 1 is
a special case with n = 1, n1 = 0, n2 = 0.

The covariance matrices of the relative pose constraints can
be assumed to have the same format as in (5). However, to
simplify the formulas, we assume the covariance matrices are
all identity matrices.

To find the optimal configuration of the pose graph, the
state vector X contains all the robot poses except pose r0

which is the origin of the coordinate frame. Similar to (7), the
objective function of the least squares optimization problem



Fig. 3. Pose graph with two anchor poses r0 and r1.

can be written as

F (X) = (zxr1
− xr1)

2 + (zyr1
− yr1)

2 + (zφr1
− φr1)

2

+
n+1∑

i=2

[(zxri
− xri)

2 + (zyri
− yri)

2 + (zφri
− φri)

2

+ (Ai − (xri
− xr1))

2 + (Bi − (yri
− yr1))

2

+ (zφ
r1
ri
− (φri

− φr1))
2]

+
n1∑

j=1

[(zxr1j
− xr1j

)2 + (zyr1j
− yr1j

)2

+ (zφr1j
− φr1j

)2] +
n2∑

k=1

[(A2k − (xr2k
− xr1))

2

+ (B2k − (yr2k
− yr1))

2 + (zφ
r1
r2k

− (φr2k
− φr1))

2] (14)

where for i = 2, . . . , n + 1, k = 1, . . . , n2,

Ai = zx
r1
ri

cφr1
− zy

r1
ri

sφr1
, Bi = zx

r1
ri

sφr1
+ zy

r1
ri

cφr1
,

A2k = zx
r1
r2k

cφr1
− zy

r1
r2k

sφr1
, B2k = zx

r1
r2k

sφr1
+ zy

r1
r2k

cφr1
.

The following theorem demonstrates that minimizing (14)
is equivalent to a one dimensional optimization problem.
Theorem 2: The problem of minimizing the objective function
(14) is equivalent to minimizing the following function with
one variable φ:

f(φ) = φ2 +
1
2

n+1∑

i=2

[φ + ∆zφ
r1
ri

]2 − 2a cos(φ + α) + b (15)

where ∆zφ
r1
ri

, a, α and b can be computed from the relative
constraints data by

∆zφ
r1
ri

= zφ
r1
ri
− (zφri

− zφr1
) ∈ [−π, π], i = 2, · · · , n + 1,

a =
√

p2 + (d + q)2,
α = atan2(p, d + q), (16)

b =(
1

n + 2

n+1∑

i=2

zxri
+ (

2
n + 2

− 1)zxr1
)2

+ (
1

n + 2

n+1∑

i=2

zyri
+ (

2
n + 2

− 1)zyr1
)2

+ 2
n+1∑

j=2

[
1

n + 2
zxr1

− 1
2
zxrj

+
1

2(n + 2)

n+1∑

i=2

zxri
]2

+ 2
n+1∑

j=2

[
1

n + 2
zyr1

− 1
2
zyrj

+
1

2(n + 2)

n+1∑

i=2

zyri
]2

+
n + 1

2(n + 2)

n+1∑

i=2

(z2
x

r1
ri

+ z2
y

r1
ri

)

− 1
n + 2

∑

2≤i<j≤n+1

(zx
r1
ri

zx
r1
rj

+ zy
r1
ri

zy
r1
rj

) (17)

where

d =
1
2

∑

2≤i≤n+1

[(zxri
− zxr1

)2 + (zyri
− zyr1

)2]

− 1
2(n + 2)

∑

2≤i,j≤n+1

[(zxrj
− zxr1

)(zxri
− zxr1

)

+ (zyrj
− zyr1

)(zyri
− zyr1

)],

p =δaczφr1
+ δbszφr1

,

q =− δaszφr1
+ δbczφr1

,

δa =
n+1∑

j=2

(

[
∆zx

r1
rj

∆zy
r1
rj

]T




1
n+2zyr1

− 1
2zyrj

+ 1
2(n+2)

n+1∑

i=2

zyri

−1
n+2zxr1

+ 1
2zxrj

− 1
2(n+2)

n+1∑

i=2

zxri




),

δb =
n+1∑

j=2

(

[
∆zx

r1
rj

∆zy
r1
rj

]T




−1
n+2zxr1

+ 1
2zxrj

− 1
2(n+2)

n+1∑

i=2

zxri

−1
n+2zyr1

+ 1
2zyrj

− 1
2(n+2)

n+1∑

i=2

zyri




),

∆zx
r1
ri

= zx
r1
ri
− [(zxri

− zxr1
)czφr1

+ (zyri
− zyr1

)szφr1
],

∆zy
r1
ri

= zy
r1
ri
− [−(zxri

− zxr1
)szφr1

+ (zyri
− zyr1

)czφr1
],

i = 2, · · · , n + 1.

In fact, once the solution φ to the one variable optimization
problem is obtained, the X that minimizes (14) can be
obtained in a closed-form by the following formulas:
(i) For pose r1j , (1 ≤ j ≤ n1)

φr1j = zφr1j
, xr1j = zxr1j

, yr1j = zyr1j
. (18)

(ii) For pose r1,

φr1 = φ + zφr1

xr1 =
1

n + 2

n+1∑

i=2

(zxri
+ Ai) +

2
n + 2

(zxr1
−

n+1∑

i=2

Ai)

yr1 =
1

n + 2

n+1∑

i=2

(zyri
+ Bi) +

2
n + 2

(zyr1
−

n+1∑

i=2

Bi) (19)



(iii) For pose ri, (2 ≤ i ≤ n + 1),

φri
=

1
2
(zφri

+ zφ
r1
ri

+ φr1)

xri
=

1
2
(zxri

+ Ai) +
1

2(n + 2)

n+1∑

j=2

(zxrj
+ Aj)

+
1

n + 2
(zxr1

−
n+1∑

j=2

Aj)

yri
=

1
2
(zyri

+ Bi) +
1

2(n + 2)

n+1∑

j=2

(zyrj
+ Bj)

+
1

n + 2
(zyr1

−
n+1∑

j=2

Bj) (20)

(iv) For pose r2k, (1 ≤ k ≤ n2)

φr2k
= zφ

r1
r2k

+φr1 , xr2k
= xr1+A2k, yr2k

= yr1+B2k. (21)

Proof: The proof is similar to that of Theorem 1 and
is omitted. One of the technical challenges involved is the
computing of the inverse of a (2n+2)× (2n+2) matrix (see
the proof of Theorem 1 in [8]) in order to solve the linear
equations to get the closed-form formulas in (19) and (20).
Remark 3. The objective functions considered in (7) and
(14) treat the orientation variables as real numbers instead
of angles. Since the error in angles is limited to [−π, π),
a regularization term might be needed in some situations.
The problem of obtaining the correct regularization term is
discussed in details in [10]. Note that for the problem consid-
ered in Theorem 2, because there are only two anchor poses
and each relative angle is within [−π, π), the regularization
term 2kπ with k = ±1 will be enough if needed. Once
the regularization term is determined, minimizing the new
objective function is still a one dimensional problem.

IV. PROPERTIES OF THE ONE DIMENSIONAL PROBLEM

Now we consider the properties of the one dimensional
function in Theorem 2 (Theorem 1 is a special case of
Theorem 2 with n = 1, n1 = 0, n2 = 0).
Theorem 3: Assume that a > 0, α ∈ [−π, π) are constants,
n ≥ 1 is a positive integer and ∆zφ

r1
ri

∈ [−π, π), i =
2, · · · , n + 1 are all constants. Then we have that

(i) The optimal solution φ∗ of minimizing function f(φ) in
(15) satisfies φ∗ ∈ [−2π − α, 2π − α].

(ii) If a < 1 + n
2 , then f(φ) in (15) has one and only one

minimum which is the global minimum.
(iii) If a ≥ 1 + n

2 , then f(φ) in (15) has at least one
and at most three local minima in [−2π − α, 2π − α]. And
the exact number of local minima depends on the values of
f ′(φ1), f ′(φ2), f ′(φ3), f ′(φ4), where 5

φ1 = −2π + arccos(−n+2
2a )− α,

φ2 = − arccos(−n+2
2a )− α,

φ3 = arccos(−n+2
2a )− α,

φ4 = 2π − arccos(−n+2
2a )− α.

(22)

5The φ1, φ2, φ3, φ4 in the one dimension problem considered in Example
2 are shown in Fig. 4(d).

TABLE II
THE NUMBER OF LOCAL MINIMA FOR f(φ) IN (15) WHEN a ≥ 1 + n

2
.

f ′(−2π − α) < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0
f ′(φ1) > 0 > 0 > 0 > 0 > 0 ≤ 0 ≤ 0 ≤ 0
f ′(φ2) < 0 < 0 < 0 ≥ 0 ≥ 0 < 0 < 0 < 0
f ′(φ3) > 0 > 0 ≤ 0 > 0 > 0 > 0 > 0 ≤ 0
f ′(φ4) < 0 ≥ 0 < 0 < 0 ≥ 0 < 0 ≥ 0 < 0

f ′(2π − α) > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0
No. 3 2 2 2 1 2 1 1

’1, 2, 3’ denote the number of minima in [−2π − α, 2π − α].

and f ′(φ) is the first derivative of f(φ) given by

f ′(φ) = 2a sin(φ + α) + (n + 2)φ +
n+1∑

i=2

∆zφ
r1
ri

. (23)

All the 8 different cases are listed in Table II.
Proof: See Appendix B.

Remark 4. Theorem 3 shows that the global minimum of the
one dimensional problem is in [−2π−α, 2π−α] and there are
at most three minima in this interval. So the one dimensional
problem can be solved easily using a bisection algorithm.
Example 2. We use the Freiburg Indoor Building 079 dataset
[9] to construct an example. There are 989 poses (nodes) and
1314 constraints (edges) in this dataset. The data is separated
into two parts to construct two pose graphs. Each pose graph
is optimized by performing a Gauss-Newton least squares
optimization. The optimized configuration of the two pose
graphs and the edges involved are shown in Fig. 4(a) and
Fig. 4(b), respectively.

For each pose graph, the resulting optimized pose configu-
ration is the relative pose estimate with respect to the origin
of the pose graph. We simply ignore the correlation among
the pose estimates and treat the optimized configuration as
independent relative pose constraints from the origin to the
other poses in the graph. We also assume the covariance
matrices of the relative pose constraints are all identity.

Now we have got a pose graph with two anchor nodes, one
anchor is the origin of the first pose graph (r0) and the other
anchor is the origin of the second pose graph (r1). There are
n = 39 nodes which are linked with both r0 and r1 as shown
in Fig. 4(c). Applying Theorem 2, we can get function f(φ)
as shown in Fig. 4(d). This function has three local minima in
[−2π − α, 2π − α] and the global minimum is φ∗ = 0.0078.
The objective function value f(φ∗) = 0.06009 is the same
as that obtained by solving the constructed pose graph as a
988 × 3 dimensional least squares problem. Fig. 4(c) shows
the result of computing all the 988 nodes using φ∗ by the
closed-form formulas in Theorem 2.

V. RELATED WORK AND DISCUSSIONS

The pose graph optimization problem considered in Theo-
rem 2 has some similarity with the problem of estimating the
relative transformation between two coordinate frames given
two corresponding point sets [11]. The major differences are
that our problem includes a relative pose information between
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Fig. 4. Example of Theorem 2 using the Freiburg Indoor Building 079
dataset: pose graph with two anchor poses.

r0 and r1, and we are optimizing all the variables not only
the relative pose.

Recently, an approximate solution to pose graph SLAM
problem using linear estimation methods is proposed in [12]
and then in [10]. The first step is to obtain a suboptimal
estimate of all the robot orientations using linear method,
then estimate all the variables using linear method. In our
current work, we are proposing exact solutions instead of
approximate solutions, and we just need to solve a one
dimensional nonlinear problem to obtain one variable and all
the other variables can then be calculated using closed-form
formulas. However, our current results only hold for specific
pose graphs.

The closest related work is [13] where it was attempted to
compute a closed-form solution for pose-graph SLAM with
identity covariance matrices by using cφ = cos(φ) and sφ =
sin(φ) as variables with an additional constraint c2

φ + s2
φ = 1.

However, only some initial results on computing the robot
positions were derived in [13].

While the results in this paper provide some interesting
properties of pose graph SLAM problems, they raise a number
of questions in SLAM which require further investigation.

In pose graph SLAM, the property that the Jacobian and
information matrix are exactly sparse [14] has been exploited
in most of the recent efficient pose graph SLAM algorithms.
Can we further exploit the special structure of the nonlinearity
in pose graph SLAM such that more efficient algorithms can
be developed? Or, has this structure already been implicitly
used in the existing algorithms?

For example, SGD is proposed in [3][6] to be used to solve
the pose graph SLAM problems. This approach solves the
optimization problem by dealing with each constraint one-
by-one and can converge to good solutions most of the time
even when the initial value is very poor. There might be some
relationship between the 3-pose 3-constraint problem in our
paper and the problem of dealing with one constraint in SGD.
Moreover, since our results can be extended to pose graph
with multiple constraints but only two anchor poses. It might
be possible to deal with a set of constraints at a time when
using SGD to speed up the algorithm further.

In practice, covariance matrices obtained from odometry
and scan matching can have more general forms, however,
most of the publicly available datasets has the spherical
covariance in the format of equation (5). Our results show that
spherical covariances can simplify the problem significantly.
It might be valuable to introduce some datasets with non-
spherical covariance matrices as benchmark datasets for testing
different algorithms in the SLAM community.

The pose graph with two anchor nodes shown in Fig. 3
has similar structure with the problem of combining two
optimized pose graphs using the map joining idea [15][16]
which can be applied to large-scale SLAM or multi-robot
SLAM [17]. However, in each of the optimized pose graph,
all the poses are fully correlated and they cannot be simply
treated as independent relative pose constraints as what we did
in Example 2 6. So the result in Theorem 2 cannot be directly
applied to combining two pose graphs although it can serve
as a quick way to obtain a good initial value.

VI. CONCLUSION AND FUTURE WORK

This paper provides some insights into the structure of the
nonlinearities in the pose graph SLAM optimization problem.
In particular, it shows that under the spherical covariance
matrices assumption, optimizing a pose graph with only two
anchor nodes is equivalent to a one dimensional optimization
problem which has at most three local minima. The globally
optimal pose configuration can thus be obtained by simply
computing all the minima using a bisection algorithm.

In the next step, we would like to analyze the property of the
SGD algorithm proposed in [3][6] where the constraints are
dealt with once at a time. We will also consider the extension
of the results to deal with more general covariance matrices

6The “good looking” result in Example 2 is probably due to the high quality
of the data and the high quality of the two optimized pose graphs.



and more general pose graph SLAM. Extension of the work
to 3D scenarios will also be a nontrivial contribution.
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APPENDIX

A. Proof of Theorem 1

Since the objective function F (X) is smooth, the optimal
solution that minimizes F (X) must be a stationary point with
zero gradient, that is ∇F (X) = 0.

By the definition of A,B in (8), we have

dA

dφr1

= −B,
dB

dφr1

= A.

Thus for F (X) in (7) with assumption (9), we have

∇F (X)

=
[

∂F (X)
∂xr2

∂F (X)
∂yr2

∂F (X)
∂φr2

∂F (X)
∂xr1

∂F (X)
∂yr1

∂F (X)
∂φr1

]T

= 2




−(zxr2
− xr2)− (A− xr2 + xr1)

−(zyr2
− yr2)− (B − yr2 + yr1)

−(zφr2
− φr2)− (zφ

r1
r2
− φr2 + φr1)

−(zxr1
− xr1) + (A− xr2 + xr1)

−(zyr1
− yr1) + (B − yr2 + yr1)

Θ




(24)

where

Θ = 2φr1 − zφr1
+ zφ

r1
r2
− φr2 + B(xr2 − xr1)−A(yr2 − yr1).

For any stationary point X , we can simplify the function F (X)
using the first 5 equations of ∇F (X) = 0 to get

F (X) =(zφr1
− φr1)

2 + 2(zφr2
− φr2)

2

+ 3(zxr2
− xr2)

2 + 3(zyr2
− yr2)

2. (25)

The 1st, 2nd, 4th, and 5th equations of ∇F (X) = 0 can be
written as

M1X1 = N1

where X1 =
[
xr2 yr2 xr1 yr1

]T
, and

M1 =




2 0 −1 0
0 2 0 −1
−1 0 2 0
0 −1 0 2


 , N1 =




zxr2
+ A

zyr2
+ B

zxr1
−A

zyr1
−B


 . (26)

Then we can compute

X1 =




xr2

yr2

xr1

yr1


 = M−1

1 N1 =




1
3zxr1

+ 2
3zxr2

+ 1
3A

1
3zyr1

+ 2
3zyr2

+ 1
3B

2
3zxr1

+ 1
3zxr2

− 1
3A

2
3zyr1

+ 1
3zyr2

− 1
3B


 . (27)

From the 3rd equation of ∇F (X) = 0, we have

φr2 =
1
2
(zφr2

+ zφ
r1
r2

+ φr1). (28)

Now we have got the last 5 equations in (13).
Submit (27) and (28) into (25), and use the definition of

A,B, we have

F (X) = (zφr1
− φr1)

2 + 2(zφr2
− φr2)

2

+3( 1
3zxr1

− 1
3zxr2

+ 1
3A)2

+3( 1
3zyr1

− 1
3zyr2

+ 1
3B)2

= (zφr1
− φr1)

2 + 1
2 (−zφr2

+ zφ
r1
r2

+ φr1)
2

+ 1
3 (zxr2

− zxr1
−A)2 + 1

3 (zyr2
− zyr1

−B)2

= (zφr1
− φr1)

2 + 1
2 (−zφr2

+ zφ
r1
r2

+ φr1)
2

+ 1
3 [A2 + B2 + (zxr2

− zxr1
)2 + (zyr2

− zyr1
)2]

− 2
3

[
zxr2

− zxr1

zyr2
− zyr1

]T [
cφr1

−sφr1

sφr1
cφr1

][
zx

r1
r2

zy
r1
r2

]
.

(29)
By (11) and (12), we have

zx
r1
r2

= (zxr2
− zxr1

)czφr1
+ (zyr2

− zyr1
)szφr1

+ ∆zx
r1
r2

zy
r1
r2

= −(zxr2
− zxr1

)szφr1
+ (zyr2

− zyr1
)czφr1

+ ∆zy
r1
r2

zφ
r1
r2

= zφr2
− zφr1

+ ∆zφ
r1
r2

(30)

Submit (30) into (29), also denote

φ = φr1 − zφr1
(31)

and notice that A2 + B2 = z2
x

r1
r2

+ z2
y

r1
r2

, we can have

F (X)

=φ2 +
1
2
(φ + ∆zφ

r1
r2

)2 − 2d cos φ− 2δbcφr1
+ 2δasφr1

+ b

=φ2 +
1
2
(φ + ∆zφ

r1
r2

)2 − 2(d + q) cos φ + 2p sinφ + b

=φ2 +
1
2
(φ + ∆zφ

r1
r2

)2 − 2a cos(φ + α) + b (32)

where d, δa, δb, b, p, q, a, α are given by (11) and (12).
Now we have proved that F (X) = f(φ) for all the

stationary points X . Furthermore, it can be proved that for
stationary points X , ∇F (X) = 0 is equivalent to f ′(φ) = 0,
and ∇2F (X) > 0 is equivalent to f ′′(φ) > 0. The details are
omitted due to the space limit.

Thus the minimization of F (X) in (7) is equivalent to
minimizing f(φ) in (10). This completes the proof.

B. Proof of Theorem 3

First, note that f(φ) can be divided into two parts,

f1(φ) = φ2 +
1
2

n+1∑

i=2

(φ + ∆zφ
r1
ri

)2 (33)

and
f2(φ) = −2a cos(φ + α) + b. (34)

Obviously, f1 is convex and the minimum of f1 is φmin =
− 1

n+2

∑n+1
i=2 ∆zφ

r1
ri

. Since ∆zφ
r1
ri
∈ [−π, π], we have φmin ∈

[− n
n+2π, n

n+2π] ∈ (−π, π). Then f1(φ) must be monotone
decreasing in (−∞,−π] and monotone increasing in [π,∞).

On the other hand, f2 is periodical and the minimal value
is achieved at −α,−2π − α, 2π − α. Since α ∈ [−π, π], we
have −2π− α ≤ −π and 2π− α ≥ π. So f1(φ) is monotone



decreasing in (−∞,−2π − α] and is monotone increasing in
[2π − α, +∞). Thus we have

f(φ) ≥ f(2π − α), ∀φ ≥ 2π − α,
f(φ) ≥ f(−2π − α), ∀φ ≤ −2π − α,

(35)

and thus the global minimum of f(φ) is in the interval [−2π−
α, 2π − α].

Second, denote e =
∑n+1

i=2 ∆zφ
r1
ri
∈ [−nπ, nπ], then

f ′(φ) = 2a sin(φ + α) + (n + 2)φ + e (36)

and
f ′′(φ) = 2a cos(φ + α) + (n + 2). (37)

If a < 1 + n
2 , we have f ′′(φ) > 0 for any φ. Thus f(φ) is

convex and there is one and only one minimum.
Third, consider the case when a ≥ 1 + n

2 . Let f ′′(φ) = 0,
we get four roots φ1, φ2, φ3, φ4 as given in (22). Note that
φ1, φ2, φ3, φ4 divide interval [−2π−α, 2π−α] into 5 intervals
where f ′ is monotone in each of the intervals, i.e., [−2π −
α, φ1), [φ1, φ2), [φ2, φ3), [φ3, φ4), and [φ4, 2π − α]. So the
number of minima of f(φ) can be analyzed by observing the
values f ′(−2π − α), f ′(φ1), f ′(φ2), f ′(φ3), f ′(φ4), f ′(2π −
α). For example, if f ′(φ4) < 0 and f ′(2π − α) > 0, then
there is a minima in interval [φ4, 2π − α] (see Fig. 4(d)).

Note that e ∈ [−nπ, nπ], so we have

f ′(−2π − α) = (2 + n)(−2π − α) + e

= −(2 + n)(π + α)− (2 + n)π + e

≤ −(2 + n)π + e ≤ −2π < 0
f ′(2π − α) = (2 + n)(2π − α) + e

= (2 + n)(π − α) + (2 + n)π + e

≥ (2 + n)π + e ≥ 2π > 0

Since f ′(φ1) ≤ 0 ⇒ f ′(φ2) < 0, f ′(φ2) ≥ 0 ⇒ f ′(φ3) > 0,
f ′(φ3) ≤ 0 ⇒ f ′(φ4) < 0, there are only 8 possible cases
which are listed in Table II. So there are at most three minima
in [−2π − α, 2π − α]. This completes the proof.
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